Chapter 1

Topology and calculus background

We consider R™ endowed with the scalar (or inner) product

n
aly = Z TiYi
i=1

which induces the Euclidean norm

], = VaTz =

The following properties hold for any z,y € R™ and any o € R:

2], >0

oz, = |al|lz]l,

lz|l, =0 <= =0
Iz +yll, < llzll, + llyll,

(Il =yl < llzll> + [lyll)

lzTy| < ||lz|,llyll,- (Schwarz inequality).

In turn, the Euclidean norm induces the well-known Euclidean distance between the
points x € R™ and y € R™:
d(z,y) = [lz =yl

and the following properties can be deduced from the above ones:
d(z,y) >0
dlz,y) =0 <= z=y
d(z,y) <d(z,z)+d(z,z).
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1.1 Sequences

A family of points {2*}rey € R (ice., {2!,22,..., 2% ... }) is called a sequence. For
instance, the family of points ¥ = (1/k,1/k?) is a sequence in R2.

Definition 1.1. Z € R” is the limit of a sequence {x*} ey if for each € > 0 there
exists k € N such that d(z*,z) < ¢ for all k > k, or equivalently

Ve>0 3keN st |2F—z||,<e VEk>E

If it exists, the limit of a sequence is unique. Standard notations to denote a limit are

the following: klim 2* =z, 2% — Z (k — 400 below the arrow is often omitted).
—+00

Example 1.1. The limit of the sequence (1/k,1/k?) is & = (0, 0), while the sequence

z¥ = (1/k, (—1)*) does not have a limit. Take the sequence obtained just considering

odd indices: z',23,2% ... This sequence converges to (0, —1). Analogously, the

sequence obtained considering just even indices converges to (0, 1).
Definition 1.2. {z%};cn C {2¥}1en is a subsequence if kj — 400 as j — +o0.
Definition 1.3. 7 € R™ is a cluster point of {x¥} ey if there exists a subsequence

{xFi }jen such that z is its limit, i.e., lim 2% =z, or equivalently
J—+o0

Ve>0 VkeN 3k>k st [ofF —z|, <e.

If a sequence has a limit, then it is the unique cluster point of the sequence.

Example 1.2. The last sequence of Example 1.1 has 2 cluster points: (0,1) and
(0, —1), while the sequence y* = (k,1/k) does not have any cluster point.

Theorem 1.1. (Bolzano-Weierstrass) If the norm of all the points of a se-
quence {:L'k}keN do not exceed a threshold value, i.e., there exists M > 0 such that
|z¥l, < M holds for all k € N, then the sequence has at least one cluster point.
1.2 Topological properties in the Euclidean space
The open ball of centre x € R™ and radius € > 0 is the set
B(z,e) ={y eR" : |y —all, <e}.

Definition 1.4.

(i) D C R™ is called open if

VeeD Je>0 st B(z,e)CD.

(17) x € D is called an interior point of D if

de>0 st. B(x,e) CD.
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The set of the interior points of D is called the interior of D and it is generally
denoted by int D. Notice that a set D is open if and only if D = int D.

Example 1.3. B(z,¢), R", () are open sets in R™ while the interval | — 1,1[ is an
open set in R.

Proposition 1.1.
(i) The union of a family of open sets is an open set.
(13) The intersection of a finite family of open sets is an open set.
The finiteness of the family is crucial for the intersection property:
400
() B(0,1/k) = {0}.
k=1
Definition 1.5.
(1) D CR™is called closed if R"\ D ={x € R” : x ¢ D} is open.
(17) x € R™ is called an closure point of D if
Ve>0 : B(z,e)ND #0.
The set of the closure points of D is called the closure of D and it is generally
denoted by cl D or D.
Proposition 1.2.
(i) D is closed if and only if D = cl D.

(1) D is closed if and only if the limit of any convergent sequence contained in D
belongs to D as well, i.e.,

V{t*}enCD st JzeR" st 2¥—z : zeD.

