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Lecture 1: Calculus

Qualitative study of a function in one variable

Suppose that we want to draw the graph of f : R → R. In order to get enough information on
the function we follow these steps.

(i) Find the domain of f i.e. the set D ⊆ R where the function is defined.

(ii) Study the sign of f and find its intersection with the axes whether it is possible.

(iii) Study the sign of f ′. Where the derivative is positive the function is increasing, instead in
the intervals where is negative the function is decreasing.

(iv) Look at the points which verify f ′(x) = 0 and determine if they are local or global extrema
points.

(v) Study the sign of f ′′. Where the second derivative is positive the function is convex, instead
in the intervals where is negative the function is concave.

(vi) Study the behaviour of f at the extremal points of D.

We ignore step (v) because the notion of convexity will be introduced and studied in lecture 3.

Exercise 1. Draw the graph of f(x) = x−4
x2−4x+3 .

Observe that since f is defined by a ratio the domain D coincide with the real numbers which
does not vanish the denominator. Performing some simple computations we get

x2 − 4x+ 3, ∆ = 4 ⇒ x2 − 4x+ 3 = (x− 1)(x− 3),

therefore D = {x ∈ R : x2 − 2x+ 3 6= 0} = R \ {1, 3}. For studying the sign of f(x) it is crucial
to write it as a product of factor for which we can study the sign individually.

In our case we have f(x) = x−4
(x−3)(x−1) , observing

that x − 4 > 0 ⇔ x > 4, x − 3 > 0 ⇔ x > 3,
x− 1 > 0⇔ x > 1 and using a graphical subdivision
of the real line we easily derive that f(x) > 0 on
(1, 3) ∪ (4,+∞) and f(x) < 0 on (−∞, 1) ∪ (3, 4).
Moreover f(0) = − 4

3 and since the numerator is x−4
we have f(x) = 0⇔ x = 4.
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With the results obtained until now we can draw a rough estimate of the graph.
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For what concerns the first derivative we have

f ′(x) =
x2 − 4x+ 3− (x− 4)(2x− 4)

(x2 − 4x+ 3)2
=
−x2 + 8x− 13

(x2 − 4x+ 3)2
= − (x− 4−

√
3)(x− 4 +

√
3)

(x2 − 4x+ 3)2
.

We can use again the graphical representation of the real line for studying the sign of f ′ getting
that

f ′ > 0 ⇔ x 6= 3 and 4−
√

3 < x < 4 +
√

3,

f ′ < 0 ⇔ x 6= 1 and (x < 4−
√

3 or x > 4 +
√

3).

Moreover f ′ = 0 ⇔ x = 4±
√

3. Consider x = 4−
√

3, we have that in a left neighobourhood
of this point the derivative is negative while in a right neighobourhood is positive. This argument

implies that x = 4−
√

3 is a local minimum point and f(4−
√

3) = 1+
√

3
2 is a local minimum for

f . Analogously one can prove that x = 4+
√

3 is a local maximum point and f(4+
√

3) = 1−
√

3
2

is a local maximum for f .
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To conclude we look at the behaviour of f as x tends to the extremal points of D. That is
we compute the limits:

lim
x→±∞

x− 4

x2 − 4x+ 3
= lim
x→±∞

1
x −

4
x2

1− 4
x + 3

x2

= 0,

lim
x→1−

x− 4

x2 − 4x+ 3
= lim
x→1−

x− 4

(x− 1)︸ ︷︷ ︸
0−

(x− 3)
= −∞,

lim
x→1+

x− 4

x2 − 4x+ 3
= lim
x→1+

x− 4

(x− 1)︸ ︷︷ ︸
0+

(x− 3)
= +∞,

lim
x→3−

x− 4

x2 − 4x+ 3
= lim
x→3−

x− 4

(x− 1) (x− 3)︸ ︷︷ ︸
0−

= +∞,

lim
x→3+

x− 4

x2 − 4x+ 3
= lim
x→3+

x− 4

(x− 1) (x− 3)︸ ︷︷ ︸
0+

= −∞.

1 3 4 x

y

-4/3
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Exercise 2. Draw the graph of f(x) = 1

1−2
1
x
−1

.

In the definition of f there are two ratio so we need to impose the respective denominators
to not vanish:{

x 6= 0

1− 2
1
x−1 6= 0

⇔

{
x 6= 0

1− e( 1
x−1)(log 2) 6= 0

⇔

{
x 6= 0

( 1
x − 1)(log 2) 6= 0

⇔

{
x 6= 0

x 6= 1
.

So we have D = R \ {0, 1}. The sign of f is completely determined by the sign of the factor

1− 2
1
x−1:

1− 2
1
x−1 > 0⇔ 1

x
− 1 > 0⇔

{
x > 0

x > 1
or

{
x < 0

x < 1
⇔ x ∈ (−∞, 0) ∪ (1,∞),

1− 2
1
x−1 < 0⇔ x ∈ (0, 1).

Moreover since f is defined by a ratio with a (nonzero) constant numerator we have that f(x) = 0
has no solution therefore there are not intersection with the axes.

0 1 x

y

For what concerns the first derivative we have

f ′(x) =

(
1

1− e( 1
x−1) log(2)

)′
=
− 1
x2 log(2))e( 1

x−1) log(2)

(1− e( 1
x−1) log(2))2

which is a negative quantity for every x ∈ D. This means that f is decreasing in every interval
contained in D and there are not local minima or maxima. To conclude we check the behaviour
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of the function close to the extremal points of D.

lim
x⇒±∞

1

1− e( 1
x−1) log(2)

= 2,

lim
x⇒0−

1

1− e( 1
x−1) log(2)

= 1,

lim
x⇒0+

1

1− e( 1
x−1) log(2)

= 0,

lim
x⇒1−

1

1− e( 1
x−1) log(2)

= −∞,

lim
x⇒1+

1

1− e( 1
x−1) log(2)

= +∞.

0 1 x

y

2

1

One can use these techniques for proving classical inequalities.

Exercise 3. Prove that sin(x) ≤ x ∀x ∈ R+ and sin(x) ≥ x ∀x ∈ R−.

Consider the function f(x) := sin(x) − x. We have
that f(0) = 0 and f ′(x) = cos(x) − 1, in particular
f ′(x) ≤ 0 ∀x ∈ R. Then f(x) is decreasing on R
so we can conclude that f(x) ≤ 0 on [0,+∞) and
f(x) ≥ 0 on (−∞, 0]. Replacing the definition of f in
the previous inequalities we get the thesis.
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Homework 4. Prove the following inequalities:

• cos(x) ≥ 1− x2

2 ∀x ∈ R

• ex ≥ 1 + x ∀x ∈ R

• log(1 + x) ≤ x ∀x ≥ −1

• arctan(x) ≤ x ∀x ≥ 0

Taylor expansion

Consider f : R → R and x0 ∈ R. We want to approximate f close to x0 with a polynomial of
degree k. If the function is sufficiently regular, precisely if admits derivatives until order k, we
can use the Taylor polynomial of order k in x0:

Pk,x0
(x) := f(x0)+f ′(x0)(x−x0)+

f ′′(x0)

2
(x−x0)2+. . .

f (k)(x0)

k!
(x−x0)k =

k∑
i=0

f (i)(x0)

i!
(x−x0)i.

That polynomial is such that if we consider the residual function Rk,x0 := f(x) − Pk,x0 then it
verifies

lim
x→x0

Rk,x0

(x− x0)k
= 0,

which means that going closer to the point x0 the error goes to 0 faster than (x − x0)k. If
moreover f admits the derivative of order k+1 we can explicitly write the residual function with
the Lagrange formula:

Rk,x0
=
f (k+1)(τ)

(k + 1)!
(x− x0)k+1

where τ is an unknown point which belongs to the segment between x and x0. This formula
allow us to get numerical estimate of the error we make approximating a function using its Taylor
polynomial of a certain order.

Example 5. Let f(x) = ex and x0 = 0. Then we have

P2,x0
(x) = 1 + x+

x2

2
, R2,x0

=
eτ

6
x3.

If restrict ourself to consider x ∈ [−1, 1] we can claim that in this interval |R2,x0
| ≤ e

6 . In the
general case if x ∈ [−a, a] we can claim that |R2,x0

| ≤ e
6a

3. When a < 1 that estimate can be
close to 0.

Example 6. Let f(x) = sin(x) and x0 = π
2 then

P2,x0(x) = 1−
(x− π

2 )2

2
, R2,x0(x) = −cos(τ)

6
(x− π

2
)3.

Example 7. Let f(x) = log(cos(x)) and x0 = 0 then

P2,x0(x) = −x
2
, R2,x0(x) = − sin(2τ)

3 cos4(τ)
x3.
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This approach can be generalized to functions of several variables. In the case of two variables
the Taylor polynomial of the second order in (x0, y0) has this expression:

P1,(x0,y0)(x, y) := f(x0, y0) +∇f(x0, y0)t
[
x− x0

y − y0

]
.

The residual function R1,(x0,y0)(x, y) := f(x, y)− P1,(x0,y0)(x, y) has the property

lim
(x,y)→(x0,y0)

R1,(x0,y0)(x, y)

‖(x− x0, y − y0)‖
= 0.

Example 8. Let f(x, y) = yx = ex log(y) then

∇f(x, y) =

[
log(y)ex log(y)

x
y e
x log(y)

]

P1,(x0,y0)(x, y) = yx0
0 + log(y0)ex0 log(y0)(x− x0) +

x0

y0
ex0 log(y0)(y − y0).

Example 9. Let f(x, y) = xy
x2+y2 then

∇f(x, y) =
1

(x2 + y2)2

[
y3 − x2y
x3 − xy2

]

P1,(x0,y0)(x, y) =
x0y0

x2
0 + y2

0

+
1

(x2
0 + y2

0)2
[(y3

0 − x2
0y)(x− x0) + (x3

0 − x0y
2
0)(y − y0)].

Example 10. Let f(x, y) = arctan(x+y
x−y ) then

∇f(x, y) =
1

(x− y)2 + (x+ y)2

[
2x

2(x− y)

]

P1,(x0,y0)(x, y) = arctan(
x0 + y0

x0 − y0
) +

1

(x0 − y0)2 + (x0 + y0)2
[2x0(x− x0) + 2(x0 − y0)(y − y0)].
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Lecture 2: Linear algebra

Gaussian elimination

Exercise 11. Solve the lynear system
x+ y − 3z = 6

3x− y + 2z = 3

−x+ 2y − z = 1

with the Gaussian elimination method.

 1 1 −3 6
3 −1 2 3
−1 2 −1 1

→
 1 1 −3 6

0 −4 11 −15
0 3 −4 7

→
 1 1 −3 6

0 −4 11 −15
0 0 17

4 − 17
4

⇒

x+ y − 3z = 6

−4y + 11z = −15

z = −1

⇒


x+ 1 + 3 = 6

y = 1

z = −1

⇒


x = 2

y = 1

z = −1

unique solution.

Exercise 12. Solve the lynear system
−x− y + z = 0

2z = 1

−x− y = 2

with the Gaussian elimination method.

 −1 −1 1 0
0 0 2 1
−1 −1 0 2

→
 −1 −1 1 0

0 0 2 1
0 0 −1 2

⇒

−x− y + z = 0

2z = 1

−z = 2

⇒ no solutions.

Exercise 13. Solve the lynear system
x− y + 4z = 10

3x+ y + 5z = 15

x+ 3y − 3z = 6

with the Gaussian elimination method.

 1 −1 4 10
3 1 5 15
1 3 −3 6

→
 1 −1 4 10

0 4 −7 −15
0 4 −7 −4

→
 1 −1 4 10

0 4 −7 −15
0 0 0 11

⇒ no solutions.
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Exercise 14. Solve the lynear system
x− 2y − 2z = 0

−2x− y + 4z = 3

x− 2y − 2z = 0

with the Gaussian elimination method.

 1 −2 −2 0
−1 −1 4 3
1 −2 −2 0

→
 1 −2 −2 0

0 −5 0 3
0 0 0 0

⇒ {
x− 2y − 2z = 0

−5y = 3
⇒

{
x = − 6

5 − 2z

y = − 3
5

So we have infinite solutions of the form− 6
5
− 3

5
0

+ t

−2
0
1

 , t ∈ R.

Exercise 15. Solve the lynear system
x+ y + z + w = 1

2x+ λy + λz + λw = λ

λx+ 2(λ− 1)y + 2z + 2w = λ2 − 2

x+ y + (λ− 1)z + w = 1

for the different values of the parameter λ.


1 1 1 1 0
2 λ λ λ λ
λ 2(λ− 1) 2 2 λ2 − 1
1 1 λ− 1 1 1

→


1 1 1 1 0
0 λ− 2 λ− 2 λ− 2 λ− 2
0 λ− 2 2− λ 2− λ (λ− 2)(λ+ 1)
0 0 λ− 2 0 0


The second pivot is λ− 2 so we have to consider the case in which this quantity vanish or not.

λ 6= 2
1 1 1 1 0
0 1 1 1 1
0 1 −1 −1 λ+ 1
0 0 1 0 0

→


1 1 1 1 0
0 1 1 1 1
0 0 −2 −2 λ
0 0 1 0 0

→


1 1 1 1 0
0 1 1 1 1
0 0 −2 −2 λ
0 0 0 −1 λ

2

⇒

⇒


x = 0

y = λ
2 + 1

z = 0

w = −λ2

unique solution.
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λ = 2 
1 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⇒ x+ y + z + w = 1 ⇒ x = 1− y − z − w ⇒

⇒ infinite solutions of the form:


1
0
0
0

+ p


−1
1
0
0

 s

−1
0
1
0

 t

−1
0
0
1

 p, s, t ∈ R.

Reducible matrices

Definition 16. Let Π ∈ Rn×n be a square matrix. Then Π is said to be a permutation matrix if
the sequence of its columns (or rows) is a permutation of those of the identity matrix.

Remark 17. An example of permutation matrix is

Π :=


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .
To multiply a matrix A on the left by Π is equivalent to apply the inverse permutation on the
rows of A. Analogously to multiply A on the right by Π is equivalent to apply the permutation
on the columns of A. For example

A :=


1 2 9 10
3 4 11 12
5 6 13 14
7 8 15 16

 , ΠA =


7 8 15 16
1 2 9 10
3 4 11 12
5 6 13 14

 , AΠ =


2 9 10 1
4 11 12 3
6 13 14 5
8 15 16 7

 .
Moreover the inverse of a permutation matrix Π is its transpose: Π ·Πt = Πt ·Π = I.

In particular if A is the coefficient matrix of a linear system the multiplication by a permu-
tation matrix can be interpreted as reordering the equations or as relabelling the variables.

Definition 18. A matrix A ∈ Rn×n with n ≥ 2 is said reducible if ∃Π permutation matrix and
an integer 0 < k < n such that

ΠAΠt =

[
A11 A12

0 A22

]
where A11 ∈ Rk×k and A22 ∈ R(n−k)×(n−k) (are square matrices).

If the coefficient matrix of a linear system is reducible then there exists a way to improve the
Gaussian elimination, performing a starting variables relabelling and equations reordering.

Suppose we want to solve Ax = b with A reducible matrix. Then consider Π permutation
matrix associated to A and observe that

Ax = b ⇔ ΠAx = Πb ⇔ ΠAΠt · Πx︸︷︷︸
y

= Πb︸︷︷︸
c

,
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where

y =

[
y1

y2

]
, c =

[
c1
c2

]
are partitioned in compatible way to the partitioning of ΠAΠt. In that way

ΠAΠt · y = c ⇔

{
A11 y1 +A12 y2 = c1

A22 y2 = c2
.

So instead of solving a linear system of dimension n one can solve first the linear system of
dimension n − k getting y2 and then the linear system of dimension k getting y1. Since the
computational complexity of solving a linear system is not linear (is cubic in the general case)
this is an efficiency gain.

Example 19. Let

A =


1 0 −1 0
2 3 −2 1
−1 0 −2 0
1 −1 1 4

 , x =


x1

x2

x3

x4

 , b =


1
−2
−1
−2

 .
The matrix A is reducible infact

Π =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 , ΠAΠt =


4 −1 1 1
1 3 −2 2
0 0 −2 −1
0 0 −1 1

 , y =


x41
x2

x3

x1

 , c =


−2
−2
−1
1

 .
So we can solve [

−2 −1
−1 1

] [
x3

x1

]
=

[
−1
1

]
getting

[
x3

x1

]
=

[
0
1

]
. Then we can solve

[
4 −1
1 3

] [
x4

x2

]
=

[
−2
−2

]
−
[

1 1
−2 2

] [
0
1

]

getting

[
x4

x2

]
=

[
−1
−1

]
.

Eigenvalues and eigenvectors

Definition 20. Let A ∈ Cn×n be a square matrix, λ ∈ C is said to be an eigenvalue for A if
there exists a non zero vector x ∈ Cn \ {0} such that

Ax = λx.

The vector x is said eigenvector associated with λ and the pair (λ, x) is called eigenpair.

Remark 21. Observe that for every eigenvalue there is an infinite number of eigenvectors asso-
ciated to it. Infact if x is an eiegenvector then θx, with θ ∈ C \ {0}, is an eigenvector associated
to same eigenvalue.
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We can characterize the eigenvalues of a matrix A as the roots of particular polynomial
associated to the matrix.

Observe that λ is an eigenvalue of A ∈ Cn×n if and only if ∃x 6= 0 such that

Ax = λx ⇔ (A− λI)x = 0 ⇔ A− λI is singular ⇔ det(A− λI) = 0.

The object pA(λ) := det(A − λI) is a polynomial in λ of degree n and its roots correspond to
the eigenvalues of the matrix A. pA(λ) is called the characteristic polynomial of the matrix A.
Moreover the previous relation implies that the set of the eigenvectors associated to an eigenvalue
λ correspond to the kernel of the matrix A− λI minus the zero element.

Exercise 22. Compute the eigenvalues and eigenvectors of

A =

[
1 3
3 1

]
We can proceed by computing the roots of pA(λ):

A−λI =

[
1− λ 3

3 1− λ

]
⇒ pA(λ) = (1−λ)2− 9 = (λ− 4)(λ+ 2) ⇒ λ1 = 4, λ2 = −2.

In order to find the eigenvectors associated with λ1 and λ2 we look for the vectors in the kernel
of A− λ1I and A− λ2I. That is we solve

(A− 4I)

[
x
y

]
=

[
0
0

]
⇔

{
−3x+ 3y = 0

3x− 3y = 0
⇔

{
x = y

0 = 0
⇒ Span

([
1
1

])
\ {0},

(A+ 2I)

[
x
y

]
=

[
0
0

]
⇔

{
3x+ 3y = 0

3x+ 3y = 0
⇔

{
x = −y
0 = 0

⇒ Span

([
1
−1

])
\ {0}.

The eigenvalues of a certain matrix enjoy a lot of properties and relations that we are going to
state without proof. In what follows we assume A ∈ Cn×n with entries aij , 1 ≤ i, j,≤ n and
eigenpairs (λ1, v1), . . . , (λn, vn).

Properties 23.

• det(A) =
∏n
i=1 λi.

• Tr(A) :=
∑n
i=1 aii =

∑n
i=1 λi.

• A and At shares the same eigenvalues.

• Ah (conjugate transpose) has eigenvalues λ̄i.

• If A is invertible then (λ−1
i , vi) are eigenpairs for A−1.

• Let S ∈ Cn×n be an invertible matrix and call B := S−1AS. Then (λi, S
−1vi) are eigenpairs

for B.

• Let q(x) = q0 + q1x+ · · ·+ qhx
h be a polynomial and define the matrix q(A) = q0I + q1A+

· · ·+ qhA
h. Then (q(λi), vi) are eigenpairs for q(A).
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Structured matrices

Definition 24. A matrix A ∈ Cn×n (Rn×n) is called normal if AhA = AAh (AtA = AAt).

This class of matrices is important because, as claimed in the Spectral theorem, if A is normal
then there exists a matrix V = (v1 . . . vn) such that

Avi = λivi, vhi · vj︸ ︷︷ ︸
scalar product

=

{
1 i = j

0 i 6= j
, V −1AV =

λ1

. . .

λn

 .
That is there exists an orthonormal basis composed of eigenvectors of A which diagonalize the
matrix.

Example 25.

A =

−i −i 0
−i i 0
0 0 1

 , Ah =

−i i 0
i i 0
0 0 1

 , AhA = AAh =

2 0 0
0 2 0
0 0 1

 .
Definition 26. A matrix A ∈ Cn×n (Rn×n) is called hermitian ( symmetric) if A = Ah (A =
At).

Observe that if a matrix is hermitian or symmetric then in particular is normal, so the
Spectral theorem holds also in this case. We can actually say something more on the eigenvalues
of A. Observe that given an eigenvector v of unitary norm, the corresponding eigenvalue λ is
equal to the quantity vhAv = vhλv = λ. In particular

λ̄ =
(
vhAv

)h
= vhAhv = vhAv = λ,

therefore λ ∈ R. So the eigenvalues of an hermitian or symmetric matrix are real. Therefore
it makes sense, when we deal with an hermitian or a symmetric matrix, to talk about the sign
of its eigenvalues. An hermitian or symmetric matrix with positive eigenvalues is called positive
definite. If we have the weak condition of nonnegative eigenvalues we call it positive semidefinite.
It holds that an hermitian matrix is positive definite if and only if ∀x ∈ Cn \ {0} xhAx > 0.

Example 27.

A =

[
3 2 + i

2− i 1

]
is hermitian, A =

1 2 3
2 0 5
3 5 6

 is symmetric.

Definition 28. A matrix A ∈ Cn×n (Rn×n) is called unitary ( orthogonal) if AhA = AAh = I
(AtA = AAt = I).

Again the unitary and orthogonal matrices are subsets of the class of normal matrices, so the
Spectral theorem still apply to them. Instead they are not contained and they do not contain
the classes of hermitian and symmetric matrices. In particular the eigenvalues of these matrices
are not necessarily real but they enjoy another property. Observe that

Av = λv ⇒ (Av)h = (λv)h ⇒ vhAh = λ̄vh ⇒ vhAhAv = λ̄λvhv ⇒ 1 = |λ|2,

therefore the eigenvalues of a unitary or orthogonal matrix have modulus 1.

Example 29. The matrix

A =

[
cos(α) − sin(α)
sin(α) cos(α)

]
∈ R2×2

is orthogonal for any alpha ∈ R and its eigenvalues are cos(α)± sin(α).
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Gershgorin circle theorems

We have seen previously that the eigenvalues of a matrix correspond to the roots of its charac-
teristic polynomial. This fact tells us that when n is bigger than 4 there are no explicit formulas
to express the eigenvalues. Sometimes we are satisfied to localize them by means of trust regions
in order to apply a numerical method which returns an approximation. The cornerstone of the
eigenvalue localization is the following Gershgorin Theorem.

Theorem 30. Let A ∈ Cn×n with entries aij and call Gershgorin circles of A the sets:

Gi :=

z ∈ C : |z − aii| ≤
n∑

i 6=j=1

|aij |

 , i = 1, . . . , n.

Then

(i) The eigenvalues of A are all contained in
n⋃
i=1

Gi.

(ii) Let M1 be the union of k of Gershgorin circles and M2 the union of the others n − k. If
moreover M1 ∩M2 = ∅ then M1 contains exactly k eigenvalues and M2 contains exactly
n− k eigenvalues.

(iii) If the matrix A is irreducible (not reducible) then an eigenvalue belongs to the border of
n⋃
i=1

Gi if and only if it belongs to the border of each Gi.

The statements (i), (ii) and (iii) are usually called first second and third theorem of Gersh-
gorin respectively.

Remark 31. Since the eigenvalues of A and At coincide one can define the Gershgorin circles

using the columns in place of the rows. Calling them G
(r)
i and G

(c)
i respectively, as a consequence

of the first Gershgorin theorem, the eigenvalues of A are contained in

(
n⋃
i=1

G
(r)
i

)
∩
(

n⋃
i=1

G
(c)
i

)
.

Example 32.

A =

15 −2 2
1 10 −3
−2 1 0



0 10 15

Gershgorin circles of A: in blue the Gis are defined by rows, in red are defined by columns

For what seen in the previous remark, the eigenvalues of A are contained in the three smallest
circles around 0, 10 and 15.
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Reminder 33. A matrix is irreducible if and only if its associated graph is strongly connected.
The associaceted graph of a matrix is a directed graph having a node with label i for each i =
1, . . . , n and an edge from node i to node j if aij 6= 0. That graph is strongly connected if ∀i, j
there is an oriented path from node i to node j.

Example 34. The matrix

A =


2 1

1
. . .

. . .

. . .
. . . 1
1 2

 ∈ Rn×n

is irreducible, it is easy to see that looking at the graph associated to the matrix. Its Gershgorin
circle are:

0 21

Therefore it is not singular because 0 can not verify the condition in the third Gershgorin
theorem.

Example 35. Given

A =


2 1
−1 100 2

−2 3 3
−3 102 4

−4 4


it is possible to separate its Gerschgorin circles getting better estimates for the eigenvalues.

