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These lecture notes deal with algorithms for computing the minima (or maxima)
of a (generally nonlinear) function f : Rn → R over some set D ⊆ Rn, that is finding
x̄ ∈ Rn such that

(a) x̄ ∈ D (feasibility)

(b) f(x̄) ≤ f(x) for any x ∈ D (optimality)

This problem can be briefly stated in the following way:

min{f(x) : x ∈ D}

while
arg min{f(x) : x ∈ D}

denotes the set of the optimal solutions, i.e.,

arg min{f(x) : x ∈ D} = {x ∈ Rn : (a) and (b) hold}.

Chapter 1 provides the basic background material on the topology of the Euclidean
space Rn and multivariate calculus that is needed.





Chapter 1

Topology and calculus background

We consider Rn endowed with the scalar (or inner) product

xT y =
n∑
i=1

xiyi

which induces the Euclidean norm

‖x‖2 =
√
xTx =

√√√√ n∑
i=1

x2
i .

The following properties hold for any x, y ∈ Rn and any α ∈ R:

‖x‖2 ≥ 0

‖αx‖2 = |α|‖x‖2

‖x‖2 = 0 ⇐⇒ x = 0

‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2

(‖x− y‖2 ≤ ‖x‖2 + ‖y‖2)

|xT y| ≤ ‖x‖2‖y‖2 . (Schwarz inequality).

In turn, the Euclidean norm induces the well-known Euclidean distance between the
points x ∈ Rn and y ∈ Rn:

d(x, y) = ‖x− y‖2

and the following properties can be deduced from the above ones:

d(x, y) ≥ 0

d(x, y) = 0 ⇐⇒ x = y

d(x, y) ≤ d(x, z) + d(z, x).
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1.1 Sequences

A family of points {xk}k∈N ⊆ Rn (i.e., {x1, x2, . . . , xk, . . . }) is called a sequence. For
instance, the family of points xk = (1/k, 1/k2) is a sequence in R2.

Definition 1.1. x̄ ∈ Rn is the limit of a sequence {xk}k∈N if for each ε > 0 there
exists k̄ ∈ N such that d(xk, x̄) ≤ ε for all k ≥ k̄, or equivalently

∀ ε > 0 ∃ k̄ ∈ N s.t. ‖xk − x̄‖2 ≤ ε ∀ k ≥ k̄.

If it exists, the limit of a sequence is unique. Standard notations to denote a limit are
the following: lim

k→+∞
xk = x̄, xk −→ x̄ (k → +∞ below the arrow is often omitted).

Example 1.1.The limit of the sequence (1/k, 1/k2) is x̄ = (0, 0), while the sequence
xk = (1/k, (−1)k) does not have a limit. Take the sequence obtained just considering
odd indices: x1, x3, x5, . . . This sequence converges to (0,−1). Analogously, the
sequence obtained considering just even indices converges to (0, 1).

Definition 1.2. {xkj}j∈N ⊆ {xk}k∈N is a subsequence if kj → +∞ as j → +∞.

Definition 1.3. x̄ ∈ Rn is a cluster point of {xk}k∈N if there exists a subsequence
{xkj}j∈N such that x̄ is its limit, i.e., lim

j→+∞
xkj = x̄, or equivalently

∀ ε > 0 ∀ k ∈ N ∃ k̄ ≥ k s.t. ‖xk̄ − x̄‖2 ≤ ε.

If a sequence has a limit, then it is the unique cluster point of the sequence.

Example 1.2. The last sequence of Example 1.1 has 2 cluster points: (0, 1) and
(0,−1), while the sequence yk = (k, 1/k) does not have any cluster point.

Theorem 1.1. (Bolzano-Weierstrass) If the norm of all the points of a se-
quence {xk}k∈N do not exceed a threshold value, i.e., there exists M > 0 such that
‖xk‖2 ≤ M holds for all k ∈ N, then the sequence has at least one cluster point.

1.2 Topological properties in the Euclidean space

The open ball of centre x ∈ Rn and radius ε > 0 is the set

B(x, ε) = {y ∈ Rn : ‖y − x‖2 < ε}.

Definition 1.4.

(i) D ⊆ Rn is called open if

∀ x ∈ D ∃ ε > 0 s.t. B(x, ε) ⊆ D.

(ii) x ∈ D is called an interior point of D if

∃ ε > 0 s.t. B(x, ε) ⊆ D.



Topological properties in the Euclidean space (11/11/2015) 7

The set of the interior points of D is called the interior of D and it is generally
denoted by intD. Notice that a set D is open if and only if D = intD.

Example 1.3. B(x, ε), Rn, ∅ are open sets in Rn while the interval ] − 1, 1[ is an
open set in R.

Proposition 1.1.

(i) The union of a family of open sets is an open set.

(ii) The intersection of a finite family of open sets is an open set.

The finiteness of the family is crucial for the intersection property:

+∞⋂
k=1

B(0, 1/k) = {0}.

Definition 1.5.

(i) D ⊆ Rn is called closed if Rn \D = {x ∈ Rn : x /∈ D} is open.

(ii) x ∈ Rn is called an closure point of D if

∀ ε > 0 : B(x, ε) ∩D 6= ∅.

The set of the closure points of D is called the closure of D and it is generally
denoted by clD or D.

Proposition 1.2.

(i) D is closed if and only if D = clD.

(ii) D is closed if and only if the limit of any convergent sequence contained in D
belongs to D as well, i.e.,

∀ {xk}k∈N ⊆ D s.t. ∃ x̄ ∈ Rn s.t. xk −→ x̄ : x̄ ∈ D.

Example 1.4. Rn, ∅, {y ∈ Rn : ‖y − x‖2 ≤ ε} = B(x, ε) are closed sets in Rn
while the interval [−1, 1] is a closed set in R. There exist sets which are neither
closed nor open, for instance the interval [-1,1[ in R and

D = [−1, 0]× [−1, 1] ∪B(0, 1) ⊆ R2.

In fact, (−1 − ε, 0) /∈ D but (−1 − ε, 0) ∈ B((−1, 0), ε) for any ε > 0 so that D is
not open, and xk = (1− 1/k, 0) ∈ D for any k ∈ N while xk → (1, 0) /∈ D so that D
is not closed.

Proposition 1.3.

(i) The union of a finite family of closed sets is an closed set.
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(ii) The intersection of a family of closed sets is a closed set.

The finiteness of the family is crucial for the union property:

+∞⋃
k=2

B(0, 1− 1/k) = B(0, 1).

Definition 1.6. x ∈ Rn is called a boundary point of D if both

B(x, ε) ∩D 6= ∅ and B(x, ε) * D

hold for any ε > 0.

The set of the boundary points of D is called the boundary (or frontier) of D and
it is generally denoted by ∂D. Notice that ∂D = D ∩ (Rn \D).

Proposition 1.4. D ⊆ Rn is both closed and open if and only if D = Rn or D = ∅.

Definition 1.7.

(i) D ⊆ Rn is called bounded if

∃ M > 0 s.t. ∀ x ∈ D : ‖x‖2 ≤M.

(ii) D ⊆ Rn is called compact if it is bounded and closed.

The set D in Example 1.4 is bounded but it is not compact (since it is not closed).

The Bolzano-Weierstrass’ theorem can be enhanced in the following way.

Theorem 1.2. (Bolzano-Weierstrass) A set is compact if and only if any se-
quence contained in the set has at least one cluster point and all its cluster points
belong to the set.

1.3 Functions of several variables

1.3.1 Continuity

Definition 1.8. f : Rn → R is called continuous at x̄ ∈ Rn if f(x̄) is the limit of
f(x) as x→ x̄, i.e.,

∀ ε > 0 ∃ δ > 0 s.t. ‖x− x̄‖2 ≤ δ =⇒ |f(x)− f(x̄)| ≤ ε.

f is continuous on a set D ⊆ Rn if it is continuous at every x ∈ D.

Proposition 1.5. f is continuous at x̄ ∈ Rn if and only if any sequence {xk}k∈N
such that xk −→ x̄ satisfies f(xk) −→ f(x̄).

Example 1.5. f(x) = ‖x‖2 is a continuous function on Rn, f(x1, x1) = sin(πx1x2)
is a continuous function on R2.
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Theorem 1.3. (Weierstrass) Let D ⊆ Rn be compact and f : Rn → R continuous
on D. Then, there exist at least one minimum point x̄ ∈ D and one maximum point
x̂ ∈ D for f over D, i.e.,

f(x̄) = min{f(x) : x ∈ D} and f(x̂) = max{f(x) : x ∈ D}.

Proof. Let ` = inf{f(x) : x ∈ D} ∈ [−∞ +∞[ and consider any minimizing
sequence, that is any {xk}k∈N such that f(xk)→ `. Since D is compact, there exist
a subsequence {xkj}j∈N and x̄ ∈ D such that xkj → x̄ (as j → +∞) by Theorem 1.2.
Since f is continuous, f(xkj ) → f(x̄) and therefore f(x̄) = ` by the uniqueness of
the limit. As a consequence, ` 6= −∞ and f(x̄) = min{f(x) : x ∈ D}. The
existence of x̂ can be proved analogously. �

Example 1.6. Take n = 1, f(x) = e−x and D = R+: f is continuous on D,
inf{f(x) : x ∈ D} = 0 but there exists no x ∈ D such that f(x) = 0. Indeed, D is
not compact as it is not bounded.

1.3.2 Partial derivatives and differentiability

A point d ∈ Rn such that ‖d‖2 = 1 is also called a direction, and the set

{x̄+ td : t ∈ R}

describes the line of direction d passing through x̄ ∈ Rn. If only t ∈ R+ are
considered, the set describes the corresponding half-line.

