


















Chapter 4

Algorithms for unconstrained optimization

This chapter describes some of the most well-known solution methods for the
unconstrained minimization problem

(P ) min{f(x) : x ∈ Rn}

in which f : Rn → R is any (twice) continuously differentiable function.
The main focus will be on iterative descent methods, that is iterative algorithms

generating a sequence x0, x1, . . . , xk, . . . that satisfies the descent property

f(x0) > f(x1) > · · · > f(xk) > f(xk+1) > . . .

or the (weaker) non-monotone descent property

∀ k ∈ N ∃ m ∈ N s.t. f(xk) > f(xk+m).

The algorithms aim at finding a stationary point, i.e., some x̄ ∈ Rn such that
∇f(x̄) = 0, which is not necessarily a local minimum point of (P ) unless f is convex.
Beyond finite convergence, that is the existence of some k̄ such that ∇f(xk̄) = 0,
three different kinds of asymptotic convergence may be achieved:

(i) the sequence {xk}k∈N has a limit, that is a stationary point of f , i.e., lim
k→+∞

xk =

x̄ for some x̄ ∈ Rn such that ∇f(x̄) = 0;

(ii) each cluster point of {xk}k∈N is a stationary point of f ;

(iii) at least one cluster point of {xk}k∈N is a a stationary point of f .

The generic iteration can always be described through

xk+1 = xk + tkd
k

where dk ∈ Rn identifies the direction along which the algorithm moves away from
xk with stepsize tk > 0. Therefore, a full description of an algorithm can be provided
specifying the way dk and tk are chosen. Notice that it is not necessary to require
‖d‖2 = 1 since the stepsize tk can be determined accordingly.
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4.1 Gradient methods

A descent direction for f at x ∈ Rn is any d ∈ Rn such that f(x+ td) < f(x) holds
whenever t > 0 is small enough. Consider any x that is not a stationary point for
f , i.e., ∇f(x) 6= 0. Since Proposition 1.6 (ii) guarantees

lim
t→0

f(x+ td)− f(x)

t
= ∇f(x)Td,

∇f(x)Td < 0 is a sufficient condition for d to be a descent direction. Indeed, the
best choice to gain the (asymptotic) maximum decrease is clearly the direction d
that provides the minimum value for ∇f(x)Td.

Proposition 4.1. Given any x ∈ Rn which satisfies ∇f(x) 6= 0, then −∇f(x) is a
descent direction for f at x and

arg min{∇f(x)Td : ‖d‖2 = 1} = {−∇f(x)/‖∇f(x)‖2}.

Proof. If d = −∇f(x), then ∇f(x)Td = −‖∇f(x)‖2
2
< 0, and the first part of the

statement follows immediately. Since ∇f(x)Td = ‖∇f(x)‖2‖d‖2 cos θ, where θ is
the angle formed by the vectors ∇f(x) and d in the 2-dimensional subspace of Rn
(plane) which contains both, then

min{∇f(x)Td : ‖d‖2 = 1} = ‖∇f(x)‖2 min{cos θ : θ ∈ [0, 2π]}.

The minimum value is clearly achieved when cos θ = −1, that is θ = π. Therefore,
the direction d, which provides the minimum value, is collinear and opposite to
∇f(x), that is d = −∇f(x)/‖∇f(x)‖2 . �

The above proposition can be rephrased as “the gradient of a function points in
the direction of (asymptotic) maximum increase”, or its opposite points in the direc-
tion of maximum decrease (steepest descent direction). Notice that the constraint
‖d‖2 = 1 is essential in the proposition, otherwise the minimization problem would
be unbounded by below as ∇f(x)Td < 0 implies ∇f(x)T (td)→ −∞ as t→ +∞.

Once a descent direction d has been chosen, the ideal choice for the stepsize
would be any minimum point of the one dimensional search function

ϕ(t) = f(x+ td),

over R+, i.e., any t ∈ arg min{ϕ(t) : t ≥ 0}. Such a choice is generally referred to
as exact line search.

4.1.1 The gradient method with exact line search

Given any xk, which is not stationary for f , the most straightforward choices are to
take the direction dk = −∇f(xk) and the corresponding stepsize tk provided by the
exact line search. The resulting algorithm is summarized below.
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Algorithm 1 – Gradient method with exact line search

0. Choose x0 ∈ Rn and set k = 0

1. If ∇f(xk) = 0, then STOP

2. Compute tk ∈ arg min{f(xk − t∇f(xk)) : t ≥ 0}

3. xk+1 = xk − tk∇f(xk)

4. k = k + 1 and go to 1

Clearly, Algorithm 1 is a descent method as −∇f(xk) is a descent direction for
f at xk and the exact line search is performed. This can be checked also exploiting
the properties of the search function ϕk(t) = f(xk − t∇f(xk)).

Proposition 4.2. Let {xk} be the sequence produced by Algorithm 1. If xk is not a
stationary point of f , then f(xk+1) < f(xk).

Proof. The choice of tk guarantees ϕk(0) = f(xk) ≥ f(xk+1) = ϕk(tk). Note that
ϕk = f ◦ h with h(t) = xk − t∇f(xk). Since f is differentiable at any x and the
components of h have a derivative at any t, then ϕk has a derivative at any t and

ϕ′k(t) = −∇f(xk − t∇f(xk))T∇f(xk)

by Proposition 1.7. In particular, ϕ′k(0) = −‖∇f(xk)‖2
2
< 0 implies ϕk(t) < ϕk(0)

whenever t is small enough. Since tk minimizes ϕk over R+, then ϕk(tk) < ϕk(0),
i.e., f(xk+1) < f(xk). �

The basic convergence result is a straightforward consequence of the following
property stating that any two successive directions in Algorithm 1 are orthogonal.

Proposition 4.3. Let {xk} be the sequence produced by Algorithm 1. If xk is not a
stationary point of f , then ∇f(xk+1)T∇f(xk) = 0.

Proof. The proof of Proposition 4.2 shows also that tk > 0. Therefore, since it
minimizes ϕk over R+, then 0 = ϕ′k(tk) = −∇f(xk+1)T∇f(xk). �

Theorem 4.1. Suppose that Algorithm 1 generates an infinite sequence {xk}. If
lim

k→+∞
xk = x̄ for some x̄ ∈ Rn, then ∇f(x̄) = 0.

Proof. Proposition 4.3 and the continuity of the partial derivatives imply

0 = ∇f(xk+1)T∇f(xk)→ ∇f(x̄)T∇f(x̄) = ‖∇f(x̄)‖2
2

as k → +∞.

Therefore, ‖∇f(x̄)‖2 = 0, or equivalently ∇f(x̄) = 0. �
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The above convergence result is not very satisfactory since there is no guarantee
that the whole sequence {xk} converges. Actually, it is possible to prove also that
each cluster point of the sequence {xk} is a stationary point of f .

The exact line search requires the solution of an additional optimization problem
though in a single variable. Actually, if the objective function is the convex quadratic
function f(x) = 1

2x
TQx+ bTx+ c, then the stepsize can be computed explicitly. In

fact, the derivative of the search function reads

ϕ′(t) = −∇f(x− t∇f(x))T∇f(x)

= −[Q(x− t∇f(x)) + b]T∇f(x)

= −[Qx+ b− tQ∇f(x)]T∇f(x)

= −[∇f(x)− tQ∇f(x)]T∇f(x)

= −∇f(x)T∇f(x) + t(∇f(x)TQ∇f(x)).

If ∇f(x)TQ∇f(x) = 0, then ϕ′(t) = −‖∇f(x)‖2
2
< 0 for all t ∈ R and therefore

f(x− t∇f(x)) = ϕ(t) = −‖∇f(x)‖2
2
t+f(x)→ −∞ as t→ +∞. On the other hand,

if ∇f(x)TQ∇f(x) > 0, then the exact line search amounts to computing t such that
ϕ′(t) = 0, that is t = ∇f(x)T∇f(x)/(∇f(x)TQ∇f(x)).

If the above quadratic function is strictly convex, stepsizes related to the eigen-
values of Q lead to a finite gradient method.

Theorem 4.2. Let f(x) = 1
2x

TQx+bTx+c be strictly convex, and λ0, . . . , λn−1 > 0
be the eigenvalues of Q. Given any x0 ∈ Rn and the finite sequence

xk+1 = xk − λ−1
k ∇f(xk), k = 0, . . . , n− 1,

there exists j ∈ {0, . . . , n} such that ∇f(xj) = 0.

