Teoria dei giochi - Game theory

Laurea Magistrale in Matematica Laurea Magistrale in Fisica 2024/25

Lecture 6

Nash equilibria as fixed points

Consider $(N, (S_i)_{i \in N}, (u_i)_{i \in N})$ a strategic game:

 $R_i(x_{-i}) = \arg \max\{u_i(x_i, x_{-i}) : x_i \in S_i\} \text{ set of best replies (for } i \text{ to } x_{-i})$ $R(x) = R_1(x_{-1}) \times \cdots \times R_n(x_{-n}) \subseteq S_1 \times \cdots \times S_n = S$

Nash equilibria are the fixed points of the set-valued map $R: S \rightrightarrows S$. x^* Nash equilibrium $\iff x^* \in R(x^*)$

Nash equilibria as fixed points

Consider $(N, (S_i)_{i \in N}, (u_i)_{i \in N})$ a strategic game:

 $R_i(x_{-i}) = \arg \max\{u_i(x_i, x_{-i}) : x_i \in S_i\} \text{ set of best replies (for } i \text{ to } x_{-i})$ $R(x) = R_1(x_{-1}) \times \cdots \times R_n(x_{-n}) \subseteq S_1 \times \cdots \times S_n = S$

Nash equilibria are the fixed points of the set-valued map $R: S \rightrightarrows S$. x^* Nash equilibrium $\iff x^* \in R(x^*)$

Fixed point theorem (Kakutani 1941)

Suppose $K \subseteq \mathbb{R}^m$ is a convex and compact set. If $T : K \rightrightarrows K$ satisfies (i) T(x) is nonempty, closed and convex for all $x \in K$ (ii) $graphT = \{(x, y) \in K \times K : y \in T(x)\}$ is closed (T is closed) then there exists $x^* \in K$ such that $x^* \in T(x^*)$.

> existence of equilibria: apply Kakutani's theorem with T = Rwhich assumptions on the game are needed?

Existence of Nash equilibria

Theorem (Nikaido-Isoda 1955)

Let $(N, (S_i)_{i \in N}, (u_i)_{i \in N})$ be a strategic game. If each $i \in N$ satisfies

(i) $S_i \subseteq \mathbb{R}^{m_i}$ is convex and compact

(ii) u_i is upper semicontinuous

(iii) $u_i(x_i, \cdot)$ is lower semicontinuous for all $x_i \in S_i$

(iv) $R_i(x_{-i})$ is convex for all $x_{-i} \in S_{-i}$

then the game has at least one Nash equilibrium.

Theorem (Nikaido-Isoda 1955)

Let $(N, (S_i)_{i \in N}, (u_i)_{i \in N})$ be a strategic game. If each $i \in N$ satisfies

(i) $S_i \subseteq \mathbb{R}^{m_i}$ is convex and compact

(ii) u_i is upper semicontinuous

(iii) $u_i(x_i, \cdot)$ is lower semicontinuous for all $x_i \in S_i$

(iv) $R_i(x_{-i})$ is convex for all $x_{-i} \in S_{-i}$

then the game has at least one Nash equilibrium.

 $-|R_i(x_{-i})| = 1 \Longrightarrow R_i(x_{-i})$ convex (uniqueness+continuity \equiv Nash 1951)

Theorem (Nikaido-Isoda 1955)

Let $(N, (S_i)_{i \in N}, (u_i)_{i \in N})$ be a strategic game. If each $i \in N$ satisfies

(i) $S_i \subseteq \mathbb{R}^{m_i}$ is convex and compact

(*ii*) *u_i* is upper semicontinuous

(iii) $u_i(x_i, \cdot)$ is lower semicontinuous for all $x_i \in S_i$

(iv) $R_i(x_{-i})$ is convex for all $x_{-i} \in S_{-i}$

then the game has at least one Nash equilibrium.

 $-|R_i(x_{-i})| = 1 \Longrightarrow R_i(x_{-i})$ convex (uniqueness+continuity \equiv Nash 1951)

 $- u_i(\cdot, x_{-i})$ quasiconcave $+S_i$ convex $\implies R_i(x_{-i})$ convex $(\rightarrow \min x)$

Theorem (Nikaido-Isoda 1955)

Let $(N, (S_i)_{i \in N}, (u_i)_{i \in N})$ be a strategic game. If each $i \in N$ satisfies

(i) $S_i \subseteq \mathbb{R}^{m_i}$ is convex and compact

(ii) u_i is upper semicontinuous

(iii) $u_i(x_i, \cdot)$ is lower semicontinuous for all $x_i \in S_i$

(iv) $R_i(x_{-i})$ is convex for all $x_{-i} \in S_{-i}$

then the game has at least one Nash equilibrium.

 $-|R_i(x_{-i})| = 1 \Longrightarrow R_i(x_{-i})$ convex (uniqueness+continuity \equiv Nash 1951)

 $- u_i(\cdot, x_{-i})$ quasiconcave $+S_i$ convex $\implies R_i(x_{-i})$ convex $(\rightarrow \min x)$

Corollary

Every finite game has at least one Nash equilibrium in mixed strategies.

Strengthening concavity

Let $S \subseteq \mathbb{R}^m$ be convex. $f : \mathbb{R}^m \to \mathbb{R}$ is

\blacktriangleright concave on *S* if

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$

holds for all $x, y \in S, \ \lambda \in [0, 1]$

• strongly concave on S with modulus τ if

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y) + \frac{\tau}{2}\lambda(1 - \lambda)||x - y||_2^2$$

holds for all $x, y \in S, \lambda \in [0, 1]$

f strongly concave on S if and only if $f + \frac{\tau}{2} \| \cdot \|_2^2$ is concave on S

Concavity and optimization

Let $S \subseteq \mathbb{R}^m$ be convex and $f : \mathbb{R}^m \to \mathbb{R}$.

 $(P) \quad \max\{f(x) : x \in S\}$

- ► If f is concave on S, then any local maximum point of (P) is also a global maximum point. Moreover, the set of all the maxima is a convex set.
- If f is strictly concave on S, there exists at most one maximum point of (P).
- If f is strongly concave on S and S is closed, there exists exactly one maximum point of (P).

Concavity and optimization

Let $S \subseteq \mathbb{R}^m$ be convex and $f : \mathbb{R}^m \to \mathbb{R}$.

 $(P) \quad \max\{f(x) : x \in S\}$

- ► If f is concave on S, then any local maximum point of (P) is also a global maximum point. Moreover, the set of all the maxima is a convex set.
- If f is strictly concave on S, there exists at most one maximum point of (P).
- If f is strongly concave on S and S is closed, there exists exactly one maximum point of (P).

Optimality conditions

Suppose f is concave and differentiable on S. Then, $x^* \in S$ is a (global) maximum point of (P) if and only if it satisfies the variational inequality $\nabla f(x^*)^T (x - x^*) \leq 0 \qquad \forall x \in S$

Strict concavity is not enough for uniqueness (in games)

$$N = \{1, 2\}, \ m_1 = m_2 = 1, \ S_1 = S_2 = [0, 1]$$
$$u_1(x_1, x_2) = -x_1^2 + 2x_1x_2, \ u_2(x_1, x_2) = -x_2^2 + 3x_1x_2$$
$$(u_i(\cdot, x_{-i}) \text{ strongly concave for any } x_{-i})$$

Strict concavity is not enough for uniqueness (in games)

$$N = \{1, 2\}, \ m_1 = m_2 = 1, \ S_1 = S_2 = [0, 1]$$
$$u_1(x_1, x_2) = -x_1^2 + 2x_1x_2, \ u_2(x_1, x_2) = -x_2^2 + 3x_1x_2$$
$$(u_i(\cdot, x_{-i}) \text{ strongly concave for any } x_{-i})$$

Let $S \subseteq \mathbb{R}^m$ be convex and $f : \mathbb{R}^m \to \mathbb{R}$ differentiable on S.

(i) f is (strictly) concave on S if and only if $(\nabla f(x) - \nabla f(y))^T (y - x) \ge 0$ (>) holds for all $x, y \in S$ (with $x \ne y$).

(ii) f is strongly concave on S with modulus $\tau > 0$ if and only if $\left(\nabla f(x) - \nabla f(y)\right)^T (y - x) \ge \tau \|y - x\|_2^2$

holds for all $x, y \in S$.

(kind of monotonicities of the gradient map)

Diagonal strict concavity

 $G = (N, (S_i)_{i \in N}, (u_i)_{i \in N})$ with $u_i(\cdot, x_{-i})$ differentiable on S_i for any $x_{-i} \in S_{-i}$

Definition

The game G is diagonally strictly concave on S if

$$\sum_{i \in N} \left(\nabla_i u_i(x_i, x_{-i}) - \nabla_i u_i(x'_i, x'_{-i}) \right)^T (x'_i - x_i) > 0$$

holds for any $x, x' \in S$ with $x \neq x'$.

(where $\nabla_i u_i(x_i, x_{-i})$ denotes the gradient of $u_i(\cdot, x_{-i})$ at x_i)

Diagonal strict concavity

 $G = (N, (S_i)_{i \in N}, (u_i)_{i \in N})$ with $u_i(\cdot, x_{-i})$ differentiable on S_i for any $x_{-i} \in S_{-i}$

Definition

The game G is diagonally strictly concave on S if

$$\sum_{i \in N} \left(\nabla_i u_i(x_i, x_{-i}) - \nabla_i u_i(x'_i, x'_{-i}) \right)^T (x'_i - x_i) > 0$$

holds for any $x, x' \in S$ with $x \neq x'$.

(where $\nabla_i u_i(x_i, x_{-i})$ denotes the gradient of $u_i(\cdot, x_{-i})$ at x_i)

diagonal strict concavity $\Longrightarrow u_i(\cdot, x_{-i})$ strictly concave on S_i

Diagonal strict concavity

 $G = (N, (S_i)_{i \in N}, (u_i)_{i \in N})$ with $u_i(\cdot, x_{-i})$ differentiable on S_i for any $x_{-i} \in S_{-i}$

Definition

The game G is diagonally strictly concave on S if

$$\sum_{i \in N} \left(\nabla_i u_i(x_i, x_{-i}) - \nabla_i u_i(x'_i, x'_{-i}) \right)^T (x'_i - x_i) > 0$$

holds for any $x, x' \in S$ with $x \neq x'$.

(where $\nabla_i u_i(x_i, x_{-i})$ denotes the gradient of $u_i(\cdot, x_{-i})$ at x_i)

diagonal strict concavity $\Longrightarrow u_i(\cdot, x_{-i})$ strictly concave on S_i

Uniqueness of Nash equilibria (Rosen 1965)

If the game G is diagonally strictly concave on S, then there exists at most one Nash equilibrium for G.

A simple example for uniqueness

$$N = \{1, 2\}, \ m_1 = m_2 = 1, \ S_1 = S_2 = [0, 1]$$
$$u_1(x_1, x_2) = -x_1^2 + x_1 x_2, \ u_2(x_1, x_2) = -x_2^2 + x_1 x_2$$

- $u_i(\cdot, x_{-i})$ strongly concave with modulus 2 for any x_{-i}
- $\nabla_i u_i(x_i, \cdot)$ Lipschitz with modulus 1 for any x_i
- the game is diagonally strictly concave on $\textit{S}_1 \times \textit{S}_2$

Criterion for diagonal strict concavity

Definition

The function $F : \mathbb{R}^m \to \mathbb{R}^m$ (with $m = m_1 + ... + m_n$) given by

$$F(x) = \begin{bmatrix} \vdots \\ -\nabla_i u_i(x_i, x_{-i}) \\ \vdots \end{bmatrix}$$

is called the gradient of the game G.

Criterion for diagonal strict concavity

Definition

The function $F : \mathbb{R}^m \to \mathbb{R}^m$ (with $m = m_1 + ... + m_n$) given by

$$F(x) = \begin{bmatrix} \vdots \\ -\nabla_i u_i(x_i, x_{-i}) \\ \vdots \end{bmatrix}$$

is called the gradient of the game G.

Proposition

Suppose that u_i is twice continuously differentiable on S for all $i \in N$. If the matrix $J_F(x) + J_F(x)^T$ is positive definite for any $x \in S$, then the game G is diagonally strictly concave.

(where $J_F(x)$ denotes the Jacobian matrix of F)

 $J_F(x)$ is the block matrix $(-\nabla_j \nabla_i u_i(x)^T)_{i,j}$

Theorem

Suppose $u_i(\cdot, x_{-i})$ is differentiable on S_i for any $x_{-i} \in S_{-i}$. If each $i \in N$ satisfies

(i) $u_i(\cdot, x_{-i})$ is strongly concave on S_i with modulus τ_i for any $x_{-i} \in S_{-i}$ (ii) $\nabla_i u_i(x_i, \cdot)$ is Lipschitz [cont] on S_{-i} with modulus L_i for any $x_i \in S_i$ (iii) $L_i < \tau_i / \sqrt{(n-1)}$

then R is single-valued and it is a contraction, i.e., there exists $\rho \in]0,1[$ such that

$$\|R(x) - R(x')\|_2 \le \rho \|x - x'\|_2 \qquad \forall x, x' \in S.$$

Hence, the game has a unique Nash equilibrium x^* and the sequence

 $x^{k+1} = R(x^k)$

(best responses algorithm)

converges to x^* for any choice $x^0 \in S$.