
Chapter 2

Optimization, convex functions and sets

The basic ingredients of an optimization problem are a real-valued function and
a subset of its domain over which looking for the minima and/or maxima of the
function. Given any f : Rn → R and a set D ⊆ Rn, the minimization problem

(P ) min{f(x) : x ∈ D}

amounts to finding x̄ ∈ D such that f(x̄) ≤ f(x) for any x ∈ D. The infimum of
the set of real numbers {f(x) : x ∈ D} is called the optimal value of (P ) if it is
finite. If the infimum is −∞, then the minimization problem (P ) is called unbounded
by below. The corresponding definitions for maximization problems are given just
recalling that maximizing f over a set D is equivalent to minimizing −f over the
same set. Optimization problems are often called programs, so that optimization
and programming are synonyms in this framework.

Optimization problems can be classified according to the kind of function f and
set D which are involved. Unconstrained optimization deals with the case D = Rn,
while constrained optimization with the case D 6= Rn. If D is finite or countable,
then discrete optimization comes into play: combinatorial optimization deals specif-
ically with the case D ⊆ {0, 1}n, while integer programming with the generic case
D ⊆ Zn. If D is uncountable (and f is continuous), the most used term is contin-
uous optimization. If f is linear and D is a polyhedron, then linear programming is
used, otherwise nonlinear optimization or nonlinear programming.

These lecture notes focus on continuous nonlinear optimization both in the un-
constrained and constrained case.

2.1 Optimization and convexity

Definition 2.1. x̄ ∈ Rn is called a global minimum point of (P ) if it is feasible and
f(x̄) is the optimal value of (P ), namely if

(i) x̄ ∈ D (feasibility)

(ii) f(x̄) ≤ f(x) for any x ∈ D (optimality).
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A global minimum point x̄ is called strict if the strict inequality f(x̄) < f(x) holds
for any x ∈ D with x 6= x̄.

Example 2.1. Take n = 1, f(x) = −x2 and D = R: the optimal value does not
exist since f(x)→ −∞ as x→ ±∞, hence no global mimimum point may exist.

Take (P ) with f and D as in Example 1.6: the optimal value is 0 but no global
minimum point exists all the same.

Definition 2.2. x̄ ∈ Rn is called a local minimum point of (P ) if

(i) x̄ ∈ D (feasibility)

(ii) ∃ ε > 0 such that f(x̄) ≤ f(x) for any x ∈ D ∩B(x̄, ε) (local optimality).

A local minimum point x̄ is called strict if there exists ε′ > 0 such that f(x̄) < f(x)
holds for any x ∈ D ∩B(x̄, ε′) with x 6= x̄.

Clearly, any global minimum point is also a local minimum point but not vice
versa. Indeed, finding a global minimum may be much harder than finding a lo-
cal minimum: the distinction between global optimization and local optimization is
generally very meaningful.

Definition 2.3. D ⊆ Rn is called convex if λx+ (1− λ)y ∈ D for any x, y ∈ D and
any λ ∈ [0, 1].

Example 2.2. Rn, ∅, B(x, ε), [`, u] = {x ∈ Rn : `i ≤ xi ≤ ui, i = 1, ..., n} with
`, u ∈ Rn are convex sets in Rn.

Definition 2.4. Let D ⊆ Rn be convex. Then, f : Rn → R is called convex on D if

∀ x, y ∈ D, λ ∈ [0, 1] : f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

f is called strictly convex on D if the strict inequality

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)

holds whenever x, y ∈ D and λ ∈ [0, 1] satisfy x 6= y and λ 6= 0, 1.
f is called [strictly] concave on D if −f is [strictly] convex on D. If D = Rn,

then f is simply called [strictly] convex/concave, omitting the (convex) domain of
convexity/concavity.

Notice that f is convex on D if and only if given any k ∈ N the inequality

f(
k∑
i=1

λixi) ≤
k∑
i=1

λif(xi)

holds for any x1, . . . , xk ∈ D and any λ1, . . . , λk ∈ [0, 1] such that λ1 + · · ·+ λk = 1.

Theorem 2.1. Let D ⊆ Rn be convex. Then,



Properties of convex functions (11/11/2015) 19

(i) If f is convex on D, then any local minimum point of (P ) is also a global
minimum point.

(ii) If f is strictly convex on D, there exists at most one minimum point of (P ).

Proof. (i) Ab absurdo, suppose there exists a local minimum point x̄ ∈ D which
is not a global minimum point. Thus, there exists x ∈ D such that f(x) < f(x̄).
Consider x(λ) = λx + (1− λ)x̄: it belongs to D for any λ ∈ [0, 1] by the convexity
of D. Furthermore, the convexity of f implies

f(x(λ)) ≤ λf(x) + (1− λ)f(x̄) < λf(x̄) + (1− λ)f(x̄) = f(x̄)

for any λ 6= 0. Since x(λ)→ x̄ as λ→ 0, for any ε > 0 there exists λ̄ ∈ [0, 1[ such that
x(λ̄) ∈ B(x̄, ε). Thus, x̄ is not a local minimum point contradicting the assumption.

(ii) Suppose there exist x̄, x̂ ∈ D which are both minimum points of (P ). Thus,
f(x̂) = f(x̄). Take any λ ∈]0, 1[ and x(λ) = λx̂+ (1− λ)x̄. If x̄ 6= x̂, then the strict
convexity of f implies

f(x(λ)) < λf(x̂) + (1− λ)f(x̄) = λf(x̄) + (1− λ)f(x̄) = f(x̄) = f(x̂)

so that neither x̄ nor x̂ is a minimum point of (P ). �

The theorem shows that local and global optimization coincide if f and D are
both convex, therefore the distinction between convex optimization and nonconvex
optimization is very meaningful as well.

Proposition 2.1. Let D ⊆ Rn be convex and f be convex on D. Then, the set of
all the minimum points of (P ) is convex

Proof. Take any two minimum points x̄, x̂ ∈ D (x̂ 6= x̄) and any λ ∈ [0, 1]. Then,
x(λ) = λx̂+ (1− λ)x̄ ∈ D by the convexity of D, while the convexity of f implies

f(x(λ)) ≤ λf(x̂) + (1− λ)f(x̄) = λf(x̄) + (1− λ)f(x̄) = f(x̄) = f(x̂) ≤ f(x(λ))

where the last inequality is due to the optimality of x̄. Thus, f(x(λ)) = f(x̄) = f(x̂)
and therefore x(λ) is a minimum point as well. �

2.2 Properties of convex functions

Proposition 2.2. Let D ⊆ Rn be convex. Then, f is convex on D if and only if the
restriction of the epigraph of f to D, namely

epiD(f) = {(x, t) : x ∈ D, t ≥ f(x)}

is a convex set in Rn+1.
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Proof. Only if) Take any (x, t), (y, τ) ∈ epiD(f) and any λ ∈ [0, 1]:

λt+ (1− λ)τ ≥ λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y)

where the last inequality is due to the convexity of f . Moreover, λx+ (1− λ)y ∈ D
since D is convex, and thus (λx+ (1− λ)y, λt+ (1− λ)τ) ∈ epiD(f).

If) Take any x, y ∈ D and any λ ∈ [0, 1]. Therefore, (x, f(x)), (y, f(y)) ∈ epiD(f)
and the the convexity of epiD(f) imply (λx+(1−λ)y, λf(x)+(1−λ)f(y)) ∈ epiD(f),
which reads

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). �

Proposition 2.3. Let D ⊆ Rn be convex and f be convex on D. Then, the inter-
section of the α-sublevel set of f with D, namely

{x ∈ Rn : f(x) ≤ α} ∩D

is a convex set for any α ∈ R.

Proof. Take any x, y ∈ D and any λ ∈ [0, 1]: λx+ (1− λ)y ∈ D since D is convex
and moreover

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). ≤ λα+ (1− λ)α = α �

Example 2.3. Take n = 1, f(x) = x3 and D = R. The α-sublevel set

{x ∈ Rn : x3 ≤ α} =]−∞, 3
√
α]

is convex, while f is not convex. In fact, it is enough to take x = −1, y = 1/2 and
λ = 1/3 to get f(λx+ (1− λ)y) = f(0) = 0 > −1/4 = λf(x) + (1− λ)f(y).

Proposition 2.4. Let D ⊆ Rn be convex and fi : Rn → R be convex on D for any
i ∈ I for some index set I.

(i) If I is finite, then
(∑
i∈I

fi

)
(x) =

∑
i∈I

fi(x) is convex on D;

(ii)
(

sup
i∈I

fi

)
(x) = sup

i∈I
fi(x) is convex on D.

Proof. (i) It is enough to exploit the definition of convexity for each fi summing
all the inequalities.

(ii) Take any x, y ∈ D and any λ ∈ [0, 1]. Given any ε > 0, there exists k = k(ε) ∈ I
such that(

sup
i∈I

fi

)
(λx+ (1− λ)y) ≤ fk(λx+ (1− λ)y) + ε

≤ λfk(x) + (1− λ)fk(y) + ε

≤ λ
(

sup
i∈I

fi

)
(x) + (1− λ)

(
sup
i∈I

fi

)
(y) + ε
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and therefore(
sup
i∈I

fi

)
(λx+ (1− λ)y) ≤ λ

(
sup
i∈I

fi

)
(x) + (1− λ)

(
sup
i∈I

fi

)
(y)

follows since ε is arbitrary. �

Theorem 2.2. Let D ⊆ Rn be a convex set with a nonempty interior. If f is convex
on D, then f is continuous on intD.

Theorem 2.3. Let f be differentiable on D. Then, f is convex on D if and only if

∀ x, y ∈ D : f(y) ≥ f(x) +∇f(x)T (y − x).

Proof. Only if) Take any x, y ∈ D and any λ ∈ [0, 1]: the definition of convexity
can be equivalently stated as

f(y)− f(x) ≥ [f(x+ λ(y − x))− f(x)]/λ.

By Proposition 1.6 lim
λ→0

[f(x+ λ(y − x))− f(x)]/λ = ∇f(x)T (y − x) Therefore, the

required inequality follows from the above one just taking the limit as λ→ 0+.

If) Take any x, y ∈ D and any λ ∈ [0, 1]: the following inequalities follow from the
assumption just considering the pairs of points x, λx+(1−λ)y and y, λx+(1−λ)y:

f(x) ≥ f(λx+ (1− λ)y) + (1− λ)∇f(λx+ (1− λ)y)T (x− y),

f(y) ≥ f(λx+ (1− λ)y) + λ∇f(λx+ (1− λ)y)T (x− y).

Summing λ times the first inequality with (1−λ) times the second inequality gives

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y). �

Roughly speaking, the theorem states that the convexity of f means exactly
that the graph of f is “above” the tangent hyperplane to the graph at (x, f(x))
everywhere on D for any x ∈ D.

An analogous characterization holds for strict convexity.

Theorem 2.4. Let f be differentiable on D. Then, f is strictly convex on D if and
only if

∀ x, y ∈ D s.t. x 6= y : f(y) > f(x) +∇f(x)T (y − x).

Theorem 2.5. Let f be twice continuously differentiable (on Rn). Then, f is convex
if and only if ∇2f(x) is positive semidefinite for any x ∈ Rn, i.e.,

∀ x, y ∈ Rn : yT∇2f(x)y ≥ 0.
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Proof. Only if) Take any x, y ∈ Rn and any t ∈ R: the second-order Taylor’s
formula and Theorem 2.3 guarantee

1

2
t2yT∇2f(x)y + r(f,x)(ty) = f(x+ ty)− f(x)− t∇f(x)T y ≥ 0

and therefore (supposing y 6= 0)

1

2
yT∇2f(x)y +

r(f,x)(ty)

‖ty‖2
2

‖y‖2
2
≥ 0.

Taking the limit as t→ 0, the inequality yT∇2f(x)y ≥ 0 follows.

If) Take any x, y ∈ Rn. By Theorem 1.8 (i) there exists t ∈ [0, 1] such that

f(y)− f(x)−∇f(x)T (y − x) =
1

2
(y − x)T∇2f(x+ t(y − x))(y − x) ≥ 0

where the inequality is due to the positive semidefiniteness of ∇2f(x + t(y − x)).
Therefore, Theorem 2.3 guarantees that f is convex. �

A similar sufficient condition for strict convexity can be proved in the same way.

Theorem 2.6. Let f be twice continuously differentiable (on Rn). If ∇2f(x) is
positive definite for any x ∈ Rn, i.e.,

∀ x, y ∈ Rn : yT∇2f(x)y > 0,

then f is strictly convex.

Example 2.4. Take n = 1 and f(x) = x4: f is strictly convex but ∇2f(0) =
f ′′(0) = 0.

Theorem 2.7. Let f(x) = 1
2x

TQx+ bTx+ c (with Q = QT ). Then,

(i) f is convex if and only if Q is positive semidefinite;

(ii) f is strictly convex if and only if Q is positive definite.

Proof. (i) and the “if part” of (ii) are just Theorems 2.5 and 2.6 for the quadratic
function f since ∇2f(x) = Q for any x ∈ Rn.

(ii) Only if) The residual in the second-order Taylor’s formula is zero, that is

1

2
t2yTQy = f(x+ ty)− f(x)− t∇f(x)T y

for any x, y ∈ Rn. By Theorem 2.4 the right-hand side is always positive, hence
Q is positive definite. �


