216 Applied Numerical Linear Algebra

Suppose without loss of generality that z; is converging to ej, so we can
write ; = e1 - d;, where ||d;]|2 = ¢ < 1. To prove cubic convergence, we need
to show that @;,1 = €1 + diy1 with ||diy1]]2 = O(c®).

We first note that

1= LILL =(e1+ (li)T(el +d;) = eTel + Zelrd,i + dfdi =1+42d; + ¢
so that d;; = —¢?/2. Therefore
i = 'I‘TATZ = (e + dz-)TA(e1 +d;) = e{Ael + 261TA(]1- + d,-TA(Li = a1 —n,
where 7 = —2e7 Ad; — dl Ad; — ar€® — df Ad;. We see that
9l < faale? + A allds 3 < 20 Alloe?, (5.12)

50 pi = a1 — 1 = a1 | O(e?) is a very good approximation to the eigenvalue
7.
Now we can write

Y1 — (A—pD) e
[wa e iy 17
N _Odl_pi7042_pi’.”704n_ﬂj
because (A — p;I)~1 :diag(!)
Q@5 — Pi
_[14+da dip din }T
e —piloe—pi T o — s
because x; — e1 + d;
o [1- 62/2 (]1‘2 dm r
B n ’ag—al+v7"”’a"—0q+n}
because p; — o1 — 1 and dip — —€2/2
1=é)2 dizn
B n A —e/2)(z—0rtn) 7
dint) T
(1 —€/2)(on —(11+77)]
2
= #'(@4»&44)-

To bound ||dis1]l2, we note that we can bound each denominator using
la; —ar + | > gap(1, A) — |n], so using (5.12) as well we get

|z ||l < 2[|A]2€®
T=72)(gap(L, &) — i) ~ (1= @/2)(gap(L, A) — Z[A[)

or ||diy1ll2 = O(e®). Finally, since 2,1 = €1 +diy1 = (€1 4+dij1)/ller +diyalle,
we see ||dit1]lz — O(e%) as well. O

lldirall2 < (

The Symmetric Eigenproblem and SVD 217

5.3.3. Divide-and-Conquer

This method is the fastest now available if you want all eigenvalues and eigen-
vectors of a tridiagonal matrix whose dimension is larger than about 25. (The
exact threshold depends on the computer.) 1t is quite subtle to implement in a
numerically stable way. Indeed, although this method was first introduced in
1981 [58], the “right” implementation was not discovered until 1992 [125, 129]).
This routine is available as LAPACK routines ssyevd for dense matrices and
sstevd for tridiagonal matrices. This routine uses divide-and-conquer for ma-
trices of dimension larger than 25 and automatically switches to QR iteration
for smaller matrices (or if eigenvalues only are desired).

We first discuss the overall structure of the algorithm, and leave numerical
details for later. Let

I a1 b1
b1

Um—1 bm -1
brn-1 m | bm

b | Gmi1 bt
b1
bn—1

ar b
b1

Um—1 bm -1
b1 G — bm

Am41 — bm bm+1

bm+1

b1 On

218 Applied Numerical Linear Algebra

0
0

:“)1 79J+bm- 1 [o,...,o,1,1,o,...,on{Tol }”ermmf
0
Lo

Suppose that we have the eigendecompositions of 77 and Ts: T; QlAzQLT
These will be computed recursively by this same algorithm. We relate the
eigenvalues of T to those of Ty and Ty as follows.

_ | o T
T { 0 T } [bmov
Q1/MQT 0] T
= + bvv
{ 0 Q2A2QF
_ | @ 0 A \[ef o
= { 0 Qs As + bpuu 0 é s
where
QT o last column of QT
U= T | V= T
0 @3 first column of Q3
sincev =[0,...,0,1,1,0,...,0]T. Therefore, the eigenvalues of T are the same
as those of the similar matrix D + puu’ where D = [/Bl ADQ | is diagonal,

p = by, is a scalar, and w is a vector. Henceforth we will assume without loss
of generality that the diagonal dy, ..., d, of D is sorted: d, < --- <d;.

To find the eigenvalues of D+ puu”, assume first that D — I is nonsingular,
and compute the characteristic polynomial as follows:

det(D + pun’ — M) = det((D — AD)(I + p(D — X) " uu®)). (5.13)

Since D — M is nonsingular, det(7 + p(D — X\)~'uu’) = 0 whenever X is an
eigenvalue. Note that I+ p(D —X)~tuu? is the identity plus a rank-1 matrix;
the determinant of such a matrix is easy to compute:

LeMmMA 5.1. If z and y are vectors, det(I + zyT) = 1+ y 2.
The proof is left to Question 5.14.

Therefore

2
u;

det(I + p(D—N)"ruuT) = 11 puT(D-N)"tu =1 }pid_ T =100, (5.14)
-1t

The Symmetric Eigenproblem and SVD 219

2}

T
|
1
1
|
I
I
I
1
i
T
1
T
|
1
I
|
1
I
I
1
I
|
:
2

I
i
i
I
I
i
I
-4 i
I
I
I
|
1

-1 0

Fig. 5.2. Graph of f(A) =1+ % } zf)\ | —5)\ | "1.

and the eigenvalues of T are the roots of the so-called secular equation f(\) = 0.
If all d; are distinct and all u; = 0 (the generic case), the function f(A) has
the graph shown in Figure 5.2 (for n =4 and p > 0).

As we can see, the line y = 1 is a horizontal asymptote, and the lines
X = d; are vertical asymptotes. Since f'(A) =p> & (d—‘ujw > 0, the function
is strictly increasing except at A = d;. Thus the roots of f(\) are interlaced
by the d;, and there is one more root to the right of d; (di — 4 in Figure 5.2).
(If p < 0, then f(}) is decreasing and there is one more root to the left of d,,.)
Since f()\) is monotonic and smooth on the intervals (d;, d;y1), it is possible
to find a version of Newton’s method that converges fast and monotonically
to each root, given a starting point in (d;,d;1). We discuss details later in
this section. All we need to know here is that in practice Newton converges
in a bounded number of steps per eigenvalue. Since evaluating f(\) and f/(\)
costs O(n) flops, finding one eigenvalue costs O(n) flops, and so finding all n
eigenvalues of D + puu® costs O(n?) flops.

It is also casy to derive an expression for the eigenvectors of D + uu”.

LEMMA 5.2. If o is an eigenvalue of D+ puu”, then (D —od)~'u is ils eigen-
vector. Since D — ol is diagonal, this costs O(n) flops to compute.

Proof.

(D4 puuD)[(D — al) ™4 (D — ol + ol + puuT)(D —al)

wt oD — ad) -+ ulpuT(D — ad))

220 Applied Numerical Linear Algebra

ut oD —al) u—u
since pul (D —al)ru + 1= fla) =1
= a[(D—-al 'y asdesired. O

Evaluating this formula for all n eigenvectors costs O(n?) flops. Unfor-
tunately, this simple formula for the eigenvectors is not numerically stable,
because two very close values of a; can result in nonorthogonal computed
eigenvectors u;. Finding a stable alternative took over a decade from the orig-
inal formulation of this algorithm. We discuss details later in this section.

The overall algorithm is recursive.

ALGORITHM 5.2. Pinding eigenvalues and eigenvectors of a symmetric tridi-
agonal matriz using divide-and-conquer:

proc de_eig (T, Q,A) Sfrom input T compute
outputs Q and A where T — QAQT

if T is1-by-1
return @ = 1,A =T

else
. 71 0 P
form T — { 0 T } + b v

call de_eig (T1,Q1, A1)

call de_eig (To, Q2, A2)

form D + p’uuT from A1, Ag, @1,Q2

find eigenvalues A and eigenvectors Q' of D + puu”

form Q = { @ 0] - Q' = eigenvectors of T
0 Q2
return @ and A
endif

We analyze the complexity of Algorithm 5.2 as follows. Let t(n) be the
number of flops to run dc_eig on an n-by-n matrix. Then

t(n) 2t(n/2) for the 2 recursive calls to dc_eig(7T;, Qs, As)
+0(n?) to find the eigenvalues of D + puul
+0(n?) to find the eigenvectors of D + puu”

. Q1 0 '
fe-n® to multiply @ = Q.
wiova-[@ 8] g

If we treat @1, @2, and @' as dense matrices and use the standard matrix
multiplication algorithm, the constant in the last line is ¢ = 1. Thus we see
that the major cost in the algorithm is the matrix multiplication in the last
line. Tgnoring the O(n?) terms, we get £(n) = 2t(n/2) 4+ cn®. This geometric
sum can be evaluated, yielding t(n) ~ c%ns (see Question 5.15). In practice, ¢

The Symmetric Eigenproblem and SVD 221

is usually much less than 1, because a phenomenon called deflation makes Q'
quite sparse.

After discussing deflation in the next section, we discuss details of solv-
ing the secular equation, and computing the eigenvectors stably. Finally, we
discuss how to accelerate the method by exploiting FMM techniques used in
clectrostatic particle simulation [122]. These sections may be skipped on a first
reading.

Deflation

So far in our presentation we have assumed that the d; are distinct, and the
u; nonzero. When this is not the case, the secular equation f(A\) = 0 will
have k < n vertical asymptotes, and so k < n roots. But it turns out that
the remaining n — k eigenvalues are available very cheaply: If d; = diy1, or
if u; = 0, one can easily show that d; is also an eigenvalue of D | puu” (see
Question 5.16). This process is called deflation. In practice we use a threshold
and deflate d; either if it is close enough to d;;q or if w; is small enough.

In practice, deflation happens quite frequently: In experiments with ran-
dom dense matrices with uniformly distributed eigenvalues, over 15% of the
eigenvalues of the largest D+ puu” deflated, and in experiments with random
dense matrices with eigenvalues approaching 0 geometrically, over 85% de-
flated! It is essential to take advantage of this behavior to make the algorithm
fast [58, 208].

The payoft in deflation is not in making the solution of the secular equation
faster; this costs only O(n?) anyway. The payofl is in making the matrix
multiplication in the last step of the algorithm fast. For if u; — 0, then the
corresponding eigenvector is ¢;, the ith column of the identity matrix (see
Question 5.16). This means that the ith column of @' is e;, so no work is
needed to compute the ith column of @ in the two multiplications by @1 and
Q2. There is a similar simplification when d; = d;y1. When many ecigenvalues
deflate, much of the work in the matrix multiplication can be eliminated. This
is borne out in the numerical experiments presented in section 5.3.6.

Solving the Secular Equation

When some w; is small but too large to deflate, a problem arises when trying to
use Newton’s method to solve the secular equation. Recall that the principle
of Newton’s method for updating an approximate solution A; of f(\) =0 is

1. to approximate the function f(A) near A = \; with a linear function [(A),
whose graph is a straight line tangent to the graph of f(\) at A = A,

2. to let Aj11 be the zero of this linear approximation: {(Aj4+1) = 0.

The graph in Figure 5.2 offers no apparent difficulties to Newton’s method,
because the function f()) appears to be reasonably well approximated by

222 Applied Numerical Linear Algebra

2

-4

i
i
i
i
[
-6 I
0 2 4 6 1.99 1.995 2 2005 201

Fig. 5.3. Graph of f(A\) =1+ 110:; + % + % + iu:;

straight lines near each zero. But now consider the graph in Figure 5.3, which
differs from Figure 5.2 only by changing w? from .5 to .001, which is not
nearly small enough to deflate. The graph of f()\) in the left-hand figure is
visually indistinguishable from its vertical and horizontal asymptotes, so in the
right-hand figure we blow it up around one of the vertical asymptotes, A = 2.
We see that the graph of f(A\) “turns the corner” very rapidly and is nearly
horizontal for most values of A\. Thus, if we started Newton’s method from
almost any \g, the linear approximation /(\) would also be nearly horizontal
with a slightly positive slope, so A; would be an enormous negative number, a
useless approximation to the true zero.

Newton’s method can be modified to deal with this situation as follows.
Since f(A) is not well approximated by a straight line {(z), we approximate it
by another simple function A(z). There is nothing special about straight lines;
any approximation h()) that is both easy to compute and has zeros that are
easy to compute can be used in place of [(z) in Newton’s method. Since f())
has poles at d; and d;11 and these poles dominate the behavior of f()\) near
them, it is natural when seeking the root in (d;, diy1) to choose h(A) to have
these poles as well, i.e.,

o C1 Co
LS s S e S

There are several ways to choose the constants ¢, ¢z, and c3 so that h(\)
approximates f(\); we present a slightly simplified version of the one used
in the LAPACK routine slaed4 [170, 44]. Assuming for a moment that we
have chosen ¢1, ¢, and c3, we can easily solve h(A) = 0 for A by solving the
equivalent quadratic equation

c1(diy1 — A) + ca(di — A) + ca(di — A)(diy1 — A) = 0.

The Symmetric Eigenproblem and SVD 223

Given the approximate zero A;, here is how we compute ¢, c2, and c3 so that
for A near \;

n 2
c1 c2 - ~ FON) Uy
pramy Sl e RO ~ F(N) 1+pZ;dk7X

Write

i UIZ n UZ
f@):l+§:dk_k+—§: Y
k=1 k=i+t1

=1+ +¢2().

For X € (di, dit1), ¥1(X) is a sum of negative terms and t2(A) is a sum of pos-
itive terms. Thus both 1 () and 2()\) can be computed accurately, whereas
adding them together would likely result in cancellation and loss of relative
accuracy in the sum. We now choose ¢; and é; so that

hi(\) = 61+dc_1 salisfies

a

ha(Aj) = 41(N;) and Ri(N) =91 (N)- (5.15)

This means that the graph of h1()\) (a hyperbola) is tangent to the graph of
P1(A) at A = Aj. The two conditions in equation (5.15) are the usual conditions
in Newton’s method, except instead of using a straight line approximation, we
use a hyperbola. Tt is easy to verify that e; = 4| ()\)(d; — Aj)? and & =
Pi(A;) — YL (A)(ds — Aj). (See Question 5.17.)

Similarly, we choose ¢ and é; so that

N C2 .
. — 4 satisfies
ha(A) = &+ A satisfies

ha(Aj) = ¥2(N;) and ho(N) = 9h(A)). (5.16)

Finally, we set
h(X) 1+ hi(N) + ha(N)
(I +é1+é2) +

1 (&)
(Iz‘ - A + (Ippr] -
C2

C1
= gt—vt+t—7.
di— X dip1— A
ExAMPLE 5.8. For example, in the example in Figure 5.3, if we start with
Ao = 2.5, then

1.1111-107% 1.1111-1078
5 3.
and its graph is visually indistinguishable from the graph of f()) in the right-
hand figure. Solving h(A1) = 0, we get Ay = 2.0011, which is accurate to 4
decimal digits. Continuing, Ao is accurate to 11 digits, and A3 is accurate to

all 16 digits. o

A(N) +1,

224 Applied Numerical Linear Algebra

The algorithm used in LAPACK routine slaed4 is a slight variation on
the one described here (the one here is called the Middle Way in (170]). The
LAPACK routine averages two to three iterations per eigenvalue to converge
to full machine precision, and never took more than seven steps in extensive
numerical tests.

Computing the Eigenvectors Stably

Once we have solved the secular equation to get the eigenvalues a; of D+ puu®,
Temma 5.2 provides a simple formula for the eigenvectors: (D — a;I) lu.
Unfortunately, the formula can be unstable [58, 88, 232], in particular when two
cigenvalues a; and ;11 are very close together. Intuitively, the problem is that
(D — ;1) w and (D — a;111)"'n are “very close” formulas yet are supposed
to yield orthogonal eigenvectors. More precisely, when a; and a;1 are very
close, they must also be close to the d; between them. Therefore, there is a
great deal of cancellation, either when evaluating d; — o; and d; — ;41 or when
evaluating the secular equation during Newton iteration. Either way, d; — o
and d; — a; 41 may contain large relative errors, so the computed eigenvectors
(D — ;) w and (D — aiq1) " u are quite inaccurate and far from orthogonal.

Early attempts to address this problem [88, 232] used double precision
arithmetic (when the input data was single precision) to solve the secular
equation to high accuracy so that d; — a; and d; — ;41 could be computed to
high accuracy. But when the input data is already in double precision, this
means quadruple precision would be needed, and this is not available in many
machines and languages, or at least not cheaply. As described in section 1.5,
it is possible to simulate quadruple precision using double precision [232, 202].
This can be done portably and relatively efficiently, as long as the underlying
floating point arithmetic rounds sufficiently accurately. In particular, these
simulations require that fl(a &+ b) = (a £ b)(1 + &) with |§] = O(e), barring
overflow or underflow (see section 1.5 and Question 1.18). Unfortunately, the

Jray 2, YMP, and C90 do not round accurately enough to use these efficient
algorithms.

Finally, an alternative formula was found that makes simulating high pre-
cision arithmetic unnecessary. It is based on the following theorem of Léwner
(127, 177).

THEOREM 5.10. Lowner. Let D = diag(dy,...,d,) be diagonal with d,, <
s < dy. Let oy < -+ < g be given, satisfying the interlacing property

Ay < Oy <o <dipg < Qi1 < diy < <o+ <dp <.

Then there is a vector @ such that the oy are the exact eigenvalues of D =

The Symmetric Eigenproblem and SVD 225

D +aa”. The entries of . are given by

[e —d) 17
’ Hj"‘:Lj:i(dj —di) '

Proof. 'The characteristic polynomial of D can be written both as det([) -
AI) = [T5—1 (e —) and (using equations (5.13) and (5.14)) as

det(D—A1) = []](d;—N '(”Zd,]ﬁ
=1 =177
i o
= (d; =N -1 —)
= = di— A
j=i
FlOTT =N a2
i=1
j=i

Setting A = d; and equating both expressions for dct(ﬁ — M) yield

[[ta;—dy=ai- [(d—di)
=1 i1
j—i
or

~2 H?:I(aj - dt)

47 = =
(dj — di)

§=1, j=i
Using the interlacing property, we can show that the fraction on the right is
positive, so we can take its square root to get the desired expression for ;. O

Here is the stable algorithm for computing the eigenvalues and eigenvectors
(where we assume for simplicity of presentation that p = 1).

ALGORITHM 5.3. