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Nash equilibria as fixed points

Consider (N, (Si )i∈N , (ui )i∈N) a strategic game:

Ri (x−i ) = arg max{ui (xi , x−i ) : xi ∈ Si} set of best replies (for i to x−i )

R(x) = R1(x−1)× · · · × Rn(x−n) ⊆ S1 × · · · × Sn = S

Nash equilibria are the fixed points of the set-valued map R : S ⇒ S .

x∗ Nash equilibrium ⇐⇒ x∗ ∈ R(x∗)

Fixed point theorem (Kakutani 1941)

Suppose K ⊆ Rm is a convex and compact set. If T : K ⇒ K satisfies

(i) T (x) is nonempty, closed and convex for all x ∈ K

(ii) graphT = {(x , y) ∈ K × K : y ∈ T (x)} is closed (T is closed)

then there exists x∗ ∈ K such that x∗ ∈ T (x∗).

existence of equilibria: apply Kakutani’s theorem with T = R

which assumptions on the game are needed?
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Existence of Nash equilibria

Theorem (Nikaido-Isoda 1955)

Let (N, (Si )i∈N , (ui )i∈N) be a strategic game. If each i ∈ N satisfies

(i) Si ⊆ Rmi is convex and compact

(ii) ui is upper semicontinuous

(iii) ui (xi , ·) is lower semicontinuous for all xi ∈ Si

(iv) Ri (x−i ) is convex for all x−i ∈ S−i

then the game has at least one Nash equilibrium.

– |Ri (x−i )| = 1 =⇒ Ri (x−i ) convex (uniqueness+continuity ≡ Nash 1951)

– ui (·, x−i ) quasiconcave+Si convex =⇒ Ri (x−i ) convex (→ minimax)

Corollary

Every finite game has at least one Nash equilibrium in mixed strategies.
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Strengthening concavity

Let S ⊆ Rm be convex. f : Rm → R is

� concave on S if

f (λx + (1− λ)y)≥λf (x) + (1− λ)f (y)

holds for all x , y ∈ S , λ ∈ [0, 1]

� strictly concave on S if

f (λx + (1− λ)y)>λf (x) + (1− λ)f (y)

holds for all x , y ∈ S with x 6= y , λ ∈]0, 1[

� strongly concave on S with modulus τ if

f (λx + (1− λ)y)≥λf (x) + (1− λ)f (y)+
τ

2
λ(1− λ)‖x − y‖2

2

holds for all x , y ∈ S , λ ∈ [0, 1]

f strongly concave on S if and only if f +
τ

2
‖ · ‖2

2
is concave on S



Concavity and optimization

Let S ⊆ Rm be convex and f : Rm → R.

(P) max{f (x) : x ∈ S}

� If f is concave on S , then any local maximum point of (P) is also
a global maximum point. Moreover, the set of all the maxima is
a convex set.

� If f is strictly concave on S , there exists at most one maximum
point of (P).

� If f is strongly concave on S and S is closed, there exists exactly
one maximum point of (P).

Optimality conditions

Suppose f is concave and differentiable on S. Then, x∗ ∈ S is a (global)
maximum point of (P) if and only if it satisfies the variational inequality

∇f (x∗)T (x − x∗) ≤ 0 ∀ x ∈ S
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Strict concavity is not enough for uniqueness (in games)

N = {1, 2}, m1 = m2 = 1, S1 = S2 = [0, 1]

u1(x1, x2) = −x12 + 2x1x2, u2(x1, x2) = −x22 + 3x1x2

(ui (·, x−i ) strongly concave for any x−i )

R1(x2) = {x2} R2(x1) =

{
3x1/2 if x1 ≤ 2/3

1 if x1 > 2/3

x1

x2

2/3 1

1

(x∗1 , x
∗
2 ) = (0, 0), (1, 1) are both Nash equilibria
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Concavity and differentiability

Let S ⊆ Rm be convex and f : Rm → R differentiable on S .

(i) f is (strictly) concave on S if and only if(
∇f (x)−∇f (y)

)T
(y − x) ≥ 0 (>)

holds for all x , y ∈ S (with x 6= y).

(ii) f is strongly concave on S with modulus τ > 0 if and only if(
∇f (x)−∇f (y)

)T
(y − x) ≥ τ‖y − x‖2

2

holds for all x , y ∈ S .

(kind of monotonicities of the gradient map)



Diagonal strict concavity

G = (N, (Si )i∈N , (ui )i∈N) with ui (·, x−i ) differentiable on Si for any x−i ∈ S−i

Definition

The game G is diagonally strictly concave on S if∑
i∈N

(
∇iui (xi , x−i )−∇iui (x

′
i , x
′
−i )
)T

(x ′i − xi ) > 0

holds for any x , x ′ ∈ S with x 6= x ′.

(where ∇iui (xi , x−i ) denotes the gradient of ui (·, x−i ) at xi )

diagonal strict concavity =⇒ ui (·, x−i ) strictly concave on Si
6⇐=

Uniqueness of Nash equilibria (Rosen 1965)

If the game G is diagonally strictly concave on S, then there exists at most
one Nash equilibrium for G.



Diagonal strict concavity

G = (N, (Si )i∈N , (ui )i∈N) with ui (·, x−i ) differentiable on Si for any x−i ∈ S−i

Definition

The game G is diagonally strictly concave on S if∑
i∈N

(
∇iui (xi , x−i )−∇iui (x

′
i , x
′
−i )
)T

(x ′i − xi ) > 0

holds for any x , x ′ ∈ S with x 6= x ′.

(where ∇iui (xi , x−i ) denotes the gradient of ui (·, x−i ) at xi )

diagonal strict concavity =⇒ ui (·, x−i ) strictly concave on Si
6⇐=

Uniqueness of Nash equilibria (Rosen 1965)

If the game G is diagonally strictly concave on S, then there exists at most
one Nash equilibrium for G.



Diagonal strict concavity

G = (N, (Si )i∈N , (ui )i∈N) with ui (·, x−i ) differentiable on Si for any x−i ∈ S−i

Definition

The game G is diagonally strictly concave on S if∑
i∈N

(
∇iui (xi , x−i )−∇iui (x

′
i , x
′
−i )
)T

(x ′i − xi ) > 0

holds for any x , x ′ ∈ S with x 6= x ′.

(where ∇iui (xi , x−i ) denotes the gradient of ui (·, x−i ) at xi )

diagonal strict concavity =⇒ ui (·, x−i ) strictly concave on Si
6⇐=

Uniqueness of Nash equilibria (Rosen 1965)

If the game G is diagonally strictly concave on S, then there exists at most
one Nash equilibrium for G.



A simple example for uniqueness

N = {1, 2}, m1 = m2 = 1, S1 = S2 = [0, 1]

u1(x1, x2) = −x12 + x1x2, u2(x1, x2) = −x22 + x1x2

– ui (·, x−i ) strongly concave with modulus 2 for any x−i

– ∇iui (xi , ·) Lipschitz with modulus 1 for any xi

– the game is diagonally strictly concave on S1 × S2

R1(x2) = {x2/2} R2(x1) = {x1/2}

x1

x2

1/2 1

1

1/2

(x∗1 , x
∗
2 ) = (0, 0) is the unique Nash equilibrium



Criterion for diagonal strict concavity

Definition

The function F : Rm → Rm (with m = m1 + ...+mn) given by

F (x) =


...

−∇iui (xi , x−i )
...


is called the gradient of the game G.

Proposition

Suppose that ui is twice continuously differentiable on S for all i ∈ N. If
the matrix JF (x) + JF (x)T is positive definite for any x ∈ S, then the
game G is diagonally strictly concave.

(where JF (x) denotes the Jacobian matrix of F )

JF (x) is the block matrix (−∇j∇iui (x)
T )i,j
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Existence and uniqueness via contractive best responses

Theorem

Suppose ui (·, x−i ) is differentiable on Si for any x−i ∈ S−i . If each i ∈ N
satisfies

(i) ui (·, x−i ) is strongly concave on Si with modulus τi for any x−i ∈ S−i

(ii) ∇iui (xi , ·) is Lipschitz [cont] on S−i with modulus Li for any xi ∈ Si

(iii) Li < τi/
√

(n − 1)

then R is single-valued and it is a contraction, i.e., there exists ρ ∈]0, 1[
such that

‖R(x)− R(x ′)‖2 ≤ ρ‖x − x ′‖2 ∀ x , x ′ ∈ S .

Hence, the game has a unique Nash equilibrium x∗ and the sequence

xk+1 = R(xk) (best responses algorithm)

converges to x∗ for any choice x0 ∈ S.