Just like the case n = 1, the key tool for developing calculus for a function
f : Rn → R is the incremental ratio

icr(f,x,d)(t) = [f(x+ td)− f(x)]/t.

Definition 1.9. f has a derivative at x̄ in the direction d if the derivative of the
function of one variable icr(f,x̄,d) at t = 0 exists, that is lim

t→0
[f(x̄ + td) − f(x̄)]/t

exists. In that case
∂f

∂d
(x̄) = lim

t→0

f(x̄+ td)− f(x̄)

t

is called the (directional) derivative of f at x̄ in the direction d. For n = 1 there
exists a unique (up to the sign) direction and the directional derivative coincides
with the (usual) derivative and it is also denoted by f ′(x̄).

If d is one of the vectors of the canonical basis {e1, . . . , en} of Rn, namely d = ei,
then the corresponding directional derivative is called partial derivative and denoted
by ∂f(x)/∂xi rather than ∂f(x)/∂ei. Indeed, the derivative can be computed con-
sidering f as a function of xi while the other variables are kept fixed like parameters:

∂f

∂xi
(x̄) = lim

t→0

f(x̄1, . . . , x̄i−1, x̄i + t, x̄i+1, . . . , x̄n)− f(x̄)

t
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Definition 1.10. If f has all the partial derivatives at x̄ ∈ Rn, the vector

∇f(x̄) =
( ∂f
∂x1

(x̄),
∂f

∂x2
(x̄), . . . ,

∂f

∂xn
(x̄)
)T

is called the gradient of f at x̄.

Example 1.7. Take n = 2 and f(x1, x2) = sin(πx1x2):

∂f

∂x1
(x) = πx2 cos(πx1x2),

∂f

∂x2
(x̄) = πx1 cos(πx1x2).

Other directional derivatives can be defined just considering the limit of the
incremental ratio as t→ 0+, that is t→ 0 for only positive t (t > 0).

Definition 1.11. The limit

f ′(x̄; d) = lim
t→0+

f(x̄+ td)− f(x̄)

t

is called the one-sided directional derivative of f at x̄ in the direction d.

Clearly, f ′(x̄; d) = ∂f(x̄)/∂d if the latter exists but this is not always the case.

Example 1.8. Consider f(x) = ‖x‖2 and take x̄ = 0:

[f(x̄+ td)− f(x̄)]/t = ‖td‖2/t = |t|‖d‖2/t = sgn(t)‖d‖2

where sgn(t) denotes the sign of t (sgn(t) = 1 if t ≥ 0 and sgn(t) = −1 if t < 0).
Therefore, f ′(x̄; d) = ‖v‖2 = 1 while ∂f(x̄)/∂d does not exist.

Unlike the case n = 1, the existence of the directional/partial derivatives does
not guarantee the continuity of the function.

Example 1.9. Take n = 2 and

f(x1, x2) =


[x2

1x2/(x
4
1 + x2

2)]2 if (x1, x2) 6= (0, 0)

0 if (x1, x2) = (0, 0).

Consider the parabola x2 = αx2
1 for x1 6= 0:

f(x1, αx
2
1) = [αx4

1/(x
4
1 + α2x4

1)] = α2/(1 + α2)2.

Therefore, f is not continuous at x̄ = (0, 0): take the sequence xk = (1/k, 1/k2) to
get xk → x̄ while f(xk) ≡ 1/4. On the other hand, f has the directional derivative
at x̄ in each direction d:

∂f

∂d
(x̄) = lim

t→0
[t3d2

1d2/t
2(t2d4

1 + d2
2)]2/t = lim

t→0
td4

1d
2
2/((t

2d4
1 + d2

2)2 = 0.
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Definition 1.12. f is called differentiable at x̄ ∈ Rn if there exists a linear function
L : Rn → R such that

∀ v ∈ Rn : f(x̄+ v) = f(x̄) + L(v) + r(v)

for some residual function r such that r(v)/‖v‖2 → 0 as ‖v‖2 → 0. If f is differen-
tiable at x̄, L is called the differential of f at x̄. Notice that both L and r depend
not only on f but also on the considered point x̄.
f is differentiable on a set D ⊆ Rn if it is differentiable at every x ∈ D.

Recall that L : Rn → R is linear if

∀ x, y ∈ Rn ∀ α, β ∈ R : L(αx+ βy) = αL(x) + βL(y).

L is linear if and only if there exists ` ∈ Rn such that L(x) = `Tx for all x ∈ Rn.

Proposition 1.6. Suppose f is differentiable at x̄ ∈ Rn. Then,

(i) f is continuous at x̄;

(ii) f has directional derivatives at x̄ in each direction d and
∂f

∂d
(x̄) = L(d);

(iii) L(d) = ∇f(x̄)Td.

Proof. (i) It is enough to apply Definition 1.12 just taking h = x− x̄ as x→ x̄.
(ii) Take any direction d ∈ Rn. Then, Definition 1.12 implies

∂f

∂d
(x̄) = lim

t→0
(f(x̄+ td)− f(x̄))/t

= lim
t→0

(L(td) + r(td))/t

= lim
t→0

(tL(d) + r(td))/t

= L(d) + lim
t→0

r(td)/t

= L(d) + lim
t→0

sgn(t) (r(td))/‖td‖2) = L(d).

(iii) Since d =
n∑
i=1

diei, (ii) implies

∂f

∂d
(x̄) = L(d) = L

( n∑
i=1

diei

)
=

n∑
i=1

diL(ei) =
n∑
i=1

di
∂f

∂xi
(x̄) = ∇f(x̄)Td. �

Proposition 1.6 (iii) allows to restate the definition of differentiability through (the
first order) Taylor’s formula:

Taylor’s formula f(x̄+ v) = f(x̄) +∇f(x̄)T v + r(v) (r(v)/‖v‖2 → 0)

Considering any v = x− x̄ ≈ 0, Taylor’s formula states that f(x) can be approx-
imated by an affine function, namely f(x) ≈ f(x̄) +∇f(x̄)T (x− x̄), and the closer
x is to x̄ the better the approximation is. Indeed, the set

{
(
x, f(x̄) +∇f(x̄)T (x− x̄)

)
: x ∈ Rn}

is the tangent hyperplane to the graph {(x, f(x)) : x ∈ Rn} of f at (x̄, f(x̄)).
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Theorem 1.4. Let x̄ ∈ Rn and suppose f has all the partial derivatives at each
x ∈ B(x̄, ε) for some ε > 0. Then, if the functions x 7→ ∂f(x)/∂xi are continuous
at x̄ for all i = 1, ..., n, then f is differentiable at x̄.

Example 1.10. Take n = 2 and

f(x1, x2) =


x2

1x2/(x
2
1 + x2

2) if (x1, x2) 6= (0, 0)

0 if (x1, x2) = (0, 0)

and consider x̄ = (0, 0): f is continuous but not differentiable at x̄. In fact, the
derivative of f at x̄ in the direction d is

∂f

∂d
(x̄) = lim

t→0
[t3d2

1d2/t
2(d2

1 + d2
2)]/t = d2

1d2

since 1 = ‖d‖2
2

= d2
1 + d2

2. As a consequence, ∂f(x̄)/∂x1 = ∂f(x̄)/∂x2 = 0 while
∂f(x̄)/∂d 6= 0 for all d 6= e1, e2 so that ∂f(x̄)/∂d 6= ∇f(x̄)Td (see Proposition 1.6).

Notice that
∂f

∂x1
(x) = 2x1x

3
2/(x

2
1 + x2

2)2 (x 6= x̄)

is not continuous at x̄ (in accordance with Theorem 1.4): xk = (1/k, 1/k)→ x̄ while
∂f(xk)/∂x1 ≡ 1/2 and ∂f(x̄)/∂x1 = 0.

Definition 1.13. f is called continuously differentiable at x̄ ∈ Rn if there exists
ε > 0 such that f is differentiable at each x ∈ B(x̄, ε) and the partial derivatives are
continuous at x̄. f is continuously differentiable on a set D ⊆ Rn if it is continuously
differentiable at every x ∈ D.

Theorem 1.5. (mean value) Suppose f is continuously differentiable (on Rn).
Given any x̄, v ∈ Rn, there exists t ∈]0, 1[ such that

f(x̄+ v) = f(x̄) +∇f(x̄+ tv)T v.

Theorem 1.6. (upper estimate) Suppose f is continuously differentiable (on Rn)
and the gradient mapping ∇f is Lipschitz with modulus L > 0, i.e.,

∀x, v ∈ Rn : ‖∇f(x)−∇f(v)‖2 ≤ L‖x− v‖2 .

Then, any x, v ∈ Rn satisfy f(x+ v) ≤ f(x) +∇f(x̄+ v)T v + L‖v‖2
2
/2.

Proposition 1.7. (chain rules)

(i) If g : Rn → R is differentiable at x̄ ∈ Rn and h : R → R has a derivative at
f(x̄), then f = h ◦ g is differentiable at x̄ and ∇f(x̄) = h′(g(x̄))∇g(x̄).

(ii) Let h = (h1, . . . , hn) : R→ Rn and g : Rn → R. If the functions hi : R → R
have a derivative at t̄ ∈ R for all i = 1, ..., n and g is differentiable at
h(t̄) ∈ Rn, then g ◦ h has a derivative at t̄ and (g ◦ h)′(t̄) = ∇g(h(t̄))Th′(t̄)
where h′(t̄) = (h′1(t̄), . . . , h′n(t̄))T .
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Definition 1.14. Let F = (f1, . . . , fm) : Rn → Rm. If the functions fi : Rn → R
have all the partial derivatives at x̄ ∈ Rn for all i = 1, ..., n, then

JF (x̄) =

 ∇f1(x̄)T

...
∇fn(x̄)T

 =


∂f1

∂x1
(x̄) · · · ∂f1

∂xn
(x̄)

...
...

...
∂fm
∂x1

(x̄) · · · ∂fm
∂xn

(x̄)

 ∈ Rm×n

is called the Jacobian matrix of F at x̄.

1.3.3 Second-order derivatives

If a function f : Rn → R is differentiable on the whole Rn, then each directional
derivative exists at each point x ∈ Rn. In this case, the derivative in the direction
d is the function ∂f/∂d : Rn → R such that (∂f/∂d)(x) = ∂f(x)/∂d. If it has a
derivative in the direction v, then

∂

∂v

(∂f
∂d

)
(x) = lim

t→0

[∂f
∂d

(x+ tv)− ∂f

∂d
(x)
]
/t

is generally denoted by ∂2f(x)/∂v∂d.

Definition 1.15. f has second-order partial derivatives at x̄ ∈ Rn if it has the
(first-order) partial derivatives at each x ∈ B(x̄, ε) for some ε > 0 and they have
partial derivatives at x̄ as well, namely

∂2f

∂xi∂xj
(x) = lim

t→0

[ ∂f
∂xj

(x̄+ tv)− ∂f

∂xj
(x̄)
]
/t

for all i, j = 1, ..., n. If i = j, then the derivative is generally denoted by ∂2f(x̄)/∂x2
i .

For n = 1 there exists a unique second-order directional derivative which coincides
with the (usual) second-order derivative and it is also denoted by f ′′(x̄).

Example 1.11. Take the function of Example 1.7:

∂f

∂x1
(x) = πx2 cos(πx1x2),

∂f

∂x2
(x̄) = πx1 cos(πx1x2),

∂2f

∂x2∂x1
(x) = π cos(πx1x2)− π2x1x2 sin(πx1x2) =

∂2f

∂x1∂x2
(x)

∂2f

∂x2
1

(x) = −π2x2
2 sin(πx1x2),

∂2f

∂x2
2

(x) = −π2x2
1 sin(πx1x2).

Theorem 1.7. (Schwarz) Let x̄ ∈ Rn and suppose f has the second-order partial
derivatives ∂2f/∂xi∂xj and ∂2f/∂xj∂xi at each x ∈ B(x̄, ε) for some ε > 0. If both
the derivatives are continuous at x̄, then

∂2f

∂xi∂xj
(x̄) =

∂2f

∂xj∂xi
(x̄).
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Definition 1.16. If f has second-order partial derivatives at x̄ ∈ Rn, then

∇2f(x̄) =


∂2f

∂x2
1

(x̄) · · · ∂f

∂x1∂xn
(x̄)

...
...

...
∂f

∂xn∂x1
(x̄) · · · ∂f

∂x2
n

(x̄)

 ∈ Rn×n

is called the Hessian matrix of f at x̄.

Definition 1.17. f is called twice continuously differentiable at x̄ ∈ Rn if it has
second-order partial derivatives at each x ∈ B(x̄, ε) for some ε > 0 and they are
continuous at x̄. f is twice continuously differentiable on a set D ⊆ Rn if it is twice
continuously differentiable at every x ∈ D.

Notice that the Hessian matrix of a twice continuously differentiable function is
symmetric and therefore all its eigenvalues are real numbers.

Theorem 1.8. (Taylor’s formulas) Suppose f is twice continuously differentiable
(on Rn). The following statements hold for any x̄ ∈ Rn:

(i) ∀ v ∈ Rn ∃ t ∈]0, 1[ such that f(x̄+ v) = f(x̄) +∇f(x̄)T v+ 1
2v

T∇2f(x̄+ tv)v;

(ii) ∀ v ∈ Rn : f(x̄+ v) = f(x̄) +∇f(x̄)T v + 1
2v

T∇2f(x̄)v + r(v)

for some residual function r such that r(v)/‖v‖2
2
→ 0 as ‖v‖2 → 0.

Definition 1.18. f is called quadratic if there exist Q ∈ Rn×n, b ∈ Rn and c ∈ R
such that

f(x) =
1

2
xTQx+ bTx+ c =

1

2

∑̀
k=1

n∑
`=1

qk`xkx` +
n∑
k=1

bkxk + c.

Without loss of generality, Q can be taken symmetric, eventually replacing it by
(Q+QT )/2 since qk`xkx` + q`kx`xk = (qk` + q`k)xkx`/2 + (qk` + q`k)x`xk/2.

The partial derivatives of a quadratic function can be easily computed:

∂f

∂xi
(x) =

1

2

( n∑
`=1

qi`x` +
n∑
k=1

qkixk

)
+ bi =

( n∑
`=1

qi`x`

)
+ bi = (Qx)i + bi

∂2f

∂xj∂xi
(x) =

∂

∂xj

( ∂f
∂xi

)
(x) =

∂f

∂xj

( n∑
`=1

qi`x` + bi

)
= qij .

Therefore, ∇f(x) = Qx+ b and ∇2f(x) = Q.

Considering any v = x − x̄ ≈ 0, the second-order Taylor’s formula states that
f(x) can be approximated by a quadratic function, namely f(x) ≈ q(x) with

q(x) = f(x̄) +∇f(x̄)T (x− x̄) +
1

2
(x− x̄)T∇2f(x̄)(x− x̄),
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that is

q(x) =
1

2
xT∇2f(x̄)x+

(
∇f(x̄)−∇2f(x̄)x̄

)T
x+

(
f(x̄)−∇f(x̄)T x̄+

1

2
x̄T∇2f(x̄)x̄

)
.

Example 1.12. Take n = 2 and f(x1, x2) = −x4
1 − x2

2:

∇f(x) =

(
−4x3

1

−2x2

)
, ∇2f(x) =

[
−12x2

1 0
0 −2

]
.

Considering x̄ = (0,−2/5) the quadratic approximation of f(x) near x̄ is given by

q(x) = −2x2
2 − 12x2/5− 20/25.





Chapter 2

Optimization, convex functions and sets

The basic ingredients of an optimization problem are a real-valued function and
a subset of its domain over which looking for the minima and/or maxima of the
function. Given any f : Rn → R and a set D ⊆ Rn, the minimization problem

(P ) min{f(x) : x ∈ D}

amounts to finding x̄ ∈ D such that f(x̄) ≤ f(x) for any x ∈ D. The infimum of
the set of real numbers {f(x) : x ∈ D} is called the optimal value of (P ) if it is
finite. If the infimum is −∞, then the minimization problem (P ) is called unbounded
by below. The corresponding definitions for maximization problems are given just
recalling that maximizing f over a set D is equivalent to minimizing −f over the
same set. Optimization problems are often called programs, so that optimization
and programming are synonyms in this framework.

Optimization problems can be classified according to the kind of function f and
set D which are involved. Unconstrained optimization deals with the case D = Rn,
while constrained optimization with the case D 6= Rn. If D is finite or countable,
then discrete optimization comes into play: combinatorial optimization deals specif-
ically with the case D ⊆ {0, 1}n, while integer programming with the generic case
D ⊆ Zn. If D is uncountable (and f is continuous), the most used term is contin-
uous optimization. If f is linear and D is a polyhedron, then linear programming is
used, otherwise nonlinear optimization or nonlinear programming.

These lecture notes focus on continuous nonlinear optimization both in the un-
constrained and constrained case.

2.1 Optimization and convexity

Definition 2.1. x̄ ∈ Rn is called a global minimum point of (P ) if it is feasible and
f(x̄) is the optimal value of (P ), namely if

(i) x̄ ∈ D (feasibility)

(ii) f(x̄) ≤ f(x) for any x ∈ D (optimality).
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A global minimum point x̄ is called strict if the strict inequality f(x̄) < f(x) holds
for any x ∈ D with x 6= x̄.

Example 2.1. Take n = 1, f(x) = −x2 and D = R: the optimal value does not
exist since f(x)→ −∞ as x→ ±∞, hence no global mimimum point may exist.

Take (P ) with f and D as in Example 1.6: the optimal value is 0 but no global
minimum point exists all the same.

Definition 2.2. x̄ ∈ Rn is called a local minimum point of (P ) if

(i) x̄ ∈ D (feasibility)

(ii) ∃ ε > 0 such that f(x̄) ≤ f(x) for any x ∈ D ∩B(x̄, ε) (local optimality).

A local minimum point x̄ is called strict if there exists ε′ > 0 such that f(x̄) < f(x)
holds for any x ∈ D ∩B(x̄, ε′) with x 6= x̄.

Clearly, any global minimum point is also a local minimum point but not vice
versa. Indeed, finding a global minimum may be much harder than finding a lo-
cal minimum: the distinction between global optimization and local optimization is
generally very meaningful.

Definition 2.3. D ⊆ Rn is called convex if λx+ (1− λ)y ∈ D for any x, y ∈ D and
any λ ∈ [0, 1].

Example 2.2. Rn, ∅, B(x, ε), [`, u] = {x ∈ Rn : `i ≤ xi ≤ ui, i = 1, ..., n} with
`, u ∈ Rn are convex sets in Rn.

Definition 2.4. Let D ⊆ Rn be convex. Then, f : Rn → R is called convex on D if

∀ x, y ∈ D, λ ∈ [0, 1] : f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

f is called strictly convex on D if the strict inequality

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)

holds whenever x, y ∈ D and λ ∈ [0, 1] satisfy x 6= y and λ 6= 0, 1.
f is called [strictly] concave on D if −f is [strictly] convex on D. If D = Rn,

then f is simply called [strictly] convex/concave, omitting the (convex) domain of
convexity/concavity.

Notice that f is convex on D if and only if given any k ∈ N the inequality

f(
k∑
i=1

λixi) ≤
k∑
i=1

λif(xi)

holds for any x1, . . . , xk ∈ D and any λ1, . . . , λk ∈ [0, 1] such that λ1 + · · ·+ λk = 1.

Theorem 2.1. Let D ⊆ Rn be convex. Then,
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(i) If f is convex on D, then any local minimum point of (P ) is also a global
minimum point.

(ii) If f is strictly convex on D, there exists at most one minimum point of (P ).

Proof. (i) Ab absurdo, suppose there exists a local minimum point x̄ ∈ D which
is not a global minimum point. Thus, there exists x ∈ D such that f(x) < f(x̄).
Consider x(λ) = λx + (1− λ)x̄: it belongs to D for any λ ∈ [0, 1] by the convexity
of D. Furthermore, the convexity of f implies

f(x(λ)) ≤ λf(x) + (1− λ)f(x̄) < λf(x̄) + (1− λ)f(x̄) = f(x̄)

for any λ 6= 0. Since x(λ)→ x̄ as λ→ 0, for any ε > 0 there exists λ̄ ∈ [0, 1[ such that
x(λ̄) ∈ B(x̄, ε). Thus, x̄ is not a local minimum point contradicting the assumption.

(ii) Suppose there exist x̄, x̂ ∈ D which are both minimum points of (P ). Thus,
f(x̂) = f(x̄). Take any λ ∈]0, 1[ and x(λ) = λx̂+ (1− λ)x̄. If x̄ 6= x̂, then the strict
convexity of f implies

f(x(λ)) < λf(x̂) + (1− λ)f(x̄) = λf(x̄) + (1− λ)f(x̄) = f(x̄) = f(x̂)

so that neither x̄ nor x̂ is a minimum point of (P ). �

The theorem shows that local and global optimization coincide if f and D are
both convex, therefore the distinction between convex optimization and nonconvex
optimization is very meaningful as well.

Proposition 2.1. Let D ⊆ Rn be convex and f be convex on D. Then, the set of
all the minimum points of (P ) is convex

Proof. Take any two minimum points x̄, x̂ ∈ D (x̂ 6= x̄) and any λ ∈ [0, 1]. Then,
x(λ) = λx̂+ (1− λ)x̄ ∈ D by the convexity of D, while the convexity of f implies

f(x(λ)) ≤ λf(x̂) + (1− λ)f(x̄) = λf(x̄) + (1− λ)f(x̄) = f(x̄) = f(x̂) ≤ f(x(λ))

where the last inequality is due to the optimality of x̄. Thus, f(x(λ)) = f(x̄) = f(x̂)
and therefore x(λ) is a minimum point as well. �

2.2 Properties of convex functions

Proposition 2.2. Let D ⊆ Rn be convex. Then, f is convex on D if and only if the
restriction of the epigraph of f to D, namely

epiD(f) = {(x, t) : x ∈ D, t ≥ f(x)}

is a convex set in Rn+1.
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Proof. Only if) Take any (x, t), (y, τ) ∈ epiD(f) and any λ ∈ [0, 1]:

λt+ (1− λ)τ ≥ λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y)

where the last inequality is due to the convexity of f . Moreover, λx+ (1− λ)y ∈ D
since D is convex, and thus (λx+ (1− λ)y, λt+ (1− λ)τ) ∈ epiD(f).

If) Take any x, y ∈ D and any λ ∈ [0, 1]. Therefore, (x, f(x)), (y, f(y)) ∈ epiD(f)
and the the convexity of epiD(f) imply (λx+(1−λ)y, λf(x)+(1−λ)f(y)) ∈ epiD(f),
which reads

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). �

Proposition 2.3. Let D ⊆ Rn be convex and f be convex on D. Then, the inter-
section of the α-sublevel set of f with D, namely

{x ∈ Rn : f(x) ≤ α} ∩D

is a convex set for any α ∈ R.

Proof. Take any x, y ∈ D and any λ ∈ [0, 1]: λx+ (1− λ)y ∈ D since D is convex
and moreover

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). ≤ λα+ (1− λ)α = α �

Example 2.3. Take n = 1, f(x) = x3 and D = R. The α-sublevel set

{x ∈ Rn : x3 ≤ α} =]−∞, 3
√
α]

is convex, while f is not convex. In fact, it is enough to take x = −1, y = 1/2 and
λ = 1/3 to get f(λx+ (1− λ)y) = f(0) = 0 > −1/4 = λf(x) + (1− λ)f(y).

Proposition 2.4. Let D ⊆ Rn be convex and fi : Rn → R be convex on D for any
i ∈ I for some index set I.

(i) If I is finite, then
(∑
i∈I

fi

)
(x) =

∑
i∈I

fi(x) is convex on D;

(ii)
(

sup
i∈I

fi

)
(x) = sup

i∈I
fi(x) is convex on D.

Proof. (i) It is enough to exploit the definition of convexity for each fi summing
all the inequalities.

(ii) Take any x, y ∈ D and any λ ∈ [0, 1]. Given any ε > 0, there exists k = k(ε) ∈ I
such that(

sup
i∈I

fi

)
(λx+ (1− λ)y) ≤ fk(λx+ (1− λ)y) + ε

≤ λfk(x) + (1− λ)fk(y) + ε

≤ λ
(

sup
i∈I

fi

)
(x) + (1− λ)

(
sup
i∈I

fi

)
(y) + ε
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and therefore(
sup
i∈I

fi

)
(λx+ (1− λ)y) ≤ λ

(
sup
i∈I

fi

)
(x) + (1− λ)

(
sup
i∈I

fi

)
(y)

follows since ε is arbitrary. �

Theorem 2.2. Let D ⊆ Rn be a convex set with a nonempty interior. If f is convex
on D, then f is continuous on intD.

Theorem 2.3. Let f be differentiable on D. Then, f is convex on D if and only if

∀ x, y ∈ D : f(y) ≥ f(x) +∇f(x)T (y − x).

Proof. Only if) Take any x, y ∈ D and any λ ∈ [0, 1]: the definition of convexity
can be equivalently stated as

f(y)− f(x) ≥ [f(x+ λ(y − x))− f(x)]/λ.

By Proposition 1.6 lim
λ→0

[f(x+ λ(y − x))− f(x)]/λ = ∇f(x)T (y − x) Therefore, the

required inequality follows from the above one just taking the limit as λ→ 0+.

If) Take any x, y ∈ D and any λ ∈ [0, 1]: the following inequalities follow from the
assumption just considering the pairs of points x, λx+(1−λ)y and y, λx+(1−λ)y:

f(x) ≥ f(λx+ (1− λ)y) + (1− λ)∇f(λx+ (1− λ)y)T (x− y),

f(y) ≥ f(λx+ (1− λ)y) + λ∇f(λx+ (1− λ)y)T (x− y).

Summing λ times the first inequality with (1−λ) times the second inequality gives

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y). �

Roughly speaking, the theorem states that the convexity of f means exactly
that the graph of f is “above” the tangent hyperplane to the graph at (x, f(x))
everywhere on D for any x ∈ D.

An analogous characterization holds for strict convexity.

Theorem 2.4. Let f be differentiable on D. Then, f is strictly convex on D if and
only if

∀ x, y ∈ D s.t. x 6= y : f(y) > f(x) +∇f(x)T (y − x).

Theorem 2.5. Let f be twice continuously differentiable (on Rn). Then, f is convex
if and only if ∇2f(x) is positive semidefinite for any x ∈ Rn, i.e.,

∀ x, y ∈ Rn : yT∇2f(x)y ≥ 0.
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Proof. Only if) Take any x, y ∈ Rn and any t ∈ R: the second-order Taylor’s
formula and Theorem 2.3 guarantee

1

2
t2yT∇2f(x)y + r(f,x)(ty) = f(x+ ty)− f(x)− t∇f(x)T y ≥ 0

and therefore (supposing y 6= 0)

1

2
yT∇2f(x)y +

r(f,x)(ty)

‖ty‖2
2

‖y‖2
2
≥ 0.

Taking the limit as t→ 0, the inequality yT∇2f(x)y ≥ 0 follows.

If) Take any x, y ∈ Rn. By Theorem 1.8 (i) there exists t ∈ [0, 1] such that

f(y)− f(x)−∇f(x)T (y − x) =
1

2
(y − x)T∇2f(x+ t(y − x))(y − x) ≥ 0

where the inequality is due to the positive semidefiniteness of ∇2f(x + t(y − x)).
Therefore, Theorem 2.3 guarantees that f is convex. �

A similar sufficient condition for strict convexity can be proved in the same way.

Theorem 2.6. Let f be twice continuously differentiable (on Rn). If ∇2f(x) is
positive definite for any x ∈ Rn, i.e.,

∀ x, y ∈ Rn : yT∇2f(x)y > 0,

then f is strictly convex.

Example 2.4. Take n = 1 and f(x) = x4: f is strictly convex but ∇2f(0) =
f ′′(0) = 0.

Theorem 2.7. Let f(x) = 1
2x

TQx+ bTx+ c (with Q = QT ). Then,

(i) f is convex if and only if Q is positive semidefinite;

(ii) f is strictly convex if and only if Q is positive definite.

Proof. (i) and the “if part” of (ii) are just Theorems 2.5 and 2.6 for the quadratic
function f since ∇2f(x) = Q for any x ∈ Rn.

(ii) Only if) The residual in the second-order Taylor’s formula is zero, that is

1

2
t2yTQy = f(x+ ty)− f(x)− t∇f(x)T y

for any x, y ∈ Rn. By Theorem 2.4 the right-hand side is always positive, hence
Q is positive definite. �



Chapter 3

Optimality conditions for unconstrained

optimization

Given any f : Rn → R, optimality conditions for the unconstrained minimization
problem

(P ) min{f(x) : x ∈ Rn}

can be achieved exploiting Taylor’s formulas whenever f is differentiable or twice
continuously differentiable. The corresponding optimality conditions for uncon-
strained maximization can be obtained replacing f by −f .

3.1 Optimality conditions

Theorem 3.1. Suppose x̄ ∈ Rn is a local minimum point of (P ).

(i) If f is differentiable at x̄, then ∇f(x̄) = 0;

(ii) If f is twice continuously differentiable at x̄, then ∇2f(x̄) is positive semidef-
inite.

Proof. Local optimality guarantees the existence of ε > 0 such that f(x̄) ≤ f(x)
for all x ∈ B(x̄, ε). Let d ∈ Rn be any direction and t ∈]0, ε[: ‖d‖2 = 1 guarantees
x̄+ td ∈ B(x̄, ε) and therefore f(x̄) ≤ f(x̄+ td).

(i) Taylor’s formula implies

0 ≤ f(x̄+ td)− f(x̄) = t∇f(x̄)Td+ r(td)

and therefore

∇f(x̄)Td+ r(td)/t ≥ 0.

Since t = ‖td‖2 , the limit of left-hand side as t → 0+ provides ∇f(x̄)Td ≥ 0.
Considering −d the same reasoning provides also ∇f(x̄)Td ≤ 0. Thus, ∇f(x̄)Td = 0
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holds for any d ∈ Rn. Taking d = −∇f(x̄), the equality reads ‖∇f(x̄)‖2
2

= 0 and
hence ∇f(x̄) = 0 follows.

(ii) The second-order Taylor’s formula (see Theorem 1.8) implies

0 ≤ f(x̄+ td)− f(x̄) = t∇f(x̄)Td+
1

2
t2dT∇2f(x̄)d+ r(td).

Since (i) guarantees ∇f(x̄) = 0, then

dT∇2f(x̄)d+ r(td)/2t2 ≥ 0

holds too. Since t2 = ‖td‖2
2
, the limit of the left-hand side as t → 0 provides the

inequality dT∇2f(x̄)d ≥ 0. Since d is an arbitrary direction, ∇2f(x̄) is positive
semidefinite. �

If x̄ ∈ intD minimizes f over some D ⊆ Rn, then the necessary conditions of
Theorem 3.1 hold also in this case: the above proof still works just considering any
ε > 0 which in addition satisfies B(x̄, ε) ⊆ D.

Definition 3.1. x̄ ∈ Rn is called a stationary point of f if ∇f(x̄) = 0.

Looking for stationary points of f amounts to solving the system of n equations
∂f
∂x1

(x1, ..., xn) = 0

...
∂f
∂xn

(x1, ..., xn) = 0

in the n unknowns (x1, . . . , xn). This is generally a nonlinear system, but if the
quadratic function f(x) = 1

2x
TQx + bTx + c is considered then it is actually the

linear system Qx = −b (since ∇f(x) = Qx + b). If f is strictly convex, then
∇2f(x) ≡ Q is positive definite and therefore invertible: x̄ = −Q−1b is the unique
stationary point and it is the unique minimum point (see Theorems 3.2 and 3.3
below). On the contrary, if f is not convex, due to Theorem 3.1(ii) no stationary
point is a local minimum since Q is not positive semidefinite.

Example 3.1. Take n = 2 and f(x1, x2) = (x2 − x2
1)(x2 − 4x2

1):

∇f(x) =

(
16x3

1 − 10x1x2

2x2 − 5x2
1

)
, ∇2f(x) =

[
48x2

1 − 10x2 −10x1

−10x1 2

]
.

Then, ∇f(x) = 0 if and only if x = (0, 0) and moreover

∇2f(0, 0) =

[
0 0
0 2

]
is positive semidefinite (but not definite). Anyway, (0, 0) is not a local minimum
point of (P ). In fact,

f(x1, 2x
2
1) = −2x2

1 < 0
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for any x1 6= 0. Therefore, f is negative along the parabola {x ∈ R2 : x2 = 2x2
1}.

Notice that f is not even a local maximum point of (P ) : ∇2f(0, 0) is not negative
semidefinite and in fact f is positive along all the parabolas {x ∈ R2 : x2 = αx2

1}
with α > 4.

Theorem 3.2. Let f be twice continuously differentiable at x̄ ∈ Rn. If x̄ is a
stationary point of f such that ∇2f(x̄) is positive definite, then it is a strict local
minimum point of (P ) and moreover there exist δ, γ > 0 such that

∀ x ∈ B(x̄, δ) : f(x) ≥ f(x̄) + γ‖x− x̄‖2
2
.

Proof. It is enough to prove the above inequality as it guarantees strict local
optimality too. Taking any x ∈ Rn, the second-order Taylor’s formula (see Theorem
1.8) implies

f(x)− f(x̄) = ∇f(x̄)T (x− x̄) +
1

2
(x− x̄)T∇2f(x̄)(x− x̄) + r(x− x̄)

=
1

2
(x− x̄)T∇2f(x̄)(x− x̄) + r(x− x̄)

≥ 1

2
λmin‖x− x̄‖22 + r(x− x̄)

and therefore

[f(x)− f(x̄)]/‖x− x̄‖2
2
≥ λmin/2 + r(f,x̄)(x− x̄)/‖x− x̄‖2

2

where λmin > 0 is the minimum eigenvalue of ∇2f(x̄).1 Choose any positive thresh-
old ε < λmin/2. Since the limit of the right-hand side as x → x̄ is λmin/2, there
exists δ > 0 such that

∀ x ∈ B(x̄, δ) : [f(x)− f(x̄)]/‖x− x̄‖2
2
≥ (λmin/2− ε).

Setting γ = λmin/2− ε, the thesis follows from the above inequality. �

If f is a strictly convex quadratic function, then the above theorem holds with
γ = λmin/2 (where λmin is the minimum eigenvalue of Q) and any δ > 0. In fact,
x̄ = −Q−1b is the unique stationary point of f and

∀ x ∈ Rn : f(x)− f(x̄) =
1

2
(x− x̄)TQ(x− x̄).

3.2 Optimality conditions in the convex case

Theorem 3.3. Let f be convex and differentiable (on Rn). Then, x̄ ∈ Rn is a
minimum point of (P ) if and only if ∇f(x̄) = 0.

1Given any symmetric matrix Q ∈ Rn×n the inequality yTQy ≥ λmin‖y‖22 holds for any y ∈ Rn

where λmin denotes the minimum eigenvalue of Q
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Proof. Only if) It is just Theorem 3.1(i).

If) By Theorem 2.3 the convexity of f guarantees

f(y) ≥ f(x̄) +∇f(x̄)T (y − x̄)

for any y ∈ Rn. Since ∇f(x̄) = 0, the optimality of x̄ follows immediately. �

Notice that any (twice continuously differentiable) convex function f satisfies the
second-order optimality condition of Theorem 3.1 at any point (see Theorem 2.5).
Moreover, it does not have any global maximum point unless it is a constant function:
in fact, a maximum point is a stationary point (just apply Theorem 3.1 to −f) and
hence it is also a minimum point by Theorem 3.3. The same reasoning applies to
local maximum points, which may exist if they are actually also minimum points.

The minimum points of the convex quadratic function f(x) = 1
2x

TQx+ bTx+ c
are the solutions of the linear system Qx + b = 0. If Q is positive definite, then
−Q−1b is the unique minimum point. If Q is positive semidefinite but not positive
definite, there are infinitely many minimum points if at least one exists but f could
be unbounded by below.

Proposition 3.1. Let f(x) = 1
2x

TQx + bTx + c be convex. Then, f is unbounded
by below if and only if there exists x̂ ∈ Rn such that Qx̂ = 0 and bT x̂ 6= 0.

Proof. If) Take x(t) = tx̂. If bT x̂ > 0 (< 0), then

f(x(t)) = t(bT x̂) + c→ −∞ as t→ −∞ (+∞)

Only if) Since Q is symmetric, there exists an orthonormal basis {x1, . . . , xn} of Rn

composed by eigenvectors of Q, that is xi
T
xj = 0 for all i 6= j and Qxi = λix

i for
all i = 1, . . . , n where λ1, . . . , λn are the eigenvalues of Q. Given any x ∈ Rn, there

exist γ1, . . . , γn ∈ R such that x =
n∑
i=1

γix
i. Therefore,

f(x) =
1

2

n∑
i=1

λiγ
2
i +

n∑
i=1

(bTxi)γi =

n∑
i=1

[
1

2
λiγ

2
i + (bTxi)γi].

Ab absurdo, suppose bTx = 0 whenever Qx = 0, which implies that bTxi = 0 if
λi = 0. Therefore, each nonzero term in the above sum gets its minimum value for
γi = γ̄i = −bTxiλi, and f is bounded by below since

f(x) ≥
∑
i∈I

[
1

2
λiγ̄

2
i + (bTxi)γ̄i] = −

∑
i∈I

(bTxi)2/2λi

where I = {i : |λi 6= 0}. �



Chapter 4

Algorithms for unconstrained optimization

This chapter describes some of the most well-known solution methods for the
unconstrained minimization problem

(P ) min{f(x) : x ∈ Rn}

in which f : Rn → R is any (twice) continuously differentiable function.
The main focus will be on iterative descent methods, that is iterative algorithms

generating a sequence x0, x1, . . . , xk, . . . that satisfies the descent property

f(x0) > f(x1) > · · · > f(xk) > f(xk+1) > . . .

or the (weaker) non-monotone descent property

∀ k ∈ N ∃ m ∈ N s.t. f(xk) > f(xk+m).

The algorithms aim at finding a stationary point, i.e., some x̄ ∈ Rn such that
∇f(x̄) = 0, which is not necessarily a local minimum point of (P ) unless f is convex.
Beyond finite convergence, that is the existence of some k̄ such that ∇f(xk̄) = 0,
three different kinds of asymptotic convergence may be achieved:

(i) the sequence {xk}k∈N has a limit, that is a stationary point of f , i.e., lim
k→+∞

xk =

x̄ for some x̄ ∈ Rn such that ∇f(x̄) = 0;

(ii) each cluster point of {xk}k∈N is a stationary point of f ;

(iii) at least one cluster point of {xk}k∈N is a a stationary point of f .

The generic iteration can always be described through

xk+1 = xk + tkd
k

where dk ∈ Rn identifies the direction along which the algorithm moves away from
xk with stepsize tk > 0. Therefore, a full description of an algorithm can be provided
specifying the way dk and tk are chosen. Notice that it is not necessary to require
‖d‖2 = 1 since the stepsize tk can be determined accordingly.
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4.1 Gradient methods

A descent direction for f at x ∈ Rn is any d ∈ Rn such that f(x+ td) < f(x) holds
whenever t > 0 is small enough. Consider any x that is not a stationary point for
f , i.e., ∇f(x) 6= 0. Since Proposition 1.6 (ii) guarantees

lim
t→0

f(x+ td)− f(x)

t
= ∇f(x)Td,

∇f(x)Td < 0 is a sufficient condition for d to be a descent direction. Indeed, the
best choice to gain the (asymptotic) maximum decrease is clearly the direction d
that provides the minimum value for ∇f(x)Td.

Proposition 4.1. Given any x ∈ Rn which satisfies ∇f(x) 6= 0, then −∇f(x) is a
descent direction for f at x and

arg min{∇f(x)Td : ‖d‖2 = 1} = {−∇f(x)/‖∇f(x)‖2}.

Proof. If d = −∇f(x), then ∇f(x)Td = −‖∇f(x)‖2
2
< 0, and the first part of the

statement follows immediately. Since ∇f(x)Td = ‖∇f(x)‖2‖d‖2 cos θ, where θ is
the angle formed by the vectors ∇f(x) and d in the 2-dimensional subspace of Rn
(plane) which contains both, then

min{∇f(x)Td : ‖d‖2 = 1} = ‖∇f(x)‖2 min{cos θ : θ ∈ [0, 2π]}.

The minimum value is clearly achieved when cos θ = −1, that is θ = π. Therefore,
the direction d, which provides the minimum value, is collinear and opposite to
∇f(x), that is d = −∇f(x)/‖∇f(x)‖2 . �

The above proposition can be rephrased as “the gradient of a function points in
the direction of (asymptotic) maximum increase”, or its opposite points in the direc-
tion of maximum decrease (steepest descent direction). Notice that the constraint
‖d‖2 = 1 is essential in the proposition, otherwise the minimization problem would
be unbounded by below as ∇f(x)Td < 0 implies ∇f(x)T (td)→ −∞ as t→ +∞.

Once a descent direction d has been chosen, the ideal choice for the stepsize
would be any minimum point of the one dimensional search function

ϕ(t) = f(x+ td),

over R+, i.e., any t ∈ arg min{ϕ(t) : t ≥ 0}. Such a choice is generally referred to
as exact line search.

4.1.1 The gradient method with exact line search

Given any xk, which is not stationary for f , the most straightforward choices are to
take the direction dk = −∇f(xk) and the corresponding stepsize tk provided by the
exact line search. The resulting algorithm is summarized below.
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Algorithm 1 – Gradient method with exact line search

0. Choose x0 ∈ Rn and set k = 0

1. If ∇f(xk) = 0, then STOP

2. Compute tk ∈ arg min{f(xk − t∇f(xk)) : t ≥ 0}

3. xk+1 = xk − tk∇f(xk)

4. k = k + 1 and go to 1

Clearly, Algorithm 1 is a descent method as −∇f(xk) is a descent direction for
f at xk and the exact line search is performed. This can be checked also exploiting
the properties of the search function ϕk(t) = f(xk − t∇f(xk)).

Proposition 4.2. Let {xk} be the sequence produced by Algorithm 1. If xk is not a
stationary point of f , then f(xk+1) < f(xk).

Proof. The choice of tk guarantees ϕk(0) = f(xk) ≥ f(xk+1) = ϕk(tk). Note that
ϕk = f ◦ h with h(t) = xk − t∇f(xk). Since f is differentiable at any x and the
components of h have a derivative at any t, then ϕk has a derivative at any t and

ϕ′k(t) = −∇f(xk − t∇f(xk))T∇f(xk)

by Proposition 1.7. In particular, ϕ′k(0) = −‖∇f(xk)‖2
2
< 0 implies ϕk(t) < ϕk(0)

whenever t is small enough. Since tk minimizes ϕk over R+, then ϕk(tk) < ϕk(0),
i.e., f(xk+1) < f(xk). �

The basic convergence result is a straightforward consequence of the following
property stating that any two successive directions in Algorithm 1 are orthogonal.

Proposition 4.3. Let {xk} be the sequence produced by Algorithm 1. If xk is not a
stationary point of f , then ∇f(xk+1)T∇f(xk) = 0.

Proof. The proof of Proposition 4.2 shows also that tk > 0. Therefore, since it
minimizes ϕk over R+, then 0 = ϕ′k(tk) = −∇f(xk+1)T∇f(xk). �

Theorem 4.1. Suppose that Algorithm 1 generates an infinite sequence {xk}. If
lim

k→+∞
xk = x̄ for some x̄ ∈ Rn, then ∇f(x̄) = 0.

Proof. Proposition 4.3 and the continuity of the partial derivatives imply

0 = ∇f(xk+1)T∇f(xk)→ ∇f(x̄)T∇f(x̄) = ‖∇f(x̄)‖2
2

as k → +∞.

Therefore, ‖∇f(x̄)‖2 = 0, or equivalently ∇f(x̄) = 0. �
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The above convergence result is not very satisfactory since there is no guarantee
that the whole sequence {xk} converges. Actually, it is possible to prove also that
each cluster point of the sequence {xk} is a stationary point of f .

The exact line search requires the solution of an additional optimization problem
though in a single variable. Actually, if the objective function is the convex quadratic
function f(x) = 1

2x
TQx+ bTx+ c, then the stepsize can be computed explicitly. In

fact, the derivative of the search function reads

ϕ′(t) = −∇f(x− t∇f(x))T∇f(x)

= −[Q(x− t∇f(x)) + b]T∇f(x)

= −[Qx+ b− tQ∇f(x)]T∇f(x)

= −[∇f(x)− tQ∇f(x)]T∇f(x)

= −∇f(x)T∇f(x) + t(∇f(x)TQ∇f(x)).

If ∇f(x)TQ∇f(x) = 0, then ϕ′(t) = −‖∇f(x)‖2
2
< 0 for all t ∈ R and therefore

f(x− t∇f(x)) = ϕ(t) = −‖∇f(x)‖2
2
t+f(x)→ −∞ as t→ +∞. On the other hand,

if ∇f(x)TQ∇f(x) > 0, then the exact line search amounts to computing t such that
ϕ′(t) = 0, that is t = ∇f(x)T∇f(x)/(∇f(x)TQ∇f(x)).

If the above quadratic function is strictly convex, stepsizes related to the eigen-
values of Q lead to a finite gradient method.

Theorem 4.2. Let f(x) = 1
2x

TQx+bTx+c be strictly convex, and λ0, . . . , λn−1 > 0
be the eigenvalues of Q. Given any x0 ∈ Rn and the finite sequence

xk+1 = xk − λ−1
k ∇f(xk), k = 0, . . . , n− 1,

there exists j ∈ {0, . . . , n} such that ∇f(xj) = 0.

Proof. Suppose ∇f(xj) 6= 0 for all j < n. Therefore,

∇f(xn) = Qxn + b

= Qxn−1 − λ−1
n−1Q∇f(xn−1) + b

= ∇f(xn−1)− λ−1
n−1Q∇f(xn−1)

= (I − λ−1
n−1Q)∇f(xn−1)

= (I − λ−1
n−2Q)(I − λ−1

n−1Q)∇f(xn−2)
...

=
n∏
j=1

(I − λ−1
n−jQ)∇f(x0).

Since Q is positive definite, there exists an orthonormal basis {u0, . . . , un−1} of Rn
such that Qui = λiui for all i = 0, . . . , n−1. Therefore, there exist α0, . . . , αn−1 ∈ R
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such that ∇f(x0) = α0u0 + · · ·+ αn−1un−1. As a consequence,

∇f(xn) =
( n∏
j=1

(I − λ−1
n−jQ)

) n−1∑
i=0

αiui =
n−1∑
i=0

αi

( n∏
j=1

(1− λ−1
n−jλi)

)
ui = 0

as the coefficient of each ui is zero (just consider j = n− i). �

4.1.2 Gradient methods with inexact line search

Theorem 4.3. Suppose f is continuously differentiable (on Rn) and the gradient
mapping ∇f is Lipschitz with modulus L > 0. Then, any cluster point of the se-
quence provided by the iterative scheme xk+1 = xk−α∇f(xk) for some given positive
α < 2/L is a stationary point of f .

Proof. Theorem 1.6 guarantess

f(xk+1) = f(xk − α∇f(xk)) ≤ f(xk)− α∇f(xk)T∇f(xk) + Lα2‖∇f(xk)‖2
2
/2

= f(xk)− γ‖∇f(xk)‖2
2

where γ = α(2−Lα)/2 > 0. As a consequence, f(xk+1) < f(xk). Given any cluster
point x̄ ∈ Rn of {xk}k∈N, there exists a subsequence {xkj}j∈N such that xkj → x̄ as
j → +∞. Therefore, the above inequalities imply

f(xkj+1) ≤ f(xkj+1) ≤ f(xkj )− γ‖∇f(xkj )‖2
2

Taking the limit as j → +∞ yields ∇f(xkj ) ≤ 0, that is ∇f(x̄) = 0. �

Given a descent direction dk for f at xk, consider the sufficient decrease condition

f(xk + tdk) ≤ f(xk) + c1t∇f(xk)Tdk (AJO)

where c1 ∈]0, 1[. If f is bounded by below, then there exists τ > 0 such that any
t > τ does not satisfy (AJO). In fact, ∇f(xk)Tdk < 0 implies t∇f(xk)Tdk → −∞
as t→ +∞. In terms of the search function ϕk(t) = f(xk+ tdk), the condition reads

ϕk(t) ≤ ϕk(0) + c1tϕ
′
k(0). (AJO)

As lim
t→0

[ϕk(t)− ϕk(0)]/t = ϕ′k(0) < c1ϕ
′
k(0), then (AJO) holds whenever t is small

enough. Therefore, a way to compute a stepsize tk satisfying (AJO) is the so-called
Armijo rule: given t̄ > 0 and γ ∈]0, 1[, take tk = t̄γm where m ∈ N is the smallest
natural number such that t̄γm satisfies (AJO).

Theorem 4.4. Suppose that Algorithm 2 generates an infinite sequence {xk}. If f
is bounded by below, then each cluster point of {xk} is a stationary point of f .
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Algorithm 2 – Gradient method with Armijo line search

0. Choose x0 ∈ Rn, t̄ > 0 and γ ∈]0, 1[, and set k = 0

1. If ∇f(xk) = 0, then STOP

2. Choose dk = −∇f(xk) and compute tk > 0 through the Armijo rule

3. xk+1 = xk − tk∇f(xk)

4. k = k + 1 and go to 1

Proof. dk = −∇f(xk) implies that (AJO) reads

0 ≤ c1tk‖∇f(xk)‖2
2
≤ f(xk)− f(xk+1),

and thus the sequence {f(xk)} is monotone decreasing. Since it is also bounded by
below, then it has a limit. As a consequence, f(xk) − f(xk+1) → 0: either tk → 0
or ‖∇f(xk)‖2 → 0 holds.

Given any cluster point x̄ ∈ Rn of {xk}k∈N, there exists a subsequence {xkj}j∈N
such that xkj → x̄ as j → +∞. If ‖∇f(xk)‖2 → 0, then ‖∇f(x̄)‖2 = 0, i.e., x̄ is a
stationary point for f , since ‖∇f(xkj )‖2 → ‖∇f(x̄)‖2 . Therefore, suppose tk → 0
holds. The Armijo rule guarantess that tkjγ

1 does not satisfy (AJO), i.e.,

f(xkj − tkjγ
−1∇f(xkj ))− f(xkj ) > c1tkjγ

−1‖∇f(xkj )‖2
2
.

The mean value Theorem 1.5 guarantees the existence of some τkj ∈ [0, tkjγ
−1] such

that f(xkj − tkjγ
−1∇f(xkj )) − f(xkj ) = −tkjγ−1∇f(xkj − τkj∇f(xkj ))

T∇f(xkj )
yielding

∇f(xkj − τkj∇f(xkj ))
T∇f(xkj ) > c1‖∇f(xkj )‖2

2
.

Taking the limit as j → +∞, (1− c1)‖∇f(x̄)‖2
2

follows and hence ∇f(x̄) = 0. �

still an uncomplete draft

∇f(xk + tdk)Tdk ≥ c2∇f(xk)Tdk (CUR)

ϕ′k(t) ≥ c2ϕ
′
k(0) (CUR)

Proposition 4.4. Suppose f is bounded by below. If xk ∈ Rn is not a station-
ary point of f and dk ∈ Rn is a descent direction for f at xk, then there exist
τ`, τu ∈ R with τ` < τu such that any t ∈ [τ`, τu] satisfies the Wolfe conditions
(AJO) and (CUR).

Proof. The value

τu = sup{τ : (AJO) is satisfied by any t ∈ [0, τ ]}
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is positive and finite. Moreover, it satisfies ϕk(τu) = ϕk(0) + c1τuϕ
′
k(0): otherwise,

by continuity (AJO) would be satisfied by any t ∈ [τu, τu + ε] for some ε > 0. Since
τu is the supremum of a set of real numbers, there exists a sequence {tj}j∈N such
that tj > τu, tj → τu as j → +∞ and (AJO) is not satisfied at tj , that is

ϕk(tj) > ϕk(0) + c1tjϕ
′
k(0)

or equivalently ϕk(tj) − ϕk(τu) > c1(tj − τu)ϕ′k(0). Therefore, dividing both sides
by (tj − τu) and taking the limit as j → +∞ (which means tj → τu) leads to
ϕ′k(τu) ≥ c1ϕ

′
k(0). Since c2 > c1 and ϕ′k(0) < 0, ϕ′k(τu) > c2ϕ

′
k(0) holds and the

continuity of ϕ′k (f is continuously differentiable) implies that there exists δ > 0
such that ϕ′k(t) ≥ c2ϕ

′
k(0), i.e., (AJO) holds for any t ∈ [τu − δ, τu + δ]. Therefore,

the thesis follows just taking τ` = τu − δ. �

Algorithm 3 – Gradient type method with Wolfe line search

0. Choose x0 ∈ Rn and set k = 0

1. If ∇f(xk) = 0, then STOP

2. Choose dk ∈ Rn such that ∇f(xk)Tdk < 0

3. Compute tk > 0 satisfying the Wolfe conditions (AJO) and (CUR)

4. xk+1 = xk + tkd
k

5. k = k + 1 and go to 1

Theorem 4.5. Suppose that Algorithm 3 generates an infinite sequence {xk}. If f
is bounded by below and the angle θk formed by ∇f(xk) and dk satisfies θk ≥ π/2+ θ̄
for some fixed θ̄ ∈]0, π/2[ for all iterations k ∈ N, then each cluster point of {xk} is
a stationary point of f .

Proof. Since dk is a descent direction for f at xk and tk satisfies (AJO), then

0 ≤ −c1tk∇f(xk)Tdk = −c1tk‖∇f(xk)‖2‖dk‖2 cos θk ≤ f(xk)− f(xk+1).

The sequence {f(xk)} is monotone decreasing and it is bounded by below (since f
is such), thus it has a limit. As a consequence, f(xk)− f(xk+1)→ 0, which implies
tk‖∇f(xk)‖2‖dk‖2 cos θk → 0. Since cos θk ≤ cos(π/2 + θ̄) = − sin θ̄ < 0, then either
tk‖dk‖2 → 0 or ‖∇f(xk)‖2 → 0 holds.

Given any cluster point x̄ ∈ Rn of {xk}k∈N, there exists a subsequence {xkj}j∈N
such that xkj → x̄ as j → +∞. If ‖∇f(xk)‖2 → 0, then ‖∇f(x̄)‖2 = 0, i.e., x̄ is
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a stationary point of f . Therefore, suppose tk‖dk‖2 → 0 holds. Since tkj satisfies

(CUR), then d̂kj = dkj/‖dkj‖2 satisfies

∇f(xkj + tkjd
kj )T d̂kj ≥ c2∇f(xkj )T d̂kj .

By construction d̂kj ∈ B(0, 1), and thus d̂kj → d̄ for some d̄ ∈ B(0, 1) (eventually
taking a further subsequence). Moreover, xkj + tkjd

kj → x̄, and thus taking the
limit as j → +∞ in both sides of the above inequality leads to

∇f(x̄)T d̄ ≥ c2∇f(x̄)T d̄,

which reads also ∇f(x̄)T d̄ ≥ 0 since c2 > 0. On the other hand, ∇f(xkj )T d̂kj < 0
holds for all j, so that it must necessarily be ∇f(x̄)T d̄ = 0. Finally,

sin θ̄ ‖∇f(xkj )‖2 ≤ − cos θkj‖∇f(xkj )‖2 = ∇f(xkj )T d̂kj → 0

guarantees ‖∇f(x̄)‖2 = 0. �

4.2 Conjugate gradient methods

This family of methods provides a concrete alternative to choosing the steepest
descent direction by keeping track of the directions that have been exploited in the
previous iterations.

4.2.1 The linear case

The linear conjugate gradient method was originally designed to solve the linear
system Ax = b, where b ∈ Rn and A ∈ Rn×n is positive definite, through the
minimization of the strictly convex quadratic function f(x) = 1

2x
TAx− bTx.

Algorithm 4 – Linear conjugate gradient method

0. Choose x0 ∈ Rn and set k = 0

1. If rk = b−Axk = 0, then STOP

2. βk = rk
T
rk/rk−1T rk−1 if k ≥ 1

3. dk = rk + βkd
k−1 if k ≥ 1, otherwise d0 = r0

4. Compute tk = rk
T
rk/dk

T
Adk

5. xk+1 = xk + tkd
k

6. k = k + 1 and go to 1
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Since rk = −∇f(xk), the first iteration is the same of the gradient method with
exact line search, and afterwards the search direction is modified in such a way that
convergence can be achieved in a finite number of iterations.