2 3 4 100 102
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Consider the matrices

S =


1

ε−1

1
ε−1

1

 , S−1 =


1

ε
1

ε
1

 ,
we have that B := S−1AS has the same eigenvalues of A (they are similar) and

B =


2 ε−1

−ε 100 2ε
−2ε−1 3 3ε−1

−3ε 102 4ε
−4ε−1 4

 .
Indicating with C(x, r) the circle of center x and radius r the Geshgorin circles defined by rows
are

C(2, ε−1), C(3, 5ε−1), C(4, 4ε−1), C(100, 3ε), C(102, 7ε).

Therefore we have that letting ε goes to zero I can separate the circles around 100 and 102 but
I enlarge the others. The other way round if I let ε goes to +∞. Observe that if I fix ε such
that one of the circles is separate form the others then I get that this circle contains exactly
one eigenvalue (second Gershgorin theorem). Moreover the latter is real because otherwise its
conjugate is an eigenvalue too (because the matrix has real entries) and it is contained in the
same circle, which is absurd.

Now note that fixing ε = 1
10 we manage to separate the last two circles and with ε = 10 we

separate the first 3.
In particular we get that the eigenvalues are all real and the following estimates hold:

2− 1

10
≤ λ1 ≤ 2 +

1

10
, 3− 1

2
≤ λ2 ≤ 3 +

1

2
,

4− 2

5
≤ λ3 ≤ 4 +

2

5
, 100− 3

10
≤ λ4 ≤ 100 +

3

10
,

102− 7

10
≤ λ5 ≤ 102 +

7

10
.
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Lecture 3: Calculus

Convexity conditions

Definition 36. The function f : D → R defined on a convex set D ⊆ Rn is said to be convex
on D if and only if

∀x, y ∈ D, ∀λ ∈ (0, 1) : f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

It is strict convex if the strictly inequality holds. It is β-strongly convex for a constant β > 0 if
the function f(x)− β

2 ‖x‖
2
2 is convex.

Proposition 37. Let f : D → R be a differentiable function, then

(i) f is convex on D ⇔ ∀x, y ∈ D f(x) ≥ f(y) +∇f(y)t(x− y).

(ii) f is strict convex on D ⇔ ∀x, y ∈ D f(x) > f(y) +∇f(y)t(x− y).

(iii) f is β-strongly convex on D ⇔ f(x) ≥ f(y) +∇f(y)t(x− y) + β
2 ‖x− y‖

2
2.

Proposition 38. Let f : D → R be a differentiable function, then

(i) f is convex on D ⇔ ∀x ∈ D Hf(x) is positive semidefinite.

(ii) f is β-strongly convex on D ⇔ ∀x ∈ D Hf(x) is positive definite and λmin ≥ β
2 .

Remark 39. Strong convexity =⇒ strict convexity =⇒ convexity.
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Convex analysis in one variable

In this subsection we consider functions f : D → R where D ⊆ R.

Exercise 40. D = R+, f(x) = xa. For which values of the parameter a the function f is convex,
strictly convex or strongly convex?

The function is differentiable on D for any value of the parameter a and f ′′(x) = a(a−1)xa−2.
Observe that the sign of f ′′(x) on D is determined by the sign of a(a − 1). Therefore we have
that the function is not convex for α ∈ (0, 1) and strictly convex for a ∈ (−∞, 0) ∪ (1,+∞). If
a = 0 we have the constant function which is convex but not strictly convex. If a = 1 we have a
linear function which is convex but not strictly convex.

For what concerns strong convexity we need to study the convexity of f̃(x) = f(x)− β
2x

2 for

β > 0. We have that f̃ ′′(x) = a(a− 1)xa−2 − β. Once we fixed the positive β parameter we get
that this quantity becomes negative as x goes to 0. Therefore f̃ can not be convex on D for any
positive β and consequently f(x) is not strongly convex for any value of a.
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Graph of f(x) for different values of a. From left to right on the first row we have a = 0, 1, 1
2

while on the second row we have a = − 1
2 ,−2, 2

Exercise 41. D = R, f(x) = x4. Is f(x) convex? Is it strictly convex?

Looking at f ′′(x) = 12x2 ≥ 0 we can claim that f is convex but since f ′′(0) = 0 we can not
say anything about the strict convexity. So we use another condition:

f strict convex on D ⇔ ∀x, y ∈ D, x 6= y, f(x) > f(y) + f ′(y)(x− y).

In our case we need to verify that

x4 > y4 + 4y3(x− y) = −3y4 + 4y3x ∀x, y ∈ R, x 6= y.
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We do not need to verify the inequality when x, y ∈ R+ because we have just verified the strict
convexity of f in that domain in the previous exercise. By symmetry we do not need to verify
the case x, y ∈ R− neither. If x · y = 0 (one of the two is zero) then by direct verification the
inequality holds. The only case left is x · y < 0 (opposite signs). In this scenario the right-hand
side −3y4 + 4y3x is negative while x4 is positive so the inequality holds. Therefore f is strict
convex on the real line.

Exercise 42. D = R, f(x) = eαx with α 6= 0. For which values of the parameter α the function
f is convex, strictly convex or strongly convex?

We compute the second derivative getting f ′′(x) = α2eαx > 0 ∀x ∈ R so the function is strict
convex for any α 6= 0. For the strong convexity we consider f̃(x) = eαx − β

2 with β > 0. The

second derivative of f̃ is f̃ ′′(x) = α2eαx − β. Once we fixed β, this quantity becomes negative
when x→ ±∞ (depending on the sign of α) and so f̃ is not convex on D. The latter means that
f is not strongly convex on D for all choice of α.
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0
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100
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−5 0 5 10
0
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100
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−10 −5 0 5
−200

−100

0
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a=1, b=2

−5 0 5 10
−200

−100

0

100

a=−1, b=2

Graphs of f(x) and f̃(x) for α = ±1 and β = 2

Convex analysis in several variables

Exercise 43. D = Rn, f(x) = max
i=1,...,n

xi with x = (x1, . . . , xn) ∈ Rn. Is f convex? Is it strictly

convex? Is it differentiable?

In order to prove the convexity we consider x, y ∈ Rn, λ ∈ (0, 1) and we observe that

f(λx+ (1− λ)y) = max
i=1,...n

λxi + (1− λ)yi ≤ max
i=1,...n

λxi + max
i=1,...n

(1− λ)yi

= λ max
i=1,...n

xi + (1− λ) max
i=1,...n

yi = λf(x) + (1− λ)f(y).
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Therefore f is convex.
The function is not strictly convex: consider as a counterexample the choice x = (x0, . . . , x0)

and y = (y0, . . . , y0) with x0, y0 ∈ R. Then we have

f(λx+ (1− λ)y) = max
i=1,...n

λx0 + (1− λ)y0 = x0 + (1− λ)y0 = λf(x) + (1− λ)f(y).

The function is not differentiable: consider the case n = 2, x = (1, 1). We have that

lim
t→0+

f(1 + t, 1)− f(1, 1)

t
= lim
t→0+

1 + t− 1

t
= 1, lim

t→0−

f(1 + t, 1)− f(1, 1)

t
= lim
t→0−

1− 1

t
= 0,

therefore the function does not admit partial derivative in the first variable in the point (1, 1).
Note that the same argument can be applied for every point of the form (x0, x0).

Exercise 44. D = {(x, y) : y > 0}, f(x, y) = x2

y . Is f convex on D?

Since f is twice differentiable it is enough to check if the Hessian of f is positive semidefinite
on D. Performing some computations we get

∇f(x, y) =

[
2x
y

−x
2

y2

]
Hf(x, y) =

2

y3

[
y2 −xy
−xy x2

]
.

In particular Tr(Hf) > 0 and det(Hf) = 0 on D. This means that one eigenvalue is zero and
the other is positive (remember that trace and determinant correspond to sum and product of
the eigenvalues), therefore Hf is positive semidefinite on D.

Exercise 45. D = R2, f(x) = x2 + y2 + 2xy + 4x − 3y. Is it convex? Is it strongly convex?
Does f admit global extrema?

Since f is twice differentiable we check the second order conditions:

∇f(x, y) =

[
2x+ 2y + 4
2x+ 2y − 3

]
, Hf(x, y) =

[
2 2
2 2

]
.

Again Tr(Hf) > 0, det(Hf) = 0 ∀x, y ∈ R2 ⇒ Hf positive semidefinite on D, therefore f
is convex but not strongly convex.

For what concerns global extrema consider a sequence of point of the form {(t,−t)}, then we
have that

f(t,−t)) = t2 + t2 − 2t2 + 4t+ 3t = 7t.

This means that when t→ ±∞ f(t,−t)) tends to ±∞, hence f have no global extrema.

Exercise 46. D = R2, f(x) = x2 + y2 + xy + 4x− 3y. Is it convex? Is it strongly convex?

Doing some computations we get

∇f(x, y) =

[
2x+ y + 4
x+ 2y − 3

]
, Hf(x, y) =

[
2 1
1 2

]
.

This time Tr(Hf) > 0, det(Hf) > 0 ∀x, y ∈ R2 ⇒ Hf positive definite on D, therefore f is
strongly convex. The constant of strong convexity coincides with the smallest eigenvalue. Since
the product of the eigenvalue is 3 and their sum is 4 it is easy to see that λmin = 1.
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Remark 47. The latter two exercises concern the special class of quadratic functions, i.e. those
functions of the form

f(x, y) =
1

2
[x, y]Q

[
x
y

]
+ bt

[
x
y

]
+ c, Q ∈ R2×2, b ∈ R2 and c ∈ R.

Computing the second derivative we get that Hf(x, y) = Q, so

f is convex ⇔ Q is positive semidefinite

f is m-strongly convex ⇔ Q is positive definite and λmin = m

If Q is positive semidefinite (but not positive definite) its kernel contains (x̄, ȳ) 6= (0, 0). If
bt(x̄, ȳ) 6= 0 then the function does not admit global minima because considering a sequence of
point (t · x̄, t · ȳ) we get

f(tx̄, tȳ) =
1

2
t2[x̄, ȳ]Q

[
x̄
ȳ

]
︸ ︷︷ ︸

0

+t · bt
[
x̄
ȳ

]
︸ ︷︷ ︸
6=0

+c.

So as t→ ±∞ we can get f(tx̄, tȳ)→ ±∞. In particular holds that

f admits global minima ⇔ bt
[
x̄
ȳ

]
= 0 ∀(x̄, ȳ) ∈ Ker(Q).

Exercise 48 (Rosenbrock function). D = R2, f(x) = (a− x)2 + b(y − x2)2 with a, b > 0. Is it
convex? Does f admit global minima?

∇f(x, y) =

[
−2(a− x)− 4bx(y − x2)

2b(y − x2)

]
, Hf(x, y) =

[
2− 4by + 8bx −4bx
−4bx 2b

]
If for example we evaluate the hessian in the point (0, 1

b ) we get

Hf(0,
1

b
) =

[
−2 0
0 2b

]
which is an indefinite matrix. Therefore f is not convex on D. We look for stationary points
getting

∇f(x, y) =

[
0
0

]
⇔

{
−2(a− x) = 0

y = x2
⇔

{
x = a

y = a2
.

Since f(a, a2) = 0 and f(x, y) ≥ 0 on D, because it is a sum of squares, we can conclude that
(a, a2) is a global minima point.

Proposition 49. Consider Rn equipped with a norm ‖·‖ and let A ⊆ Rn be a convex subset.
Then distance function

dA : Rn → R, dA = inf
y∈A
‖x− y‖,

is a convex function.
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Proof. Let x1, x2 ∈ Rn and call d1 = dA(x1) and d2 = dA(x2). So ∀ε > 0 there exists y1, y2 ∈ A
such that

‖x1 − y1‖ ≤ d1 + ε, ‖x2 − y2‖ ≤ d2 + ε.

Moreover, since A is convex, ∀λ ∈ (0, 1) λy1 + (1− λ)y2 ∈ A. Therefore

da(λx1 + (1− λ)x2) = inf
y∈A
‖λx1 + (1− λ)x2 − y‖ ≤ ‖λx1 + (1− λ)x2 − (y1 + (1− λ)y2)‖

≤ ‖λ(x1 − y1)‖+ ‖(1− λ)(x2 − y2)‖ ≤ λ(d1 + ε) + (1− λ)(d2 + ε)

= λd1 + (1− λ)d2 + ε = λdA(x1) + (1− λ)dA(x2) + ε.

Since it holds ∀ε > 0 we get the thesis.

Proposition 50 (Composition with an affine function). Let f : Rn → R be a convex function
and g : Rm → Rn be an affine function, i.e. there exists A ∈ Rn×m and b ∈ Rn such that
g(x) = Ax+ b. Then f ◦ g : Rm → R is convex.

Proof. Observe that (f ◦ g)(x) = f(Ax+ b). Given x, y ∈ Rm and λ ∈ (0, 1) we have

c(f ◦ g)(λx+ (1− λ)y) = f(A(λx+ (1− λ)y) + b) = f(λAx+ (1− λ)Ay + λb+ (1− λ)b)

= f(λ(Ax+ b) + (1− λ)(Ay + b)) ≤ λf(Ax+ b) + (1− λ)f(Ay + b)

= λ(f ◦ g)(x) + (1− λ)(f ◦ g)(y).

It is usefull to stress that the convexity property depends only on the behaviour of the function
along the straight lines. To be precise

f is convex on D ⇔ ∀x ∈ D, ∀v g(t) = f(x+ tv) is convex on D̃ = {t : x+ tv ∈ D}.

That reformulation can be useful because moves the problem from a function with domain D
(that can be complicated) to a function whose domain is a subset of R.

Exercise 51. Let D = {A ∈ Rn×n : A is positive definite} ⊂ S = {symmetric n× n matrices}
and f(X) = − log(det(X)). Is f convex on D?

First observe that given A1, A2 ∈ D and λ ∈ (0, 1)

λA1+(1−λ)A2 is symmetric, ∀x ∈ Rn\{0} xt(A1+(1−λ)A2)x = λxtA1x+(1−λ)xtA2x > 0,

therefore D is a convex set. Consider A ∈ D and B ∈ S then D̃ = {t ∈ R : A+ tB ∈ D} is non
empty because contains an interval around 0. Moreover we have

g(t) =− log(det(A+ tB)) = − log(det(A) det(I + tA−1B)) = − log(det(A))− log(det(I + tA−1B))

= − log(det(A))− log(

n∏
i=1

1 + tλi) = − log(det(A))−
n∑
i=1

log(1 + tλi),

where λi indicate the eigenvalues of the matrix A−1B. Then we compute the higher order
derivatives of g(t) getting

g′(t) = −
n∑
i=1

1 + λi
i+ tλi

,

g′′(t) =

n∑
i=1

(1 + λi)
2

(1 + tλi)2
.

Since g′′(t) ≥ 0 ∀t and forall B ∈ S we can conclude the the function is convex.
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Lecture 4: Linear algebra

Perturbation theory and condition number

When we address the numerical solution of a problem we have to deal with the error in the
representation of the data and the roundoff error of the computations.

For example suppose that we want to solve the linear system

Ax = b

with A ∈ Rn×n, det(A) 6= 0, b ∈ Rn. If the matrix of the coefficients A and the right hand side
b come from some measurements then we can have only an approximation of them. It means
that we can actually solve

(A+ δA)x̃ = b+ δb, x̃ = x+ δx,

where the perturbations δA and δb are due to the finite accuracy of the measurement tools.
In such situation one can not hope to avoid these disturbances, what we can hope is that the
solution of the perturbed system is not too far away from the real solution. In particular we
would like the relative error

‖δx‖
‖x‖

to be small. A theorem that bounds this quantity is the following.

Theorem 52. Let A, δA ∈ Rn×n, det(A) 6= 0, 0 6= b ∈ Rn and let ‖·‖ an induced matrix norm.
If ‖A‖‖δA‖ < 1 then

‖δx‖
‖x‖

≤ µ(A)
εA + εb

1− µ(A)εA
,

where εA = ‖δA‖
‖A‖ , εb = ‖δb‖

‖b‖ and µ(A) = ‖A‖‖A−1‖.

Remark 53. The quantity µ(A) is said condition number of the matrix A. Observe that µ(A) =
‖A‖‖A−1‖ ≥ ‖AA−1‖ = ‖I‖ = 1.

If µ(A) is not big then small perturbations in the intial data cause small relative error in the
computed solution.

This notion strictly depends on the norm used so we will write µ(A, 1), µ(A, 2), µ(A,∞) if we
compute the condition number with respect to the 1,2 of infinity norm.

We now restrict ourself to the case in which the perturbations affect only the right hand side
(δA = 0):

A(x+ δx) = b+ δb ⇒ ‖δx‖
‖x‖

≤ µ(A) · εb = µ(A)
‖δb‖
‖b‖

.

Exercise 54. Is this bound sharp? If yes, how can I find b of unit norm and δb of norm ε such
that the equality holds?

Observe that replacing Ax = b in the perturbed linear system we get{
Ax = b

Aδx = δb
⇒

{
x = A−1b

δx = A−1δb

The idea is to maximize the relative error and see if it reaches the bound of the theorem. Hence
we look for

max
‖b‖=1,‖δb‖=ε

‖δx‖
‖x‖

= max
‖b‖=1,‖δb‖=ε

‖A−1δb‖
‖A−1b‖

.
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Observe that in order to maximize this ratio we can indipendently look for

max
‖δb‖=ε

‖A−1δb‖ and min
‖b‖=1

‖A−1b‖.

For what concerns the first quantity, we have that

max
‖δb‖=ε

‖A−1δb‖ = max
‖δb‖=ε

ε‖A−1 δb

ε
‖ = ε max

‖δb‖=1
‖A−1δb‖ = ε‖A−1‖.

where the last equality follows from the fact the the norm is induced.
For the second quantity, let us call

r := min
‖b‖=1

‖A−1b‖

and consider a vector b̃ such that ‖b̃‖ = 1 and ‖A−1b̃‖ = r. We also call ỹ = A−1b̃. Oviously
‖Aỹ‖ = ‖b̃‖ = 1. Moreover the following property holds:

Proposition 55.
max
‖y‖=r

‖Ay‖ = ‖Aỹ‖ = 1.

Proof. Suppose by contradiction that ∃y: ‖y‖ = r and ‖Ay‖ = R > 1. Then we should have
that ‖A y

R‖ = 1 and

‖A−1
(
A
y

R

)
‖ = ‖ y

R
‖ =

r

R
< r.

This is a contradiction because of the definition of r.

So we get
1 = max

‖y‖=r
‖Ay‖ = r · max

‖y‖=1
‖Ay‖ = r‖A‖,

which means
r = min

‖b‖=1
‖A−1b‖ = ‖A‖−1

Therefore choosing

δb̃ = ε arg max‖x‖=1‖A−1x‖,
b̃ = arg min‖x‖=1‖A−1x‖ = ‖A‖−1 ·A · arg max‖x‖=1‖Ax‖,

the relative error is equal to

‖δx‖
‖x‖

=
‖A−1δb̃‖
‖A−1b̃‖

=
‖A−1‖ε
‖A‖−1

= µ(A)ε = ε
‖δb̃‖
‖b̃‖

.

Example 56. Consider

A =

[
4 1
3 1

]
, A−1 =

[
1 −1
−3 4

]
.

I want to find the right hand side b̃ and the perturbation δb̃ of the previous exercise with respect
to the infinity and euclidean norm.
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‖·‖∞ We can easily compute

‖A‖∞ = 5, ‖A−1‖∞ = 7 ⇒ µ(A,∞) = 35.

Now observe that given a matrix A and indicating with amax the row which determines ‖A‖∞,
we have that

arg max
‖x‖∞=1

‖Ax‖∞ = sign(amax)t.

where the function sign is applied component-wise and

sign : R→ R sign(x) =

{
1 if x ≥ 0

−1 if x < 0.

Therefore

δb̃ = ε

[
−1
1

]
and b̃ =

1

5

[
4 1
3 1

] [
1
1

]
=

[
1
4
5

]
.

With this choice we get

δx = A−1δb̃ =

[
1 −1
−3 4

] [
−ε
ε

]
=

[
−2ε
7ε

]
, x = A−1b̃ =

[
1 −1
−3 4

] [
1
4
5

]
=

[
1
5
1
5

]
and the relative error verifies the equality

‖δx‖∞
‖x‖∞

= 35ε = µ(A,∞)
‖δb‖∞
‖b‖∞

.

‖·‖2 For what concerns the 2-norm analysis observe that

arg max
‖x‖2=1

‖A−1x‖2 = arg max
‖x‖2=1

‖A−1x‖22 = arg max
‖x‖2=1

(A−1x)tA−1x = arg max
‖x‖2=1

xt(A−1)tA−1x.

Since the matrix (A−1)tA−1 is symmetric (in particular positive definite) we know the solution
of this optimization problem. That is the unitary eigenvector ṽmax of (A−1)tA−1 associated to
the the biggest eigenvalue λmax.

Analogously
arg min
‖x‖2=1

‖A−1x‖2 = arg min
‖x‖2=1

xt(A−1)tA−1x = ṽmin

where ṽmin is the unitary eigenvector of (A−1)tA−1 associated to the the smallest eigenvalue
λmin. Observing that(A−1)tA−1 is the inverse of AAt and using the relation between the eigen-
vectors and eigenvalues of a matrix and those of its inverse we get that

b̃ = ε · vmax, δb̃ = vmin

where vmax and vmin are the unitary eigevectors of AAt associated to the biggest and smallest
eigenvalues respectively.
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Factorizations

Most of the methods for solving linear systems rely on the factorization of the coefficient matrix
A into the product of two matrices

A = BC.

The solution of Ax = b is then obtained by solving subsequently the two linear systems{
By = b

Cx = y
.

This is done to gain in terms of the number of arithmetic operations required, so the matrices
B,C must have some structure which enable us to solve the latter two linear systems efficiently.

The three classic factorizations, we consider are:

• LU factorization: L is lower triangular with ones on the main diagonal and U is upper
triangular. This factorization is associated with the Gauss method.

• QR factorization: Q is unitary and R is upper triangular.

• LLh factorization: L is lower triangular with non negative diagonal elements. This
applies only to positive semidefinite matrices and it is usually called Cholesky factorization.

Exercise 57. How do we compute the LU factorization?

The idea is to exploit the closure of the lower (upper) triangular matrices with respect to the
matrix multiplication and inversion. This means that if I multiply two lower triangular matrices
or if I invert a lower triangular matrix I get again a lower triangular matrix.

So if I manage to transform the matrix A into an upper triangular matrix by multiplying it
with lower triangular matrices I get the LU factorization. More explicitly

Mn−1 · · · · ·M2 ·M1 ·A = U︸︷︷︸
upper triangular

⇒ A = M−1
1 ·M−1

2 · . . .M−1
n−1︸ ︷︷ ︸

L

U

where Mi is a lower triangular matrix for i = 1, . . . , n− 1.
In order to choose the matrices Mi we look back at the Gauss elimination method. At the

first step of the algorithm we transform the coefficient matrix in that way

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
an1 an2 . . . ann

 −→

a11 a12 . . . a1n

0 a
(2)
22 . . . a

(2)
2n

...
...

...

0 a
(2)
n2 . . . a

(2)
nn

 .
To obtain this operation is equivalent to multiply the matrix A on the left by the matrix

M1 =



1 0 . . . . . . . . . 0
−m21 1 0 . . . . . . 0

... 0
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . . 0

−mn1 0 . . . . . . 0 1


, mj1 =

aj1
a11

.
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Similarly at the generic step k of the algorithm we perform the transformation

a11 a12 . . . . . . . . . . . . a1n

0 a
(2)
22 . . . . . . . . . . . . a

(2)
2n

0 0
. . .

...
...

...
. . .

. . .
...

...
... 0 a

(k)
kk . . . a

(k)
kn

...
...

...
...

...

0 0 . . . 0 ank(k) . . . a
(k)
nn


→



a11 a12 . . . . . . . . . . . . a1n

0 a
(2)
22 . . . . . . . . . . . . a

(2)
2n

0 0
. . .

...
...

...
. . . a

(k)
kk

...
...

... 0 a
(k+1)
k+1k . . . a

(k+1)
k+1n

...
...

...
...

...

0 0 . . . 0 a
(k+1)
nk+1 . . . a

(k+1)
nn


which is equivalent to multiply on the left by the matrix

Mk =



1 0 . . . . . . . . . . . . . . . 0
0 1 0 . . . . . . . . . . . . 0
...

. . .
. . .

. . .
...

... 0 1
. . .

...
... 0 −mk+1k 1

. . .
...

...
...

... 0
. . .

. . .
...

...
...

...
...

. . .
. . . 0

0 . . . 0 −mnk 0 . . . 0 1


, mjk =

a
(k)
jk

a
(k)
kk

.

Observe that these kind of matrices can be seen as a rank 1 correction of the identity matrix:

Mk = I − uketk

where ek is the k-th vector of the canonical basis in Rn and

uk =



0
...
0

mk+1k

...
mnk


∈ Rn.

The matrices with this structure are called elementary Gauss matrices and enjoy some very nice
properties.

Proposition 58. (i) Let M = I − uetk be an elementary Gauss matrix then

M−1 = I + uetk.

(i) Let M̃ = I − ũetj and M̂ = I − ûeti be two elementary Gauss matrices with i 6= j. Then

M̃ · M̂ = I − ũetj − ûeti
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Exploiting these properties we can write down the expression of L factor:

L =



1 0 . . . . . . . . . 0
m21 1 0 . . . . . . 0

... m32
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . . 0

mn1 mn2 . . . . . . mnn−1 1


, mij =

a
(j)
ij

a
(j)
jj

.

Finally, for the U factor we take the triangular matrix we get at the end of the Gauss elimination
method.

Example 59. Compute the LU factorization of:

A =

 1 2 −1
−1 −1 2
1 1 2

 .
We can already compute

m21 = −1, m31 = 1.

Now we apply one step of the Gauss method 1 2 −1
−1 −1 2
1 1 2

→
1 2 −1

0 1 1
0 −1 3


getting m31 = −1. Finally we perform the last step of the Gauss method getting U:1 2 −1

0 1 1
0 −1 3

→
1 2 −1

0 1 1
0 0 4

 = U.

A =

 1 0 0
−1 1 0
1 −1 1

 ·
1 2 −1

0 1 1
0 0 4

 .
Exercise 60. What is the computational cost of the LU factorization?

When we speak about the computational cost we mean the number of arithmetic operations
as a function of the dimension n of the linear system. We will use the relation operator ' which
means “equal neglecting lower order terms”. Some formulas which will be usefull are:

n∑
i=1

i =
n(n+ 1)

2
' n2

2
,

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
' n3

3
.

Regarding the algorithm we used for computing the LU factorization we note that at the generic
step k the action which requires more arithmetic operations is updating the coefficient matrix
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(compute the product MkȦ
(k)). It needs 2(n− k)2 among multiplications and additions. So the

cost of the complete algorithm is

2

n−1∑
k=1

(n− k)2 = 2

n−1∑
k=1

k2 ' 2

3
n3

Exercise 61. How do we compute the QR factorization?

The process is the same but we change the elementary matrices that we use. In particular
we now want the elementary matrices to be unitary. This because again the class of unitary
matrices is closed under inversion and matrix multiplication. In order to get this property we
consider elementary matrices of that kind

M = I − βuut, u ∈ Rn, β =
2

utu
∈ R,

which are called Householder transformation. Since we are interested in getting a triangular
matrix we state this result about the Houseldoer transformations.

Proposition 62. Given v = (v1, . . . , vn)t ∈ Rn the unitary matrices M = I − βuut with

u = v ± ‖v‖2e1 =


v1 ± ‖v‖2

v2

...
vn

 , β =
2

utu
,

are such that
Mv = α · e1, |α| = ‖v‖2.

Therefore we can exploit this property for choosing the Householder transformations. For
example at the first step we can select the Houselder transformation M1 which maps the first
column of A into a multiple of e1. So that

M1A =


α ∗ . . . ∗
0
... An−1

0

 .
At the second step we select an Householder transformation which maps the first column of An−1

in a multiple of e1 ∈ Rn−1. Then we complete the matrix in order to get a transformation which
leaves unchanged the first row and the first column (of zeros):

M2 =


1 0 . . . 0
0
... M̃2

0

 , M2(M1A) =


α ∗ ∗ . . . ∗
0 γ ∗ . . . ∗
0 0
...

... An−2

0 0

 .

At step k we multiply on the left by

Mk =

[
Ik−1 0

0 M̃k

]
.

29



After n− 1 steps the matrix become upper triangular and we have the factor R. For getting the
Q factor we compute the product

M t
1 ·M t

2 · . . .M t
n−1.

Example 63. Compute the QR factorization of

A =

12 −51 4
6 167 −68
−4 24 −41

 .
a1 =

12
6
−4

 , ‖a1‖2 = 14, u1 = a1−‖a1‖2e1 =

−2
6
−4

 ⇒ M1 = I− 2

ut1u1
u1u

t
1 =

 6
7

3
7 − 2

7
3
7 − 2

7
6
7

− 2
7

6
7

3
7

 ,
M1A =

14 21 −14
0 −49 −14
0 168 −77

 .
a2 =

[
−49
168

]
, ‖a2‖2 = 175, u2 =

[
124
168

]
⇒ M2 =

[
1 0
0 I − 2

ut
2u2

u2u
t
2

]
=

1 0 0
0 − 7

25
24
25

0 24
25

7
25

 ,
R = M2M1A =

14 21 14
0 175 −70
0 0 −35

 , Q = M t
1M

t
2 =

 0.8571 −0.3943 0.3314
0.4286 0.9029 −0.0343
−0.2857 0.1714 0.9429

 .
Exercise 64. What is the computational cost of the QR factorization?

At the genrirc step k the most expensive action is again to compute the product Mk · A(k).
This time, since the matrix Mk is not given for free as for the LU decomposition, we need at
most 4(n− k + 1)2 among multiplications and additions. So the total cost is

4

n−1∑
k=1

(n− k + 1)2 = 4

n∑
k=2

k2 ' 4

3
n3.

Exercise 65. How do we compute the Cholesky factorization?

We somply impose the equality A = LLt component-wise (we are considering the real case
so we use the transpose operator) obtaing the relations{

ajj =
∑j
k=1 L

2
jk j = 1, . . . , n

aij =
∑j
k=1 LikLjk i = j + 1, . . . , n j < n

.

Solving these equations for Lij one getLjj =
√
ajj −

∑j−1
k=1 L

2
jk j = 1, . . . , n

Lij = 1
Ljj

(
aij −

∑j−1
k=1 LikLjk

)
i = j + 1, . . . , n j < n

.

Observe that Lij depends on the elements Li′j′ with i′ ≤ i and j′ ≤ j. Therefore we can compute
all the matrix L following this order:

1

3

2

4
. . .

 .
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Example 66. Compute the Cholesky factorization of

A =

 4 12 −16
12 37 −43
−16 −43 98

 .
L11 =

√
a11 = 2, L21 =

1

L11
a21 = 6, L13 =

1

L11
a31 = −8,

L22 =
√
a22 − L2

21 = 1, L32 =
a32 − L31L21

L22
= 5

L33 =
√
a33 − L2

31 − L2
32 = 3,

A =

2 0 0
6 1 0
8 5 3

 ·
2 6 8

0 1 5
0 0 3

 .
Exercise 67. What is the computationale cost of the Cholesky decomposition?

For the computation of Lij we need at most 2j among multiplicative and additive operations.
So to compute a row of L we need

2

i∑
j=1

j ' i2.

Therefore the whole algorithm requires

n∑
i=1

i2 ' n3

3

arithmetic operations. We did not count the square roots which are n.

Convergence of Jacobi and Gauss Seidel methods

Recall that given the linear system Ax = b the methods of Jacobi and Gauss Seidel have iteration
matrices defined in this way

J = D−1(M +N), G = (D −M)−1N

where

D =


a11

. . .

. . .

ann

 , M =


0

−a21
. . .

...
. . .

. . .

−an1 . . . −ann−1 0

 , N =


0 −a12 . . . −a1n

. . .
. . .

...
. . . −an−1n

0

 .
Theorem 68. Let A ∈ Cn×n and suppose that one of the following conditions hold

(i) A is strict diagonally dominant

(ii) At is strict diagonally dominant

(iii) A is irreducible and diagonally dominant
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(iv) At is irreducible and diagonally dominant.

Then ρ(J), ρ(G) < 1 (Jacobi and Gauss Seidel methods applied to A converge).

Proof. Observe that the hypothesis, so one of the conditions (i) − (iv) implies two important
consequences:

- The matrix A is non singular, thanks to the Geshgorin theorems.

- The diagonal elements aii are non zeros.

ρ(J) < 1 Suppose by conttradiction that ∃λ eigenvalue of J such that |λ| > 1. Then

0 = det(λI−J) = det(λI−D−1(M+N)) = det(D−1(λD−M−N)) = det(D−1) det(λD−M−N).

Since det(D−1) 6= 0 this would imply that the matrix λD −M − N is singular. But we if we
observe the latter

λD −M −N =


λa11 a12 . . . a1n

a21
. . .

. . .
...

...
. . .

. . . an−1n

an1 . . . ann−1 λa11


we note that it coincides with A unless the main diagonal which is rescaled by λ which is of
modulus greater than 1. So also this matrix verifies one of the hypothesis (i)− (iv) and therefore
must be non singular ⇒⇐.

ρ(G) < 1 Analogously, suppose by conttradiction that ∃λ eigenvalue of G such that |λ| > 1.

Then

0 = det(λI −G) = det(λI − (D −M)−1N) = det((D −M)−1) det(λ(D −M)−N))

= det(D −M)−1λn det(D −M − λ−1N).

Since D −M is non singular and λ 6= 0 this would imply that the matrix

D −M − λ−1N =


a11 λ−1a12 . . . λ−1a1n

a21
. . .

. . .
...

...
. . .

. . . λ−1an−1n

an1 . . . ann−1 a11


is singular. The latter coincides with A unless for the strictly upper triangular part which is
divided by λ which is a number of modulus greater than 1. Therefore even this matrix enjoys
one of the hypothesis (i)− (iv) and therefore must be non singular ⇒⇐.
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Lecture 5: Calculus

Local maxima and minima in several variables

Suppose D ⊆ Rn be an open set and let f : D → R be a twice differentiable function on D.
Then we know that

• x0 ∈ D is local minimum point ⇒ ∇f(x0) =

[
0
0

]
and Hf(x0) is positive semidefinite.

• x0 ∈ D is local maximum point ⇒ ∇f(x0) =

[
0
0

]
and Hf(x0) is negative semidefinite.

• ∇f(x0) =

[
0
0

]
and Hf(x0) is positive definite ⇒ x0 ∈ D is local minimum point.

• ∇f(x0) =

[
0
0

]
and Hf(x0) is negative definite ⇒ x0 ∈ D is local maximum point.

So in order to address the issue of finding local maxima and minima points f we follow these
steps:

1. We look for the stationary points i.e., the solutions of the system ∇f =

[
0
0

]
.

2. For each point computed at step 1 we evaluate the Hessian of f . If the Hessian is positive
or negative definite we can say that the point is a minimum or maximum point respectively.
If it is undefined we conclude that it is a saddle point.

3. If the Hessian is semidefinite we need to study the situation locally for example using
sequences, changing variables or other techniques (no standard strategy, it depends on the
case).

Exercise 69. Find the stationary points of f(x, y) = 2x3 + x2 + y2 − 2y3. Are there any local
maxima or minima points? Are they also global maxima or minima points?

We compute the gradient and the Hessian of f

∇f(x, y) =

[
6x2 + 2x
−6y2 + 2y

]
, Hf(x, y) =

[
12x+ 2 0

0 −12y + 2

]
.

We look at the solutions of

∇f(x0) =

[
0
0

]
⇔

{
2x(3x+ 1) = 0

2y(1− 3y) = 0
⇔

{
x = 0,− 1

3

y = 0, 1
3

.

So the stationary points are

P1 = (0, 0), P2 = (0,
1

3
), P3 = (−1

3
, 0), P4 = (−1

3
,

1

3
).

We can now evaluate the Hessian in these points getting

Hf(0, 0) =

[
2 0
0 2

]
, Hf(−1

3
, 0) =

[
−2 0
0 2

]
, Hf(0,

1

3
) =

[
2 0
0 −2

]
, Hf(−1

3
,

1

3
) =

[
−2 0
0 −2

]
.
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So we can conclude that P1 is a local minimum point, P2 and P3 are saddle points and P4 is a
local maximum point.

P1 and P4 can not be also global extremal points because if for example I consider points of
the kind (0, t), I get that

f(0, t) = t2 − 2t3 and lim
t→±∞

f(0, t) = ∓∞.

Exercise 70. Find the stationary points of f(x, y) = (x2 + y2)e−(x2+y2). Are there any local
maxima or minima points? Are they also global maxima or minima points?

We compute the gradient and the Hessian of f

∇f(x, y) =

[
2x(1− x2 − y2)e−(x2+y2)

2y(1− x2 − y2)e−(x2+y2)

]
,

Hf(x, y) =

[[
(2− 4x2)(1− x2 − y2)− 4x2

]
e−(x2+y2) −4xy(2− x2 − y2)e−(x2+y2)

−4xy(2− x2 − y2)e−(x2+y2)
[
(2− 4y2)(1− x2 − y2)− 4y2

]
e−(x2+y2)

]
.