Example 1.4. R", 0, {y € R" : |y —z|, < e} = B(z,¢) are closed sets in R"
while the interval [—1,1] is a closed set in R. There exist sets which are neither
closed nor open, for instance the interval [-1,1[ in R and

D =[-1,0] x [-1,1]U B(0,1) C R%.

In fact, (—1 —¢,0) ¢ D but (-1 —¢,0) € B((—1,0),¢) for any € > 0 so that D is
not open, and z¥ = (1 — 1/k,0) € D for any k € N while z¥ — (1,0) ¢ D so that D
is not closed.

Proposition 1.3.

(1) The union of a finite family of closed sets is an closed set.
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(13) The intersection of a family of closed sets is a closed set.

The finiteness of the family is crucial for the union property:

+o0

U B(0,1-1/k) = B(0,1).

k=2
Definition 1.6. x € R" is called a boundary point of D if both
B(z,e)ND#0 and B(z,e) ¢ D
hold for any € > 0.

The set of the boundary points of D is called the boundary (or frontier) of D and

it is generally denoted by dD. Notice that 9D = D N (R™\ D).
Proposition 1.4. D C R" is both closed and open if and only if D = R™ or D = ().
Definition 1.7.

(i) D C R™ is called bounded if

IM>0 st. YeeD : |z|, <M.

(7i) D C R™ is called compact if it is bounded and closed.

The set D in Example 1.4 is bounded but it is not compact (since it is not closed).

The Bolzano-Weierstrass’ theorem can be enhanced in the following way.

Theorem 1.2. (Bolzano-Weierstrass) A set is compact if and only if any se-
quence contained in the set has at least one cluster point and all its cluster points
belong to the set.

1.3 Functions of several variables

1.3.1 Continuity

Definition 1.8. f : R™ — R is called continuous at * € R if f(z) is the limit of
f(x) asx — 7, ie.,

Ve>0 36>0 st |z—z|,<d = |f(z)— f(@)| <e.

f is continuous on a set D C R™ if it is continuous at every z € D.

Proposition 1.5. f is continuous at & € R"™ if and only if any sequence {x*}1ren
such that 2% — T satisfies f(z*) — f(Z).

Example 1.5. f(x) = ||z||, is a continuous function on R", f(z1, 1) = sin(rzix2)
is a continuous function on R2.
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Theorem 1.3. (Weierstrass) Let D C R" be compact and f : R™ — R continuous
on D. Then, there exist at least one minimum point T € D and one maximum point
z €D for f over D, i.e.,

f(Z) =min{f(z) : x € D} and f(Z)=max{f(x) : x € D}.

Proof. Let ¢ = inf{f(z) : x € D} € [-00+ oo] and consider any minimizing
sequence, that is any {xk}keN such that f (:z:k) — £. Since D is compact, there exist
a subsequence {z*} ey and # € D such that 2% —  (as j — +00) by Theorem 1.2.
Since f is continuous, f(z*/) — f(#) and therefore f(z) = ¢ by the uniqueness of
the limit. As a consequence, { # —oo and f(Z) = min{f(z) : =z € D}. The
existence of & can be proved analogously. O

Example 1.6. Take n = 1, f(x) = e ® and D = Ry: f is continuous on D,
inf{f(x) : x € D} =0 but there exists no x € D such that f(z) = 0. Indeed, D is
not compact as it is not bounded.

1.3.2 Partial derivatives and differentiability

A point d € R™ such that ||d||, =1 is also called a direction, and the set
{(Z+1td : teR}

describes the line of direction d passing through £ € R”. If only ¢t € R, are
considered, the set describes the corresponding half-line.

Just like the case n = 1, the key tool for developing calculus for a function
f:R™ — R is the incremental ratio

icr(.a,a)t) = [f(z +td) = f(z)]/t.

Definition 1.9. f has a derivative at Z in the direction d if the derivative of the
function of one variable icr(;z 4 at t = 0 exists, that is %ir% [f(z +td) — f(2)]/t
—

exists. In that case i -
z — f(z
OF () L1 = F(@)
ad t—0 t
is called the (directional) derivative of f at T in the direction d. For n = 1 there
exists a unique (up to the sign) direction and the directional derivative coincides
with the (usual) derivative and it is also denoted by f/(Z).

If d is one of the vectors of the canonical basis {e1,...,e,} of R™, namely d = ¢;,
then the corresponding directional derivative is called partial derivative and denoted
by 0f(x)/0x; rather than 0f(x)/de;. Indeed, the derivative can be computed con-
sidering f as a function of x; while the other variables are kept fixed like parameters:

Bf (i’) — lim f(.fl, e Tim1, T+ Ty, - ,i’n) — f(.f)
83@ t—0 t
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Definition 1.10. If f has all the partial derivatives at £ € R", the vector

@, L@ @)

V@) = (83:1 0x9 " Oz,

is called the gradient of f at .

Example 1.7. Take n = 2 and f(z1,x2) = sin(mzi22):

of af

0xy axQ( ) T COS(7T$1$2).

——(x) = mxg cos(mx122),
Other directional derivatives can be defined just considering the limit of the
incremental ratio as t — 0T, that is ¢ — 0 for only positive ¢ (¢ > 0).
Definition 1.11. The limit
i td) — (3

t—0+ t

is called the one-sided directional derivative of f at T in the direction d.
Clearly, f'(Z;d) = 0f(Z)/0d if the latter exists but this is not always the case.

Example 1.8. Consider f(z) = ||z|, and take = 0:

[f (@ +td) = f(2)]/t = |[td],/t = |t]l|dll, /t = sgn(?)]|d]]

where sgn(t) denotes the sign of ¢ (sgn(t) = 1 if ¢ > 0 and sgn(t) = —1 if ¢t < 0).
Therefore, f'(Z;d) = ||v]|, = 1 while df(Z)/dd does not exist.

Unlike the case n = 1, the existence of the directional/partial derivatives does
not guarantee the continuity of the function.

Example 1.9. Take n = 2 and

23w/ (2] +23)]7  if (21, 22) # (0,0)
f(xl, x2) =
0 if (551,562) == (0,0)

Consider the parabola zo = aw% for x1 # 0:
fay, ax) = [axl/(z] + o’z)] = o® /(1 4+ *)*.

Therefore, f is not continuous at = (0,0): take the sequence z¥ = (1/k, 1/k?) to
get ¥ — Z while f(2¥) = 1/4. On the other hand, f has the directional derivative
at Z in each direction d:

of

%(i‘) = lim [B3d2dy /t2(t2d} + d3))?/t = lim tdida/((t2d + d2)? = 0.
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Definition 1.12. f is called differentiable at & € R™ if there exists a linear function
L :R™ — R such that

VoeR" : f(z+v)=f(z)+ L(v) +r(v)

for some residual function r such that r(v)/||v||, — 0 as |[v||, — 0. If f is differen-
tiable at Z, L is called the differential of f at T. Notice that both L and r depend
not only on f but also on the considered point Z.

f is differentiable on a set D C R™ if it is differentiable at every z € D.

Recall that L : R™ — R is linear if
Vo,ycR"Va,B€R : Llax + fy) = aL(x) + BL(y).
L is linear if and only if there exists £ € R™ such that L(x) = (Tz for all x € R".
Proposition 1.6. Suppose f is differentiable at T € R™. Then,

(i) f is continuous at T;

(ii) f has directional derivatives at T in each direction d and ad( z) = L(d);

(i) L(d) =V f(z)'d
Proof. (i) It is enough to apply Definition 1.12 just taking h =z — Z as * — 7.
(74) Take any direction d € R™. Then, Definition 1.12 implies

O () = im (7(2 +td) — [(@)/1
= lim (L(td) + r(td))/t
= lgn (tL(d) + r(td))/t
L(d) + 1ltg% r(td)/t
) = L(d) + lim sgn(t) (r(td))/|[td],) = L(d).
(iii) Since d =Y _ dje;, (ii) implies

=1

of

) = U0 = 2 ) = 3 e =3 dpl (0= Ffaa.

Proposition 1.6 (iii) allows to restate the definition of differentiability through (the
first order) Taylor’s formula:

Taylor’s formula f(z +v) = f(z) + Vf(@)Tv+7r@) (r(v)/||v], = 0)

Considering any v = x — & = 0, Taylor’s formula states that f(z) can be approx-
imated by an affine function, namely f(z) ~ f(z) + Vf(Z)? (z — ), and the closer
x is to T the better the approximation is. Indeed, the set

{(z, f(@)+ Vf(@) (z—17) : z€R"}
is the tangent hyperplane to the graph {(z, f(x)) : = € R"} of f at (z, f(Z)).
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Theorem 1.4. Let T € R™ and suppose f has all the partial derivatives at each
x € B(Z,e) for some e > 0. Then, if the functions x — Jf(x)/0x; are continuous
at T for alli=1,...,n, then [ is differentiable at T.

Example 1.10. Take n = 2 and

Baa/(@} +a3) if (@1,2) # (0,0)
f(z1,22) =
0 if (1‘1,1‘2) = (0,0)

and consider z = (0,0): f is continuous but not differentiable at z. In fact, the
derivative of f at z in the direction d is

of v _ .

O () = Yy [P (& + )] 1 =

since 1 = ||d||> = d 4+ d3. As a consequence, 0f(z)/0z1 = Of(Z)/0x, = 0 while

Of(%)/0d # 0 for all d # eq, ez so that Of(z)/dd # V f(z)Td (see Proposition 1.6).
Notice that of

dxy

is not continuous at z (in accordance with Theorem 1.4): z* = (1/k,1/k) — Z while

Of(z*)/0x1 = 1/2 and 0f(z)/0z1 = 0.

(2) = 22123/ (2% +23)° (¢ #7)

Definition 1.13. f is called continuously differentiable at T € R™ if there exists
e > 0 such that f is differentiable at each x € B(Z,¢) and the partial derivatives are
continuous at . f is continuously differentiable on a set D C R"™ if it is continuously
differentiable at every z € D.

Theorem 1.5. (mean value) Suppose f is continuously differentiable (on R™).
Given any T,v € R"™, there exists t €]0, 1] such that

f(@+v) = f(Z) + V(@ +tv) .

Theorem 1.6. (upper estimate) Suppose f is continuously differentiable (on R™)
and the gradient mapping V f is Lipschitz with modulus L > 0, i.e.,

Va,u R V(@) - Vi), < Lz - vl
Then, any x,v € R™ satisfy f(z+v) < f(z) + V(@ +v) v+ Lijv|?/2.
Proposition 1.7. (chain rules)

(i) If g : R™ — R is differentiable at = € R™ and h : R — R has a derivative at
f(Z), then f = ho g is differentiable at T and V f(z) = h'(¢(Z))Vg(Z).

(i) Let h = (h1,...,hy) : R = R™ and g : R™ — R. If the functions h; : R — R
have a derivative at t € R for all i = 1,....,m and g is differentiable at
h(t) € R™, then g o h has a derivative at t and (go h) (t) = Vg(h(®))TH (%)
where W' (t) = (R (D), ..., h,#)T.
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Definition 1.14. Let F = (f1,..., fm) : R® — R™. If the functions f; : R" — R
have all the partial derivatives at £ € R™ for all ¢ = 1, ..., n, then

of1,_ of1 ,_
Char ) | e | Ofe
8:101( ) axn( )

is called the Jacobian matrixz of F at Z.

1.3.3 Second-order derivatives

If a function f : R™ — R is differentiable on the whole R", then each directional
derivative exists at each point x € R™. In this case, the derivative in the direction
d is the function 0f/0d : R™ — R such that (0f/dd)(z) = 0f(x)/dd. If it has a
derivative in the direction v, then

230y -ty (S-S

is generally denoted by 92 f(x)/0vdd.

Definition 1.15. f has second-order partial derivatives at £ € R™ if it has the
(first-order) partial derivatives at each = € B(Z,¢) for some ¢ > 0 and they have
partial derivatives at & as well, namely

0% f . [3f

:1 _—
8xi8xj(x) 150 Ox;j

(T +tv) — ;lfj(i;) /t

foralli,j = 1,...,n. If i = j, then the derivative is generally denoted by 9% f(z)/0z?.
For n = 1 there exists a unique second-order directional derivative which coincides
with the (usual) second-order derivative and it is also denoted by f”(Z).

Example 1.11. Take the function of Example 1.7:
of of

a—ml(az) = mxg cos(mr1x2), 8—@(3’:) = mxy cos(mx1T2),
o*f 2 , o*f
g0, (z) = weos(mx122) — M1 T SIn(TXT L) = 02109 x
>*f 22 o f 22

() = —m*x5 sin(mz20), (z) = —w°xf sin(mxi22).

Theorem 1.7. (Schwarz) Let & € R™ and suppose f has the second-order partial

derivatives 0 f /0x;0x; and 8 f /0x;0x; at each x € B(Z,¢) for some e > 0. If both
the derivatives are continuous at T, then

0% f 0% f
S (T) = 5 ——
0x;0x; 0z ;0x;

(7).
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Definition 1.16. If f has second-order partial derivatives at & € R™, then

(92f (3—3) R 8f T
0z? 0x10xy,
V2f(z) = : : : e R™"
of . of
| Gman @ g @

is called the Hessian matriz of f at T.

Definition 1.17. f is called twice continuously differentiable at x € R™ if it has
second-order partial derivatives at each z € B(Z,e) for some € > 0 and they are
continuous at Z. f is twice continuously differentiable on a set D C R™ if it is twice
continuously differentiable at every x € D.

Notice that the Hessian matrix of a twice continuously differentiable function is
symmetric and therefore all its eigenvalues are real numbers.

Theorem 1.8. (Taylor’s formulas) Suppose f is twice continuously differentiable
(on R™). The following statements hold for any & € R™:

(i) Vv eR" 3¢ €)0,1[ such that f(z+v) = f(z)+ V(@) Tv+ 30T V2f(Z +tv)v;
(ii)) Vv eR™ : f(Z+v) = f(Z)+ V(@) v+ 30TV (Z)v+r(v)
for some residual function r such that r(v)/|jv]|2 = 0 as [Jv]|, — 0.

Definition 1.18. f is called quadratic if there exist Q@ € R™*" b € R” and ¢ € R
such that

l n n
f(:c):ix Qr+b x+c:§Z Z quwkl'g—i-z brxr + c.

k=1 (=1 k=1

Without loss of generality, () can be taken symmetric, eventually replacing it by
(Q+ QT)/2 since qrexpae + qurtore = (qee + Qer)Tre/2 + (qre + qor)Texr /2.

The partial derivatives of a quadratic function can be easily computed:

8% (Z QivTe + Z kal’k> +b; = (Z qiz$5> +b; = (Qx); +b;

(=1

2
ajjgx;@:;%(g;)(@ a@(z e+ ) = ay.

Therefore, Vf(x) = Qz + b and V2f(x) = Q.

Considering any v = x — Z =~ 0, the second-order Taylor’s formula states that
f(x) can be approximated by a quadratic function, namely f(z) ~ ¢(x) with

e o™V @) (e — o),

q(z) = f(@) + V(@) (x - 7) + 5
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that is

q(z) = %xTV2f(§c)x + (Vf(z) - V2f(56):i’)Tx +(f(@) - V@) z+ %:ETV2f(§:)i”).

Example 1.12. Take n = 2 and f(x1,22) = —] — 2%

viw = ( ). va@ = T g

—2x9
Considering z = (0, —2/5) the quadratic approximation of f(z) near Z is given by

q(z) = =223 — 1229/5 — 20/25.