Proposition 4.5. Suppose there exists k̄ ∈ N such that Algorithm 4 generates a
sequence {rk} with rk 6= 0 for any k < k̄. Then, the relationships

(i) rk
T
rj = 0

(ii) dk
T
Adj = 0

(iii) rk
T
dj = 0

(iv) dk
T
r0 = rk

T
rk

hold for any k ≤ k̄ and any j < k.

Condition (iii) guarantees that Algorithm 4 is a descent method:

∇f(xk)Tdk = −rkTdk = −rkT rk − βkrk
T
dk−1 = −rkT rk = −‖rk‖2

2
< 0.

Step 4 of the algorithm identifies the stepsize which minimizes the search function
ϕk(t) = f(xk + tdk) since tk > 0 and

ϕ′k(tk) = ∇f(xk + tkd
k)Tdk = (Axk + tkAd

k − b)Tdk = (tkAd
k − rk)Tdk

= tkd
kTAdk − rkT (rk + βkd

k−1) = tkd
kTAdk − rkT rk = 0.

Condition (i) guarantees that the algorithm stops after at most n iterations: if
rk 6= 0 for any k = 0, . . . , n − 1, then r0, . . . , rn are linearly independent, which
is impossible, unless rn = 0. Furthermore, under the same assumption, condition
(ii) implies that also d0, . . . , dk are linearly independent for any k < n. In fact, if
dk = γ0d

0 + · · ·+γk−1d
k−1 for some γ0, . . . , γk−1 ∈ R, then dk = 0 since A is positive

definite and dk
T
Adk = γ0d

kTAd0+· · ·+γk−1d
kAdk−1 = 0, thus γ0 = · · · = γk−1 = 0 as

d0, . . . , dk−1 are linearly independent by inductive hypothesis. This further property
of linear independence allows proving that the finite sequence {xk} is composed by
minimum points of f over nested affine subspaces that invade the whole Rn.

Theorem 4.6. Let {xk} be the sequence produced by Algorithm 4. Then,

f(xk) = min{f(x) : (x− x0) ∈ Sk}

with Sk denoting the vector subspace of Rn generated by d0, . . . , dk.

Proof. Taking ψk(α0, . . . , αk−1) = f(x0 +α0d
0 + · · ·+αk−1d

k−1), the minimization
of f over the affine subspace x0 + Sk can be stated as the unconstrained problem

min{ψk(α0, . . . , αk−1) : α0, . . . , αk−1 ∈ R}.
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Moreover, ψk is a strictly convex quadratic function since f is quadratic and strictly
convex. Therefore, the unique minimum point of the above problem is the unique
solution (ᾱ0, . . . ᾱk−1) of the linear system of equations ∇ψk(α0, . . . , αk−1) = 0.
Since both

0 =
∂ψk
∂αi

(ᾱ0, . . . ᾱk−1) = ∇f(x0 + ᾱ0d
0 + · · ·+ ᾱk−1d

k−1)Tdi

and ∇f(xk)Tdi = −rkTdi = 0 hold for any i = 0, . . . , k − 1, the uniqueness of the
solution implies xk = x0 + ᾱ0d

0 + · · ·+ ᾱk−1d
k−1. �

Since S1 ⊂ S2 ⊂ · · · ⊂ Sn = Rn, finite convergence follows from Theorem 4.6 as
well. An alternative proof of the theorem relies on the explicit expression

ψk(α0, . . . , αk−1) = f(x0) +

k−1∑
i=0

[
1

2
(di

T
Adi)α2

i − di
T

(b−Ax0)αi]

since the partial derivative

∂ψk
∂αi

(α0, . . . , αk−1) = (di
T
Adi)αi − di

T
(b−Ax0)

is zero if and only if αi = di
T

(b−Ax0)/di
T
Adi = di

T
r0/di

T
Adi = ri

T
ri/di

T
Adi = ti,

and therefore x0 + t0d
0 + · · ·+ tk−1d

k−1 = xk minimizes f over x0 + Sk.

4.2.2 The nonlinear case

The basic idea to adapt the conjugation approach to the minimization of general
nonlinear functions is simply to replace rk with −∇f(xk). Anyway, some troubles
emerge: no formula for the exact line search is available, and in case an inexact
search is performed there is no guarantee that dk = −∇f(xk) + βkd

k−1 is a descent
direction for f at xk. In fact,

∇f(xk)Tdk = −‖∇f(xk)‖2
2

+ βk∇f(xk)Tdk−1

leads to ∇f(xk)Tdk ≤ 0 if ∇f(xk)Tdk−1 ≤ 0, which is true when the exact line
search is performed, while the Wolfe conditions are not enough to guarantee it.
Actually, it is enough to replace (CUR) by the condition

|∇f(xk + tdk)Tdk| ≤ c2|∇f(xk)Tdk|, (StrCUR)

with 0 < c1 < c2 < 1/2 where c1 is the parameter chosen for (AJO), for dk to be a
descent direction within an inexact line search framework. Considering the search
function ϕk(t) = f(xk + tdk), (StrCUR) can be equivalently stated as

|ϕ′k(t)| ≤ c2|ϕ′k(0)|, (StrCUR)
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which clearly implies (CUR) since ϕ′k(0) < 0 and hence

ϕ′k(t) ≥ −|ϕ′k(t)| ≥ −c2|ϕ′k(0)| = c2ϕ
′
k(0).

(AJO) and (StrCUR) are generally referred to as the strong Wolfe conditions. The
existence of an interval of stepsizes that satisfy both of them can be proved in the
same way of Proposition 4.4 if ϕ′k(τu) ≤ 0, and exploiting in addition the continuity
of ϕ′k if ϕ′k(τu) > 0.

Proposition 4.6. If f is bounded by below, then each direction dk generated by
Algorithm 5 satisfies

−‖∇f(xk)‖2
2
/(1− c2) ≤ ∇f(xk)Tdk ≤ [(2c2 − 1)/(1− c2)]‖∇f(xk)‖2

2
.

Since any positive c2 satisfying c2 < 1/2 guarantees [(2c2 − 1)/(1− c2)] < 0, the
above right inequality guarantees that dk is a descent direction for f at xk. Clearly,
it is better not to choose c2 too close to 1/21.

Algorithm 5 – Nonlinear conjugate gradient method

0. Choose x0 ∈ Rn and set k = 0

1. If ∇f(xk) = 0, then STOP

2. βk = ∇f(xk)T∇f(xk)/∇f(xk−1)T∇f(xk−1) if k ≥ 1

3. dk = −∇f(xk) + βkd
k−1 if k ≥ 1, otherwise d0 = −∇f(x0)

4. Compute tk satisfying the strong Wolfe conditions (AJO) and (StrCUR)

5. xk+1 = xk + tkd
k

6. k = k + 1 and go to 1

Theorem 4.7. Suppose that Algorithm 5 generates an infinite sequence {xk}. If
f is bounded by below and the gradient mapping ∇f is Lipschitz, i.e., there exists
L > 0 such that

∀ x, y ∈ Rn : ‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2 ,

then there exists a subsequence {xkj} such that lim
j→+∞

‖∇f(xkj )‖2 = 0.

Corollary 4.1. Suppose that Algorithm 5 generates an infinite sequence {xk}. If f
is bounded by below, ∇f is a Lipschitz mapping and the sublevel set

Lf (x0) = {x ∈ Rn : f(x) ≤ f(x0)}

is compact, then at least one cluster point of {xk} is a stationary point of f .

1`(c) = (2c− 1)/(1− c) is a monotone increasing function with `(0) = −1 and `(1/2) = 0
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While in gradient methods with dk = −∇f(xk) the angle θk between dk and
∇f(xk) is always π, in conjugate gradient methods there is no guarantee that it
stays bounded away from π/2. If θk gets too close to π/2, the algorithm may slow
down meaningfully. In fact, θk ≈ π/2 implies

0 ≈− cos θk =−∇f(xk)Tdk/[‖∇f(xk)‖2‖dk‖2 ] ≥ [(1−2c2)/(1−c2)]‖∇f(xk)‖2/‖dk‖2

where the inequality is due to Proposition 4.6. Therefore, it is likely to have
‖∇f(xk)‖2 << ‖dk‖2 and also tk ≈ 0 since dk is almost orthogonal to the steepest
descent direction. If tk ≈ 0, then xk+1 ≈ xk and thus ∇f(xk+1) ≈ ∇f(xk) are also
probable. In such a case βk+1 ≈ 1 and ‖∇f(xk+1)‖2 ≈ ‖∇f(xk)‖2 << ‖dk‖2 lead to

dk+1 = −∇f(xk+1) + βk+1d
k ≈ −∇f(xk+1) + dk ≈ dk

that means θk+1 ≈ θk, so that the new iteration will be similar to the previous.
Therefore, if cos θk ≈ 0, then it is possible that the algorithm will perform a long
sequence of almost useless iterations.

The so-called restart technique tries to overcome this issue by performing a
steepest descent step after a certain number of iterations, that is setting βk = 0
every n̄ iterations. The algorithm performs a restart in the sense the effect of the
previous directions on the current one is cancelled. It is also possible to prove
that the subsequence of the restart iterates xkj satisfies the convergence property of
Theorem 4.7.

Relying on the alternative formula βk = rk
T

(rk − rk−1)/rk−1T rk−1 of the linear
case, the Polak-Ribiere variant of the method applies the restart technique approx-
imately by choosing βk = βPRk for

βPRk = ∇f(xk)T (∇f(xk)−∇f(xk−1))/∇f(xk−1)T∇f(xk−1)

as ∇f(xk) ≈ ∇f(xk−1) guarantees βPRk ≈ 0. Since βPRk < 0 may occur, another
variant of the method exploits βPR+

k = max{βPRk , 0}.


