Initial test for the class of Numerical Methods and Optimization

- (1) Find intervals containing solutions to the following equations:
 - (a) $x 2^{-x} = 0;$ (b) $3x^3 - e^x = 0;$
 - (c) $x^3 2x^2 4x + 1 = 0$.
- (2) Find local maxima and minima, if any, of the following functions:
 - (a) $f(x) = e^{-x^2}$; (b) $f(x) = 2x - e^{-x}$; (c) $f(x) = \frac{x-2}{x^2+1}$.
- (3) Find the Taylor polynomial $p_2(x)$ of degree 2 for the the following functions around $x_0 = 0$, and give a bound to the error $|f(x) p_2(x)|$ for $|x| \le 0.5$:
 - (a) $f(x) = e^x$;
 - (b) $f(x) = \cos x$
 - (c) $f(x) = \sqrt[3]{x+1}$.
- (4) Given $x, y \in \mathbb{R}$, find $z \in \mathbb{R}$, $x \leq z \leq y$, satisfying the mean value formula on [x, y] for the following functions and pairs of points:
 - (a) $f(t) = t^2$, x = -1, y = 2;
 - (b) $f(t) = \sin t$, $x = 0, y = \pi/2$;
 - (c) $f(t) = e^t$, x = -1, y = 1.
- (5) The following iterative method is proposed to approximate $\sqrt[3]{2}$:

$$x_{i+1} = x_i - \frac{x_i^3 - 2}{12}.$$

Show that any sequence obtained for an x_0 choosen in the interval [1,2] converges.

- (6) Compute two iterates of the Newton's method applied to the equation $x^3 2 = 0$, starting from $x_0 = 2$.
- (7) Use Gaussian elimination, without reordering equations, to solve the following linear systems:

(a) $\begin{cases} x_1 - x_2 + 2x_3 = 1\\ -x_1 + 3x_3 = -4, \\ 2x_1 + 3x_2 - x_3 = -3 \end{cases}$ (b) $\begin{cases} x_1 - x_2 + 2x_3 = -3\\ -x_1 - 4x_2 + 3x_3 = 4\\ 2x_1 + 3x_2 - x_3 = -3 \end{cases}$

- (8) Show that the function $f(\boldsymbol{x}) = (\sqrt{|x_1|} + \sqrt{|x_2|})^2$ is not a norm for the vectors $\boldsymbol{x} \in \mathbb{R}^2$.
- (9) Compute the eigenvalues and the eigenvectors of the following matrices, and say if they are diagonalizable:

$$\left[\begin{array}{rrr} 3 & 2 \\ -1 & 0 \end{array}\right], \quad \left[\begin{array}{rrr} 3 & 1 \\ -1 & 1 \end{array}\right].$$

(10) Compute the interpolating polynomial of degree 2 for the function $f(x) = \cos(x)$ in the points $x_0 = -\pi/2, x_1 = 0, x_2 = \pi/2$.