Proof. Suppose ∇f(xj) 6= 0 for all j < n. Therefore,

∇f(xn) = Qxn + b

= Qxn−1 − λ−1
n−1Q∇f(xn−1) + b

= ∇f(xn−1)− λ−1
n−1Q∇f(xn−1)

= (I − λ−1
n−1Q)∇f(xn−1)

= (I − λ−1
n−2Q)(I − λ−1

n−1Q)∇f(xn−2)
...

=
n∏
j=1

(I − λ−1
n−jQ)∇f(x0).

Since Q is positive definite, there exists an orthonormal basis {u0, . . . , un−1} of Rn
such that Qui = λiui for all i = 0, . . . , n−1. Therefore, there exist α0, . . . , αn−1 ∈ R
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such that ∇f(x0) = α0u0 + · · ·+ αn−1un−1. As a consequence,

∇f(xn) =
( n∏
j=1

(I − λ−1
n−jQ)

) n−1∑
i=0

αiui =
n−1∑
i=0

αi

( n∏
j=1

(1− λ−1
n−jλi)

)
ui = 0

as the coefficient of each ui is zero (just consider j = n− i). �

4.1.2 Gradient methods with inexact line search

Theorem 4.3. Suppose f is continuously differentiable (on Rn) and the gradient
mapping ∇f is Lipschitz with modulus L > 0. Then, any cluster point of the se-
quence provided by the iterative scheme xk+1 = xk−α∇f(xk) for some given positive
α < 2/L is a stationary point of f .

Proof. Theorem 1.6 guarantess

f(xk+1) = f(xk − α∇f(xk)) ≤ f(xk)− α∇f(xk)T∇f(xk) + Lα2‖∇f(xk)‖2
2
/2

= f(xk)− γ‖∇f(xk)‖2
2

where γ = α(2−Lα)/2 > 0. As a consequence, f(xk+1) < f(xk). Given any cluster
point x̄ ∈ Rn of {xk}k∈N, there exists a subsequence {xkj}j∈N such that xkj → x̄ as
j → +∞. Therefore, the above inequalities imply

f(xkj+1) ≤ f(xkj+1) ≤ f(xkj )− γ‖∇f(xkj )‖2
2

Taking the limit as j → +∞ yields ∇f(xkj ) ≤ 0, that is ∇f(x̄) = 0. �

Given a descent direction dk for f at xk, consider the sufficient decrease condition

f(xk + tdk) ≤ f(xk) + c1t∇f(xk)Tdk (AJO)

where c1 ∈]0, 1[. If f is bounded by below, then there exists τ > 0 such that any
t > τ does not satisfy (AJO). In fact, ∇f(xk)Tdk < 0 implies t∇f(xk)Tdk → −∞
as t→ +∞. In terms of the search function ϕk(t) = f(xk+ tdk), the condition reads

ϕk(t) ≤ ϕk(0) + c1tϕ
′
k(0). (AJO)

As lim
t→0

[ϕk(t)− ϕk(0)]/t = ϕ′k(0) < c1ϕ
′
k(0), then (AJO) holds whenever t is small

enough. Therefore, a way to compute a stepsize tk satisfying (AJO) is the so-called
Armijo rule: given t̄ > 0 and γ ∈]0, 1[, take tk = t̄γm where m ∈ N is the smallest
natural number such that t̄γm satisfies (AJO).

Theorem 4.4. Suppose that Algorithm 2 generates an infinite sequence {xk}. If f
is bounded by below, then each cluster point of {xk} is a stationary point of f .
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Algorithm 2 – Gradient method with Armijo line search

0. Choose x0 ∈ Rn, t̄ > 0 and γ ∈]0, 1[, and set k = 0

1. If ∇f(xk) = 0, then STOP

2. Choose dk = −∇f(xk) and compute tk > 0 through the Armijo rule

3. xk+1 = xk − tk∇f(xk)

4. k = k + 1 and go to 1

Proof. dk = −∇f(xk) implies that (AJO) reads

0 ≤ c1tk‖∇f(xk)‖2
2
≤ f(xk)− f(xk+1),

and thus the sequence {f(xk)} is monotone decreasing. Since it is also bounded by
below, then it has a limit. As a consequence, f(xk) − f(xk+1) → 0: either tk → 0
or ‖∇f(xk)‖2 → 0 holds.