We look at the solutions of

∇f(x0) =

[
0
0

]
⇔

{
2x(1− x2 − y2) = 0

2y(1− x2 − y2) = 0
⇔ (x, y) = (0, 0) or {x2 + y2 = 1}.

So the stationary points are the origin and the points on the unit circle. Evaluating the Hessian
in these points we get

Hf(0, 0) =

[
2 0
0 2

]
,

Hf(x, y) =

[
−4e−1x2 −4e−1xy

−4e−1xy −4e−1y2

]
x2 + y2 = 1

For what concerns the origin we can conclude that it is a local minimum point. Instead the
Hessian on the unit circle is negative semidefinite because its trace is negative and its determinant
is 0 for every (x, y) in this set. So we can not say anything for the moment. In order to shed
some light on this issue we perform a change of variable defining t := x2 + y2. We get

f(x, y) = g(t) = t · e−t for t ≥ 0.

Now we can easily see that to study the function f(x, y) near the unit circle is equivalent to
study g(t) near the point 1. Observing that

g′(t) = (1− t)e−t, g′′(t) = −(2− t)e−t ⇒

{
g′(1) = 0

g′′(1) = −e−1 < 0,

we can conclude that 1 is a local maximum point for g(t) and so all the points of the unit circle
are local maximum points for f(x, y).

We can again use the function g(t) to claim that these points are actually global maximum
and minimum points. Infact since g′(t) > 0 for t ∈ (0, 1) and g′(t) < 0 for t ∈ (1,+∞) we can
say that 1 is global maximum point for g(t) on R+ and so the unit circle is composed of global
maximum points for f(x, y). Finally observing that f(x, y) ≥ 0 ∀(x, y) ∈ R2 and that f(0, 0) = 0
we can claim that the origin is a global minimum point.
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Contour lines

Suppose D ⊆ R2 and let f : D → R be a differentiable function. We are interested in studying
the sets where f assumes constant values. These sets are called contour lines and are formally
defined as

c ∈ R, f−1(c) = {(x, y) ∈ R2 : f(x, y) = c}.

The contour lines of a differentiable function enjoy some nice properties.

• f−1(c) can be locally parametrized as a curve i.e., ∀(x0, y0) ∈ f−1(c) there exists a continuos
function γ : [a, b]→ R2 such that

γ(t0) = (x0, y0) for some t0 ∈ (a, b) and f(γ(t)) = c ∀t ∈ [a, b].

• c1, c2 ∈ R, c1 6= c2 ⇒ f−1(c1) ∩ f−1(c2) = ∅.

• In every point (x0, y0) ∈ f−1(c) the vector ∇f(x0, y0) is orthogonal to the contour line.
Infact if we consider a local parametrization γ(t) = (x(t), y(t)) we have that

f(x(t), y(t)) = c ∀t ∈ [a, b] ⇒ 0 =
∂f(x(t), y(t))

∂t
=
∂f

∂x
(x(t), y(t))x′(t)+

∂f

∂y
(x(t), y(t))y′(t).

Evaluating this formula in t0 we have

0 =
∂f

∂x
(x0, y0)x′(t0) +

∂f

∂y
(x0, y0)y′(t0) = ∇f(x0, y0)t ·

[
x′(t0)
y′(t0)

]
.

Observing that

[
x′(t0)
y′(t0)

]
is the tangent vector of γ in (x0, y0) we prove our claim.

• As a consequence of the implicit function theorem, if the contour line f−1(c) self-intersecates
in a point (x0, y0) then the latter must be a stationary point (∇f(x0, y0) = (0, 0)t). If the
contour line reaches the intersection with two linearly indipendent tangent vectors then
the statement is implied by the previous property.

In the exercises and examples that we will see, it is possible to explicit the contour lines as union
of graphics of functions of the form y = h(x) or x = g(y). Unfortunately this kind of analysis is
not always applicable.

Example 71.

f(x, y) = x2 + y2, ∇f(x, y) =

[
2x
2y

]
, f−1(c) =

{
circle of radius

√
c if c ≥ 0

∅ if c < 0
.

I can see f−1(c) as the union of the graphics of y = ±
√
c− x2 or as the union of the graphics of

x = ±
√
c− y2.
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Gradient of f(x, y) = x2 +y2 computed at certain points and contour lines passing through them.

Exercise 72. Study the contour lines of f(x, y) = 3xy+y−4
y+2 .

Observe that the domain of f is y 6= −2. Since I am interested in f−1(c) I try to solve (in x
or y) the equation f(x, y) = c, getting

3xy + y − 4

y + 2
= c ⇔ y = 4+2c

3x+1−c .

For every c 6= −2 this is an hyperbola with vertical asymptote given by the line x = c−1
3 .

Moreover wheter c < −2 or c > 2 the branches of the hyperbola are oriented in these ways.
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Observe that the property of disjointness between different contour lines is not violated.
Infact computing the generic intersection between two contour lines we get

c1 6= c2,
4 + 2c1

3x+ 1− c1
=

4 + 2c2
3x+ 1− c2

⇔ c1 − c2 + (c1 − c2︸ ︷︷ ︸
6=0

)x = 0 ⇔ x = −1,

y =
4 + 2c1

−3 + 1− c1
= −2.

So all the contour line for c 6= −2 intersecate in the point (−1,−2) which is not in the domain
of f .
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Instead when c = −2 we get

3xy + y − 4

y + 2
= −2 ⇔ 3y(x+ 1) = 0,

so the contour line in that case is equal to the union of the line y = 0 and x = −1.

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

Contour lines for c ∈ [−4, 4] ∩ Z and the line y = −2 where the function is not defined.

Exercise 73. Given f(x, y) = x2 − x4

4 + y2, draw the contour line f−1( 1
2 ).

x2 − x4

4
+ y2 =

1

2
⇔ x4 − 2x2 + 1︸ ︷︷ ︸

(x2−1)2

−2y = 0 ⇔ (x2 − 1−
√

2y)(x2 − 1 +
√

2y) = 0

This means that f−1( 1
2 ) is the union the two parabolas y = ±x

2−1√
2

.

Observe that the points (±1, 0) where the contour line self intersecates are stationary point
of f . Moreover f−1( 1

2 ) separates the plane in the five regions Di. In each Di the function f
remains under or above the value 1

2 . This is due to the continuity of f . For example observing
that f(0, 0) = 0 < 1

2 we can claim that f|D1
< 1

2 .
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Exercise 74 (Bernoulli lemniscate). Given f(x, y) = (x2 + y2)2 − 2(x2 − y2), study the contour
line f−1(0) and draw qualitatively the contour lines f−1(c) for a generic c ∈ R.

(x2 + y2)2 − 2(x2 − y2) = 0 ⇔ y4 + 2(x2 + 1)y2 + x4 − 2x2 = 0

replacing t = y2 we get a quadratic equation in t

t2 + 2(x2 + 1)t+ x4 − 2x2 = 0, ∆ = 4x2 + 1 ⇒ t = y2 = −(x2 + 1)±
√

4x2 + 1,

therefore

y = ±
√
−(x2 + 1)±

√
4x2 + 1.

Now observing that we choose the sign minus under the root sign we always get a negative
quantity and so an empty set (remember we are in the real field!). So we can conclude that
f−1(0) is given by the graphics of the two functions

y = g±(x) = ±
√
−(x2 + 1) +

√
4x2 + 1.

In order to draw this set we study the two functions g+ and g−. Observe that we can restrict
ourself to study g+ because g− = −g+. The domain of g+ is determined by the x for which the
quantity under the root sign is non negative, so√

4x2 + 1 ≥ x2 + 1 ⇔ x4 − x2 ≤ 0 ⇔ −
√

2 ≤ x ≤
√

2.

Moreover g+ ≥ 0 in this domain and intersect the x-axis when the equality holds in the relation
above, so when x = 0,±

√
2.
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For what concerns the derivative of g+ we have that

g′+(x) =
x√

−(x2 + 1) +
√

4x2 + 1
·
(

2√
4x2 + 1

− 1

)
,

lim
x→0−

g′+(x) = −1 and lim
x→0+

g′+(x) = 1,

g′+(x) = 0 ⇔ 2√
4x2 + 1

− 1 = 0 ⇔ x = ±
√

3

2
,

g′+(x) ≤ 0 for −
√

3

2
≤ x ≤ 0 and

√
3

2
≤ x ≤

√
2,

g′+(x) ≥ 0 for −
√

2 ≤ x ≤ −
√

3

2
and 0 ≤ x ≤

√
3

2
.

In particular ±
√

3
2 are maximum points. We can now draw g+
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and g− by reflection.
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Observing that the plane is partitioned in 3 region D1, D2 and D3 and that

f(±1, 0) = −1, f(0, 2) = 12,

(1, 0) ∈ D1, (−1, 0) ∈ D2, (0, 2) ∈ D3,
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we can claim that the contour lines f−1(c) for c negative are contained in D1 and D2 while for
c positive are contained in D3. Moreover we can say that this curves must be symmetric to the
y-axis because f(x, y) = f(−x, y) and are bounded because the function is coercive i.e.,

lim
‖(x,y)‖2→+∞

f(x, y) = +∞.

With these informations and keeping in mind that when c→ 0 then f−1(c) tends to the Bernoulli
lemniscate, we can attempt to draw the generic contour lines qualitatively.
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Examples on the Armijo condition

Consider an unconstrained optimization problem of the form minRn f(x), with f : Rn → R
differentiable function. A descent iterative method for solving such problem works in the following
way.

1. Take the starting point x̃ ∈ Rn

2. Compute a descent direction i.e., a vector d ∈ Rn such that ∇f(x̃)td ≤ 0.

3. Compute a step lenght t ∈ R such that f(x̃+ t · d) ≤ f(x̃).

4. Assign x̃← x̃+ t · d and come back to step 2.

In order to choose the step lenght t we use as a criterion the inequality

f(x̃+ t · d) ≤ c1 · t · ∇f(x̃)td+ f(x̃), c ∈ (0, 1),

which is called Armijo condition.

Example 75. Let f(x, y) = x2+y2

2 , x̃ = (1, 1), d = −∇f(x̃) =

[
−1
−1

]
and c1 = 1

2 . We want to

draw the Armijo condition.

f(x̃+ t · d) = (1− t)2 ⇒ (1− t)2 ≤ c1 · t · ∇f(x̃)td+ f(x̃) = −t+ 1.
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Example 76. Let f(x, y) = y2 + x4

4 − x
2, x̃ = (2, 0), d =

[
−1
0

]
and c1 = 1

16 . We want to draw

the Armijo condition.

f(x̃+ t · d) =
(2− t)4

4
− (2− t)2 ⇒ (2− t)4

4
− (2− t)2 ≤ c1 · t · ∇f(x̃)td+ f(x̃) = − t

4
.
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1 Lecture 6: Linear algebra

Newton’s method

x1

f(x1)

x2

f(x2)

x3

f(x3)

f(x)

x

y

For solving f(x) = 0 we look
for a fixed point of

g(x) = x− f(x)
f ′(x){

x0 starting guess

xk+1 = xk − f(xk)
f ′(xk)

Definition 77. A fixed-point method {xk} which converge to a certain limit α is said to converge

• sublinearly if

lim
k→+∞

xk+1 − α
xk − α

= 1,

• linearly if

lim
k→+∞

xk+1 − α
xk − α

= γ ∈ (0, 1),

• superlinearly with order p if

lim
k→+∞

xk+1 − α
(xk − α)p

= γ ∈ (0,+∞).

Remark 78. In particular when a fixed-point method {xk} converge superlinearly with order p
to α we have that

lim
k→+∞

xk+1 − α
(xk − α)q

= 0 ∀q < p, lim
k→+∞

xk+1 − α
(xk − α)s

= +∞ ∀s > p.

Remark 79. If the iteration function g(x) is differentiable than as a consequence of de l’Hôpital
theorem

lim
k→+∞

xk+1 − α
xk − α

= lim
k→+∞

g(xk)− α
xk − α

= g′(α).

Definition 80. Let f : Cr[a, b] be a nonlinear function and α ∈ [a, b] be a point such that
f(α) = 0. α is said to be a solution of multiplicity r ∈ N if and only if the quantity

lim
x→α

f(x)

(x− α)r

is finite and nonzero. This is equivalent (de l’Hôpital theorem) to ask that

f(α) = f ′(α) = f ′′(α) = · · · = f (r−1)(α) = 0, f (r)(α) 6= 0.
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Theorem 81. Let α ∈ [a, b] be a solution of f(x) = 0 and suppose f ′(x) 6= 0 on [a, b]\{α}, then

(i) If α has multiplicity 1 and f ∈ C2[a, b] then the Newton’s method converge superlinearly
with order at least 2. It is exactly 2 if f ′(α) 6= 0.