Given any cluster point x̄ ∈ Rn of {xk}k∈N, there exists a subsequence {xkj}j∈N
such that xkj → x̄ as j → +∞. If ‖∇f(xk)‖2 → 0, then ‖∇f(x̄)‖2 = 0, i.e., x̄ is a
stationary point for f , since ‖∇f(xkj )‖2 → ‖∇f(x̄)‖2 . Therefore, suppose tk → 0
holds. The Armijo rule guarantess that tkjγ

−1 does not satisfy (AJO), i.e.,

f(xkj − tkjγ
−1∇f(xkj ))− f(xkj ) > −c1tkjγ

−1‖∇f(xkj )‖2
2
.

The mean value Theorem 1.5 guarantees the existence of some τkj ∈ [0, tkjγ
−1] such

that f(xkj − tkjγ
−1∇f(xkj )) − f(xkj ) = −tkjγ−1∇f(xkj − τkj∇f(xkj ))

T∇f(xkj )
yielding

∇f(xkj − τkj∇f(xkj ))
T∇f(xkj ) < c1‖∇f(xkj )‖2

2
.

Taking the limit as j → +∞, (1− c1)‖∇f(x̄)‖2
2
≤ 0 follows, hence ∇f(x̄) = 0. �

still an uncomplete draft

∇f(xk + tdk)Tdk ≥ c2∇f(xk)Tdk (CUR)

ϕ′k(t) ≥ c2ϕ
′
k(0) (CUR)

Proposition 4.4. Suppose f is bounded by below. If xk ∈ Rn is not a station-
ary point of f and dk ∈ Rn is a descent direction for f at xk, then there exist
τ`, τu ∈ R with τ` < τu such that any t ∈ [τ`, τu] satisfies the Wolfe conditions
(AJO) and (CUR).

Proof. The value

τu = sup{τ : (AJO) is satisfied by any t ∈ [0, τ ]}
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is positive and finite. Moreover, it satisfies ϕk(τu) = ϕk(0) + c1τuϕ
′
k(0): otherwise,

by continuity (AJO) would be satisfied by any t ∈ [τu, τu + ε] for some ε > 0. Since
τu is the supremum of a set of real numbers, there exists a sequence {tj}j∈N such
that tj > τu, tj → τu as j → +∞ and (AJO) is not satisfied at tj , that is

ϕk(tj) > ϕk(0) + c1tjϕ
′
k(0)

or equivalently ϕk(tj) − ϕk(τu) > c1(tj − τu)ϕ′k(0). Therefore, dividing both sides
by (tj − τu) and taking the limit as j → +∞ (which means tj → τu) leads to
ϕ′k(τu) ≥ c1ϕ

′
k(0). Since c2 > c1 and ϕ′k(0) < 0, ϕ′k(τu) > c2ϕ

′
k(0) holds and the

continuity of ϕ′k (f is continuously differentiable) implies that there exists δ > 0
such that ϕ′k(t) ≥ c2ϕ

′
k(0), i.e., (AJO) holds for any t ∈ [τu − δ, τu + δ]. Therefore,

the thesis follows just taking τ` = τu − δ. �

Algorithm 3 – Gradient type method with Wolfe line search

0. Choose x0 ∈ Rn and set k = 0

1. If ∇f(xk) = 0, then STOP

2. Choose dk ∈ Rn such that ∇f(xk)Tdk < 0

3. Compute tk > 0 satisfying the Wolfe conditions (AJO) and (CUR)

4. xk+1 = xk + tkd
k

5. k = k + 1 and go to 1

Theorem 4.5. Suppose that Algorithm 3 generates an infinite sequence {xk}. If f
is bounded by below and the angle θk formed by ∇f(xk) and dk satisfies θk ≥ π/2+ θ̄
for some fixed θ̄ ∈]0, π/2[ for all iterations k ∈ N, then each cluster point of {xk} is
a stationary point of f .

Proof. Since dk is a descent direction for f at xk and tk satisfies (AJO), then

0 ≤ −c1tk∇f(xk)Tdk = −c1tk‖∇f(xk)‖2‖dk‖2 cos θk ≤ f(xk)− f(xk+1).

The sequence {f(xk)} is monotone decreasing and it is bounded by below (since f
is such), thus it has a limit. As a consequence, f(xk)− f(xk+1)→ 0, which implies
tk‖∇f(xk)‖2‖dk‖2 cos θk → 0. Since cos θk ≤ cos(π/2 + θ̄) = − sin θ̄ < 0, then either
tk‖dk‖2 → 0 or ‖∇f(xk)‖2 → 0 holds.

Given any cluster point x̄ ∈ Rn of {xk}k∈N, there exists a subsequence {xkj}j∈N
such that xkj → x̄ as j → +∞. If ‖∇f(xk)‖2 → 0, then ‖∇f(x̄)‖2 = 0, i.e., x̄ is
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a stationary point of f . Therefore, suppose tk‖dk‖2 → 0 holds. Since tkj satisfies

(CUR), then d̂kj = dkj/‖dkj‖2 satisfies

∇f(xkj + tkjd
kj )T d̂kj ≥ c2∇f(xkj )T d̂kj .

By construction d̂kj ∈ B(0, 1), and thus d̂kj → d̄ for some d̄ ∈ B(0, 1) (eventually
taking a further subsequence). Moreover, xkj + tkjd

kj → x̄, and thus taking the
limit as j → +∞ in both sides of the above inequality leads to

∇f(x̄)T d̄ ≥ c2∇f(x̄)T d̄,

which reads also ∇f(x̄)T d̄ ≥ 0 since c2 > 0. On the other hand, ∇f(xkj )T d̂kj < 0
holds for all j, so that it must necessarily be ∇f(x̄)T d̄ = 0. Finally,

sin θ̄ ‖∇f(xkj )‖2 ≤ − cos θkj‖∇f(xkj )‖2 = ∇f(xkj )T d̂kj → 0

guarantees ‖∇f(x̄)‖2 = 0. �

4.2 Conjugate gradient methods

This family of methods provides a concrete alternative to choosing the steepest
descent direction by keeping track of the directions that have been exploited in the
previous iterations.

4.2.1 The linear case

The linear conjugate gradient method was originally designed to solve the linear
system Ax = b, where b ∈ Rn and A ∈ Rn×n is positive definite, through the
minimization of the strictly convex quadratic function f(x) = 1

2x
TAx− bTx.

Algorithm 4 – Linear conjugate gradient method

0. Choose x0 ∈ Rn and set k = 0

1. If rk = b−Axk = 0, then STOP

2. βk = rk
T
rk/rk−1T rk−1 if k ≥ 1

3. dk = rk + βkd
k−1 if k ≥ 1, otherwise d0 = r0

4. Compute tk = rk
T
rk/dk

T
Adk

5. xk+1 = xk + tkd
k

6. k = k + 1 and go to 1
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Since rk = −∇f(xk), the first iteration is the same of the gradient method with
exact line search, and afterwards the search direction is modified in such a way that
convergence can be achieved in a finite number of iterations.

Proposition 4.5. Suppose there exists k̄ ∈ N such that Algorithm 4 generates a
sequence {rk} with rk 6= 0 for any k < k̄. Then, the relationships

(i) rk
T
rj = 0

(ii) dk
T
Adj = 0

(iii) rk
T
dj = 0

(iv) dk
T
r0 = rk

T
rk

hold for any k ≤ k̄ and any j < k.

Condition (iii) guarantees that Algorithm 4 is a descent method:

∇f(xk)Tdk = −rkTdk = −rkT rk − βkrk
T
dk−1 = −rkT rk = −‖rk‖2

2
< 0.

Step 4 of the algorithm identifies the stepsize which minimizes the search function
ϕk(t) = f(xk + tdk) since tk > 0 and

ϕ′k(tk) = ∇f(xk + tkd
k)Tdk = (Axk + tkAd

k − b)Tdk = (tkAd
k − rk)Tdk

= tkd
kTAdk − rkT (rk + βkd

k−1) = tkd
kTAdk − rkT rk = 0.

Condition (i) guarantees that the algorithm stops after at most n iterations: if
rk 6= 0 for any k = 0, . . . , n − 1, then r0, . . . , rn are linearly independent, which
is impossible, unless rn = 0. Furthermore, under the same assumption, condition
(ii) implies that also d0, . . . , dk are linearly independent for any k < n. In fact, if
dk = γ0d

0 + · · ·+γk−1d
k−1 for some γ0, . . . , γk−1 ∈ R, then dk = 0 since A is positive

definite and dk
T
Adk = γ0d

kTAd0+· · ·+γk−1d
kAdk−1 = 0, thus γ0 = · · · = γk−1 = 0 as

d0, . . . , dk−1 are linearly independent by inductive hypothesis. This further property
of linear independence allows proving that the finite sequence {xk} is composed by
minimum points of f over nested affine subspaces that invade the whole Rn.

Theorem 4.6. Let {xk} be the sequence produced by Algorithm 4. Then,

f(xk) = min{f(x) : (x− x0) ∈ Sk}

with Sk denoting the vector subspace of Rn generated by d0, . . . , dk−1.

Proof. Taking ψk(α0, . . . , αk−1) = f(x0 +α0d
0 + · · ·+αk−1d

k−1), the minimization
of f over the affine subspace x0 + Sk can be stated as the unconstrained problem

min{ψk(α0, . . . , αk−1) : α0, . . . , αk−1 ∈ R}.
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Moreover, ψk is a strictly convex quadratic function since f is quadratic and strictly
convex. Therefore, the unique minimum point of the above problem is the unique
solution (ᾱ0, . . . ᾱk−1) of the linear system of equations ∇ψk(α0, . . . , αk−1) = 0.
Since both

0 =
∂ψk
∂αi

(ᾱ0, . . . ᾱk−1) = ∇f(x0 + ᾱ0d
0 + · · ·+ ᾱk−1d

k−1)Tdi

and ∇f(xk)Tdi = −rkTdi = 0 hold for any i = 0, . . . , k − 1, the uniqueness of the
solution implies xk = x0 + ᾱ0d

0 + · · ·+ ᾱk−1d
k−1. �

Since S1 ⊂ S2 ⊂ · · · ⊂ Sn = Rn, finite convergence follows from Theorem 4.6 as
well. An alternative proof of the theorem relies on the explicit expression

ψk(α0, . . . , αk−1) = f(x0) +

k−1∑
i=0

[
1

2
(di

T
Adi)α2

i − di
T

(b−Ax0)αi]

since the partial derivative

∂ψk
∂αi

(α0, . . . , αk−1) = (di
T
Adi)αi − di

T
(b−Ax0)

is zero if and only if αi = di
T

(b−Ax0)/di
T
Adi = di

T
r0/di

T
Adi = ri

T
ri/di

T
Adi = ti,

and therefore x0 + t0d
0 + · · ·+ tk−1d

k−1 = xk minimizes f over x0 + Sk.

4.2.2 The nonlinear case

The basic idea to adapt the conjugation approach to the minimization of general
nonlinear functions is simply to replace rk with −∇f(xk). Anyway, some troubles
emerge: no formula for the exact line search is available, and in case an inexact
search is performed there is no guarantee that dk = −∇f(xk) + βkd

k−1 is a descent
direction for f at xk. In fact,

∇f(xk)Tdk = −‖∇f(xk)‖2
2

+ βk∇f(xk)Tdk−1

leads to ∇f(xk)Tdk ≤ 0 if ∇f(xk)Tdk−1 ≤ 0, which is true when the exact line
search is performed, while the Wolfe conditions are not enough to guarantee it.
Actually, it is enough to replace (CUR) by the condition

|∇f(xk + tdk)Tdk| ≤ c2|∇f(xk)Tdk|, (StrCUR)

with 0 < c1 < c2 < 1/2 where c1 is the parameter chosen for (AJO), for dk to be a
descent direction within an inexact line search framework. Considering the search
function ϕk(t) = f(xk + tdk), (StrCUR) can be equivalently stated as

|ϕ′k(t)| ≤ c2|ϕ′k(0)|, (StrCUR)
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which clearly implies (CUR) since ϕ′k(0) < 0 and hence

ϕ′k(t) ≥ −|ϕ′k(t)| ≥ −c2|ϕ′k(0)| = c2ϕ
′
k(0).

(AJO) and (StrCUR) are generally referred to as the strong Wolfe conditions. The
existence of an interval of stepsizes that satisfy both of them can be proved in the
same way of Proposition 4.4 if ϕ′k(τu) ≤ 0, and exploiting in addition the continuity
of ϕ′k if ϕ′k(τu) > 0.

Proposition 4.6. If f is bounded by below, then each direction dk generated by
Algorithm 5 satisfies

−‖∇f(xk)‖2
2
/(1− c2) ≤ ∇f(xk)Tdk ≤ [(2c2 − 1)/(1− c2)]‖∇f(xk)‖2

2
.

Since any positive c2 satisfying c2 < 1/2 guarantees [(2c2 − 1)/(1− c2)] < 0, the
above right inequality guarantees that dk is a descent direction for f at xk. Clearly,
it is better not to choose c2 too close to 1/21.

Algorithm 5 – Nonlinear conjugate gradient method

0. Choose x0 ∈ Rn and set k = 0

1. If ∇f(xk) = 0, then STOP

2. βk = ∇f(xk)T∇f(xk)/∇f(xk−1)T∇f(xk−1) if k ≥ 1

3. dk = −∇f(xk) + βkd
k−1 if k ≥ 1, otherwise d0 = −∇f(x0)

4. Compute tk satisfying the strong Wolfe conditions (AJO) and (StrCUR)

5. xk+1 = xk + tkd
k

6. k = k + 1 and go to 1

Theorem 4.7. Suppose that Algorithm 5 generates an infinite sequence {xk}. If
f is bounded by below and the gradient mapping ∇f is Lipschitz, i.e., there exists
L > 0 such that

∀ x, y ∈ Rn : ‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2 ,

then there exists a subsequence {xkj} such that lim
j→+∞

‖∇f(xkj )‖2 = 0.

Corollary 4.1. Suppose that Algorithm 5 generates an infinite sequence {xk}. If f
is bounded by below, ∇f is a Lipschitz mapping and the sublevel set

Lf (x0) = {x ∈ Rn : f(x) ≤ f(x0)}

is compact, then at least one cluster point of {xk} is a stationary point of f .

1`(c) = (2c− 1)/(1− c) is a monotone increasing function with `(0) = −1 and `(1/2) = 0
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While in gradient methods with dk = −∇f(xk) the angle θk between dk and
∇f(xk) is always π, in conjugate gradient methods there is no guarantee that it
stays bounded away from π/2. If θk gets too close to π/2, the algorithm may slow
down meaningfully. In fact, θk ≈ π/2 implies

0 ≈− cos θk =−∇f(xk)Tdk/[‖∇f(xk)‖2‖dk‖2 ] ≥ [(1−2c2)/(1−c2)]‖∇f(xk)‖2/‖dk‖2

where the inequality is due to Proposition 4.6. Therefore, it is likely to have
‖∇f(xk)‖2 << ‖dk‖2 and also tk ≈ 0 since dk is almost orthogonal to the steepest
descent direction. If tk ≈ 0, then xk+1 ≈ xk and thus ∇f(xk+1) ≈ ∇f(xk) are also
probable. In such a case βk+1 ≈ 1 and ‖∇f(xk+1)‖2 ≈ ‖∇f(xk)‖2 << ‖dk‖2 lead to

dk+1 = −∇f(xk+1) + βk+1d
k ≈ −∇f(xk+1) + dk ≈ dk

that means θk+1 ≈ θk, so that the new iteration will be similar to the previous.
Therefore, if cos θk ≈ 0, then it is possible that the algorithm will perform a long
sequence of almost useless iterations.

The so-called restart technique tries to overcome this issue by performing a
steepest descent step after a certain number of iterations, that is setting βk = 0
every n̄ iterations. The algorithm performs a restart in the sense the effect of the
previous directions on the current one is cancelled. It is also possible to prove
that the subsequence of the restart iterates xkj satisfies the convergence property of
Theorem 4.7.

Relying on the alternative formula βk = rk
T

(rk − rk−1)/rk−1T rk−1 of the linear
case, the Polak-Ribiere variant of the method applies the restart technique approx-
imately by choosing βk = βPRk for

βPRk = ∇f(xk)T (∇f(xk)−∇f(xk−1))/∇f(xk−1)T∇f(xk−1)

as ∇f(xk) ≈ ∇f(xk−1) guarantees βPRk ≈ 0. Since βPRk < 0 may occur, another
variant of the method exploits βPR+

k = max{βPRk , 0}.