(ii) If α has multiplicity 2 ≤ r < +∞ then the Newton’s method converge linearly.

Exercise 82. Compute the inverse of a number a 6= 0 without using divisions.

To compute the inverse of a is equivalent to look for the zeros of f(x) := x−1 − a. Since

x− f(x)

f ′(x)
= x− x−1 − a

−x−2
= x+ x− a2 = 2x− ax2 ⇒ xk+1 = 2xk − ax2

k,

we have that the newton method applied to this function does not involve any division. Moreover

xk+1 − a−1 = 2xk − ax2
k − a−1 = −a(xk − a−1)2

therefore

lim
k→+∞

xk+1 − a−1

(xk − a−1)2
= −a ⇒ Newton converge superlinearly with order 2.

Exercise 83. Compute the n-th root of t ∈ R+ using the Newton’s method and analyze the speed
of convergence

f(x) = xn − t, f ′(x) = nxn−1, f ′′(x) = n(n− 1)xn−2,

g(x) = x− = xn − t
nxn−1

=
1

n
[(n− 1)x+

t

xn−1
] ⇒ xk+1 =

1

n
[(n− 1)xk +

t

xn−1
k

].

Moreover

lim
x→ n√t

xn − t
x− n
√
t

=︸︷︷︸
Hopital

= lim
x→ n√t

nxn−1 = nt
n−1
n 6= 0 ⇒ superlinear convergence with order 2.

Exercise 84. Determine the iteration scheme of the Newton’s method for f(x) = x− sin(x) and
analyze its speed of convergence.

f ′(x) = 1− cos(x)⇒ xk+1 = xk − xk−sin(xk)
1−cos(xk) . The method converge to α = 0 and since

lim
x→0

x− sin(x)

x3
= lim
x→0

1− cos(x)

3x2
= lim
x→0

sin(x)

6x
=

1

6
6= 0

this is a solution of multiplicity 3. Therefore the Newton’s method converge linearly.

Exercise 85. Determine the iteration scheme of the Newton’s method for f(x) = x3+4x cos(x)−
2 and analyze its speed of convergence.

f ′(x) = 3x2+4 cos(x)−4x sin(x)⇒ xk+1 = xk− x3
k+4xk cos(xk)−2

3x2
k+4 cos(xk)−4xk sin(xk)

=
2x3

k+4x2
k sin(xk)+2

3x2
k+4 cos(xk)−4xk sin(xk)

.

Moreover observe that if f(α) = 0 then α = 2−α3

4 cos(α) , so

lim
x→α

f(x)

x− α
= lim
x→α

x3 + 4x cos(x)− 2

x− 2−α3

4 cos(α)

= lim
x→α

x3 + 4x cos(x)− 2

4x cos(α)− 2 + α3
4 cos(α) = 4 cos(α) 6= 0

which means that α is a solution of multiplicity 1. The Newton’s method converge superlinearly
in particular f ′′(x) = 6x − 8 sin(x) − 4x cos(x) and you can prove numerically that f ′′(α) 6= 0
obtaining that the order of superlinear convergence is 2.
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f(x) = x3 + 4x cos(x)− 2

Exercise 86 (Brent function). Determine the iteration scheme of the Newton’s method for

f(x) =

{
0 x = 0

xe−
1
x2 x 6= 0

and analyze its speed of convergence to the solution α = 0.

f ′(x) = (1 + 2
x2 )e−

1
x2 ⇒ xk+1 = xk − xke

− 1
x2
k

(1+ 2

x2
k

)e
− 1

x2
k

= 2xk

x2
k+2

. Observing the higher order

derivatives of f we note that they are of the form e−
1
x2 times a rational function, in particular

this means that their limit as x goes to 0 is 0. So α is a solution of multiplicity∞ and we can not
apply the theorem for the speed of convergence. We need to study the derivative of g(x) = 2x

x2+2 :

g′(x) =
4− 2x2

(x2 + 2)2
⇒ g′(0) = 1, 0 < g′(x) < 1 ∀0 6= x ∈ (−

√
2,
√

2).

This means that the method converge sublinearly for all starting point in (−
√

2,
√

2).

Secants method

The Newton’s method iteration scheme is based on the intersection between the tangent line to
the graph of the function and the x-axis. It is possible to build a fixed-point method replacing
the tangent lines with secants. This could be profitable for example if do not want to compute
derivatives.
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Brent function: ∞ multiplicity means a very flat behaviour in the neighbourhood of 0

• Start with two points x0, x1 such that f(x0)f(x1) < 0.

• Build the secant line s passing through f(x0) and f(x1)

• Consider x2 = s ∩ {x = 0}

• If f(x0)f(x2) < 0 then x1 = x0.

• Restart with x1 and x2.

This method is called secant method with false position

f(x)

x

y

b

f(a)

a
xnew

f(xnew)
f(b)


x0, x1 starting points (f(x0)f(x1) < 0)

xk+1 = xk − f(xk)(xk−1−xk)
f(xk)−f(xk−1)

if f(xk+1)f(xk−1) < 0 then xk = xk−1

Theorem 87. Let f be continuos in [a, b], f(a)f(b) < 0 and α be the unique solution of f(x) = 0
in [a, b]. Then the secant method with false position with starting points a and b converges to α.
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Newton-Raphson method

The Newton’s method can be generalized in the several variables framework. Let f : Rn → Rn
and suppose that I want to solve f(x) = 0. I can consider the iteration scheme: xk+1 = g(xk) =
xk − Jf(xk)−1f(xk) where

f(x) =

f1(x)
...

fn(x)

 fi : Rn → R, Jf(x) =

∇f1(x)t

...
∇fn(x)t

 =


∂f1(x)
∂x1

. . . ∂f1(x)
∂xn

...
...

∂fn(x)
∂x1

. . . ∂fn(x)
∂xn

 .
In this setting it is possible to state a result of monotone convergence. The following theorem
generalize the relation between the sign of g′(x) and the monotone convergence in the one variable
case.

Theorem 88. Suppose D = [a1, b1]× [a2, b2] ⊂ R2, f ∈ C1(D) convex (each component f1 and
f2 is convex) and α ∈ D such that f(α) = 0. If Jf(x) is invertible and Jf(x)−1 ≥ 0 (component-
wise) ∀x ∈ D then for every starting point in D Newton Raphson converge monotonically in each
component.

Example 89.

f(x1, x2) =

{
f1(x1, x2) = x2

1 − sin(x2)− 25

f2(x1, x2) = − cos(x1) + x2

, D = [4.6, 5.2]× [0, 0.8].

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

D

f2=0

f1=0

We want to check if the hypothesis of the previous theorem are satisfied, so we compute

Jf(x) =

[
2x1 − cos(x2)

sin(x1) 1

]
⇒ det(Jf(x)) = 2x1︸︷︷︸

>9 on D

+ sin(x1) cos(x2) > 0 ∀x ∈ D,
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Jf(x)−1 =
1

det(Jf(x))

[
1 cos(x2)

− sin(x1) 2x1

]
> 0 ∀x ∈ D,

Hf1(x) =

[
2 0
0 sin(x2)

]
, Hf2(x) =

[
cos(x1) 0

0 0

]
are positive semidefinite.

Preconditioned conjugate gradient

Suppose A ∈ Rn×n positive definite. We want to solve the linear system Ax = b by means of the
conjugate gradient method. We obtain a sequence {xk} which converge to the solution x∗. An
estimate for the error at step k ek := xk − x+ is given in the following result.

Proposition 90. ‖ek‖A ≤
(√

µ(A)−1√
µ(A)+1

)2k

where ‖ek‖A =
√
xtAx and µ(A) = λmax

λmin
is the

condition number in the 2-norm.

So when the matrix A is ill conditioned (µ(A) very large) the convergence can be very slow.
This does not happen if the eigenvalues are clusterized close to 1. So in order to recover this
pattern in the ill conditioned case one can observe that

Ax = b ⇔ B−1Ax = B−1b ⇔ B−1AB−1 Bx︸︷︷︸
y

= B−1b︸ ︷︷ ︸
c

⇔
(
B−1AB−1

)
y = c.

If B is invertible and symmetric then B−1AB−1 is still positive definite (xtB−1AB−1x = ztAz >
0) but its eigenvalues are different from the eigenvalues of A. So if there is a choice for the
invertible symmetric matrix B such that µ(B−1AB−1) << µ(A) I can think about applying the
conjugate gradient method to the modified linear system getting a fast convergence. Once I get
the solution y of the latter I can recover the solution of the original system using the relation
x = B−1y. I said “think” because in order to have a gain using this procedure we need the
matrix B to have some additional structure that enable us to multiply by B and to compute
B−1 efficiently (less than a cubic cost).

Example 91 (Strang preconditioner). If A is Töeplitz (constant along its diagonal)

A =


a0 a−1 . . . a−n+1

a1
. . .

. . .
...

...
. . .

. . . a−1

an−1 . . . a1 a0


and positive definite (so in particular ak = a−k) then a possible choice for B is the Strang
preconditioner which is again a symmetric Töeplitz matrix defined by

B =


b0 b−1 . . . b−n+1

b1
. . .

. . .
...

...
. . .

. . . b−1

bn−1 . . . b1 b0

 , bk =


ak 0 ≤ k ≤ bn2 c
ak−n bn2 c < k < n

bn+k 0 < −k < n symmetric completion

.

The Strang preconditioner turns out to be a Circulant matrix and so the arithmetic operations
on it can be computed efficiently.
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In the case

A =


2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2


we have

B =


2 −1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 −1 2

 .
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Lecture 7: Calculus

Examples on the Wolfe condition

In this subsection we use the notation of “Examples on the Armijo conditions” (Lesson 5). In
order to choose a step length t we usually need some criterion that ensures us a significant
decrease in the evaluation of the objective function and which is not expensive to verify. We saw
the Armijo condition

f(x̃+ t · d) ≤ c1 · t · ∇f(x̃)td+ f(x̃), c ∈ (0, 1).

Observe that this inequality is always verified in an interval of the form [0, ε] because, by con-
struction, the right-hand side decrease in a right neighbour of 0 with a derivative greater (less
negative) than the objective function. This could be a problem because it is possible to choose
a short step length which does not give us a reasonable progress. For that reason we introduce
another requirement called Wolfe condition (or curvature condition):

∇f(x̃+ td)︸ ︷︷ ︸
ϕ(t)

≥ c2∇f(x̃)td︸ ︷︷ ︸
ϕ′(0)

c1 < c2 < 1,

with c1 the constant in the Armijo condition.
In that way, requiring Armijo and Wolfe conditions the new point has this property:
the function ϕ, in a right neighbourhood of t does not decrease as much as in a rightneigh-

bourhood of 0.
Observe that this does not mean that we are close to a minimizer, infact a case in which the

Wolfe condition is verified is when ϕ′(t) ≥ 0.

Example 92. f(x, y) = x2 + (x− y)4, x̃ = (1, 1)

f(x̃) = 1, ∇f(x, y) =

[
2x+ 4(x− y)3

−4(x− y)3

]
, ∇f(x̃) =

[
2
0

]
, d =

[
−1
0

]
, ϕ′(0) = ∇f(x̃)td = −2.

Armijo condition:
(1− t)2 + t4 ≤ −2c1t+ 1.

Wolfe condition:
4t3 + t− 2 ≥ −2c2.

In order to avoid too positive values for ϕ′(t) one can consider the strong Wolfe condition:

|∇f(x̃+ td)td|︸ ︷︷ ︸
|ϕ′(t)|

≤ c2 |∇f(x̃)td|︸ ︷︷ ︸
|ϕ′(0)|

.
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Linear least squares problem

A ∈ R ∈ m× n, b ∈ Rm, m ≥ n (overdetermined system).

(P) min
x∈Rn
‖Ax− b‖2

Normal
equations:

AtAx = Atb

Is A full
rank?

If yes,
Cholesky
method

If no,
LU with
pivoting

QR fac-
torization:
‖QRx− b‖2 =
‖Rx − Qtb‖2

R =

[
R1

0

]
R1 =

[
∗ ∗
∗

]
Qtb =

[
c1
c2

]

Solve the tri-
angular system

R1x = c1

Exercise 93. Suppose we have the following data coming from an experiment:

(xi, f(xi)) : (1, 1.1), (2, 2.5), (3, 2.8)

and suppose we want to fit them with a straight line (approximate f with a linear function). Find
the best line which describes the dynamics of f in the 2-norm.

Suppose to have a proposoal ax+ b for approximating f . The residual in the 2-norm of the
proposal is the sum of the squares of the residuals in the given points:

3∑
i=1

(axi + b− f(xi))
2.

The best approximation is the straight line which minimize the latter quantity. Observe that

min
a,b∈R

3∑
i=1

(axi + b− f(xi))
2 = min

a,b∈R

∣∣∣∣∣∣
∣∣∣∣∣∣
ax1 + b− f(x1)
ax2 + b− f(x2)
ax3 + b− f(x3)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

= min
a,b∈R

∣∣∣∣∣∣
∣∣∣∣∣∣A
[
a
b

]
−

f(x1)
f(x2)
f(x3)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

,
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with

A =

x1 1
x2 1
x3 1

 ∈ R3×2.

Since applying the square root does not change the minimum point of the previous problem this
is actually a linear least squares problem. Since A is full rank we choose the Cholesky method
applied to the normal equations, so we compute

AtA =

[
14 6
6 3

]
, At

f(x1)
f(x2)
f(x3)

 =

[
14.5
6.4

]
, AtA =︸︷︷︸

Cholesky

[ √
14 0

3
7

√
14

√
21
7

][√
14 3

7

√
14

0
√

21
7

]
,

[ √
14 0

3
7

√
14

√
21
7

][√
14 3

7

√
14

0
√

21
7

] [
a
b

]
=

[
14.5
6.7

]
=⇒︸︷︷︸

solve 2 triang. system

[
a
b

]
=

[
0.85
0.43̄

]
.

We can generalize the latter approach to the case in which we have m evaluations of a function

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5
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4.5

The computed line 0.85x+ 0.43̄ and the data

f : Rn → R. The fitting data are of the form

x1 = (x
(1)
1 , . . . , x(1)

n )t ∈ Rn, f(x1),

...

xm = (x
(m)
1 , . . . , x(m)

n )t ∈ Rn, f(xm).

We look for the hyperplane (linear function form Rn to R) atx+ b, where a = (a1, . . . , an)t ∈ Rn
and b ∈ R, which minimize the quantity∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

x

(1)
1 . . . x

(1)
n 1

...
...

...

x
(m)
1 . . . x

(m)
n 1



a1

...
an
b

−
 f(x1)

...
f(xm)


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2
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Regression line with more fitting points

Another generalization we can make is in the functions we use for fitting. Infact, in order to
obtain again a linear least squares problem, is sufficient that the dependence on the parameters
we optimize is linear. That is given a finite set of not necessarily linear functions

V = {ϕ1, . . . , ϕs}, ϕi : Rn → R,

I can look for the best linear combination

s∑
i=1

αiϕi

which approximate f in the 2-norm. This means to solve the linear least squares problem

min
α∈Rs

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
ϕ1(x1) . . . ϕs(x1)

...
...

ϕ1(xm) . . . ϕs(xm)


α1

...
αs

−
 f(x1)

...
f(xm)


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

.

Exercise 94. Solve minx∈R3‖Ax− b‖2, where

A =
1

45


14 32 −38
−44 58 8
−18 96 51
63 −36 54

 , b =


1
1
1
1

 .
This time we compute the QR factorization of the system getting

1

45


14 32 −38 45
−44 58 8 45
−18 96 51 45
63 −36 54 45

 −→︸︷︷︸
after 3 steps of Householder method

1

9
√

257


−257 244 −64 −27

0 −306 − 2124
27 − 4221

17

0 0 243
√

257
17 − 9

√
257

17

0 0 0 9
√

257

 .
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In particular

R1 =

−257 244 −64
0 −306 − 2124

27

0 0 243
√

257
17

 , c1 =
1

9
√

257

 46
43

− 9
√

257
17

 .
Solving R1x = c1 we get x∗ = 1

56

 −27
− 4221

17
2

 and minx∈R3‖Ax− b‖2 = c2 = 1.

Exercise 95. Find the solution with minimum norm of minx∈R3‖Ax− b‖2 with

A =
1

45


6 12 −72
−16 −7 −8
58 16 104
87 24 156

 , b =


1
1
1
1

 .
The matrix A has rank 2 so we can not apply the Cholesky method. So we proceed considering

the normal equations and we apply the LU factorization applying pivoting if necessary.

AtA =
1

81

449 128 772
128 41 184
772 184 1616

 , Atb =

3
1
4

 , L =

 1 0 0
128
449 1 0
772
449 −8 1

 , U =

−449 128 772
0 2025

449 − 16200
449

0 0 0

 .
We solve Ly = Atb which is alway solvable (L has ones on its diagonal) and then Ux = y getting
infinite solutions of the kind

x =

− 1
5 − 4t

13
5 + 8t
t

 , t ∈ R.

Now we study the function

g(t) =

∣∣∣∣∣∣
∣∣∣∣∣∣
− 1

5 − 4t
13
5 + 8t
t

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

= (
1

5
− 4t)2 + (

13

5
+ 8t)2 + t2.

The latter is a convex function and g′(t) = 0 ⇔ h = − 4
15 therefore

x∗ =
1

15

13
7
−4

 , min
x∈R3
‖Ax− b‖2 =

√
2.

It is important to point out that, due to the fact we are working in finite precision, even if A is
full rank it could happen that the computed AtA is not full rank.

Example 96.

A =

3 3
4 4
0 10−10

 , b =

1
1
1


AtA =

[
25 25
25 25 + 10−20

]
, Atb =

[
7

7 + 10−10.

]
Since the elements under the machine precision ≈ 10−16 are interpreted as 0 the computed AtA

is

[
25 25
25 25

]
and the system of normal equations has no solution. In this case is convenient to

apply the QR factorization approach.
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Lesson 8: Linear algebra

Singular values decomposition

Definition 97. Let A ∈ Cm×n a triple (U,Σ, V ) of matrices such that

A = UΣV h, U ∈ Cm×m, V ∈ Cn×n, Σ ∈ Cm×n, UhU = Im, V
hV = In,

Σ = (σij), σij = 0 if i 6= j and σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥ 0,

is said a singular values decomposition of A. The columns of U and V are called left and right
singular vectors while the elements σi are called singular values.

Remark 98. The SV D of matrix alway exists. Moreover, indicating with ui and vi the columns
of U and V respectively, we have that

A = UΣV h =

min(m,n)∑
i=1

σi uiv
h
i︸︷︷︸

matrix of rank 1

.

Therefore the number of nonzero σis is an upper bound for the rank of A. What it turns out is
that, due to the orthogonality of the columns of U and V , the latter quantity is exactly the rank
of A.

Remark 99.
A = UΣV h ⇒ AhA = V ΣhUhUΣV h = V Σ2V h.

Observe that V Σ2V h is the eigendecomposition of AhA with decreasing order of the eigenvalues.
So we can conclude that the singular values correspond to the square roots of the eigenvalues of
AhA and the matrix V is composed of its eigenvectors. Analogously

AAh = UΣ2Uh,

so U is composed of the eigenvectors of AAh. This give us a method (not efficient) for computing
the SV D of A.

Example 100.

A =

[
2 2
−1 1

]
⇒ AtA =

[
5 3
3 5

]
, AAt =

[
8 0
0 2

]
.

Since [
5 3
3 5

]
=

[
1√
2

1√
2

− 1√
2

1√
2

] [
8

2

][ 1√
2
− 1√

2
1√
2

1√
2

]
,

[
8 0
0 2

]
=

[
1 0
0 1

] [
8 0
0 2

] [
1 0
0 1

]
,

we have

A =

[
1 0
0 1

] [√
8 0

0
√

2

][ 1√
2

1√
2

− 1√
2

1√
2

]
.

Remark 101. Since the 2-norm is invariant under multiplication of unitary matrices it is easy
to see that

‖A‖2 = ‖UΣV h‖2 = ‖Σ‖2 = σ1.
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SVD and linear least squares problems

The singular values decomposition allow us give an explicit expression for the solution of linear
least squares problem. Suppose m ≥ n and that there are 0 ≤ k ≤ n non zero singular values (A
is of rank k). Then observe that

‖Ax− b‖22 = ‖UhAΣV V hx− Uhb‖22 =︸︷︷︸
V hx=y

‖Σy − Uhb‖22 =

n∑
i=1

|σiyi − uhi b|2 +

m∑
i=n+1

|uhi b|2

=

k∑
i=1

|σiyi − uhi b|2 +

m∑
i=k+1

|uhi b|2.

So the minimum of this quantity is reached for

y∗i =

{
uh
i b
σi

i = 1, . . . , k

0 i = k + 1, . . . ,m

Since x = V y we get x∗ =
∑k
i=1

uh
i b
σi
vi and min‖Ax− b‖ =

√∑m
i=k+1 |uhi b|2.

Definition 102 (Moore-Penrose pseudo inverse). Given A ∈ Cm×n with (U, Sigma, V ) as SV D,
the Moore-Penrose pseudo inverse is defined as

A+ = V Σ+Uh, where σ+
ij =


0 i 6= j

σ−1
ii σii 6= 0

0 otherwise

.

Remark 103. If m = n and A is invertible then A+ = A−1.

Using the Moore-Penrose pseudo inverse it is possible to write elegantly the solution of
minx∈Rn‖Ax− b‖2 as

x∗ = A+x.

An application of the SVD: Eigenfaces

Suppose we want to build an automatic procedure for recognizing the face in picture. For example
to check if the face in the photo is already contained in a database. The algorithm we are going
to see is due to Turk and Pentland [6] and its merit is to be simple and sufficiently effective.
Nowdays the proposed techniques has been refined with more advances mathematical tools.

• Idea: Use encoding and decoding techniques (truncated SV D) in order to reveal the
information contents of pictures and faces. In particular this process should highlight the
local and global features of a face. The latters can be realted or not with the physiognomic
issues like nose, eyes, lips exc.

• Purpose: Encode/represent efficiently the pictures of faces in a database. Recognize faces
defining a distance between pictures.

A picture is represent as an m× n-matrix of pixels. We vectorize this representation in a vector
of dimension m · n arranging the columns one under the other. Suppose to have a dataset with
M images I1, . . . , IM ∈ Rmn.
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An example of dataset

Instead of starting directly with the images, we consider the difference between each Ii and
the average face:

Φi = Ii −
1

M

M∑
i=1

Ii, A = [Φ1| . . . |ΦM ] ∈ Rmn×M .

average image

50 100 150 200 250 300

50

100

150

200

The average face

This is not compulsory (everything could work without subtracting the average face) but
is done in the paper [6] in order to interpret the matrix AAt as a covariance matrix. Now we
look for an orthonormal basis {ui} of the space spanned by the vectors Φis (the faces in the
database). Moreover we impose the basis to be the most informative if truncated at a certain
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step k. Mathematically this is express by the condition:

uk := arg max
u∈Vk

M∑
i=1

(utΦi)
2 = arg max

u∈Vk

ut
M∑
i=1

(
ΦiΦ

t
i

)
︸ ︷︷ ︸

AAt

u

Vk = {u ∈ Rmn : utju = 0 ∀j = 1, . . . , k − 1}

Note that utkΦi is the k-th coefficient of Φi with respect to the basis {ui}. What it turns
out (Courant-Fisher minimax theorem) is that the optimal value of the previous optimization
problem is λk, the k-th eigenvalue of AAt and the maximum point is its associated eigenvector.
In particular this correspond to the k-th left singular vector of A.

Since the dataset can be very big I can compute a basis of a subspace with dimension k̄ of the
space spanned by the vectors Φis by computing a truncated SV D of A. I called this generators
u1, . . . , uk̄ eigenfaces.

The k̄ := 10 eigenfaces

Representation. The picture Φi is then represented in the subspace generated by the
eigenfaces with the linear combination

Φi ≈
k̄∑
i=1

ω
(i)
j uj where ω

(i)
j = utjΦi, Ωi = (ω

(i)
1 , . . . , ω

(i)

k̄
).

Given an unknown picture I we compute Φ = I − 1
M

∑M
i=1 Ii and

Φ ≈
k̄∑
i=1

ωjuj where ωj = utjΦ, Ωi = (ω1, . . . , ωk̄).

Recognition. In order to see if the unknown picture matches with some faces in the dataset we
compare the vector Ω with the Ωis by computing

ε = min
i=1,...,k̄

‖Ω− Ωi‖22.
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If ε is under a certain treshold and i∗ is the index where the minimum is attained, then I is
recognized as Ii. If not the image is classified as unknow.

100 200 300

50

100

150

200

100 200 300

50

100

150

200

An unknown image and its reconstruction on the space generated by the 10 eigenfaces
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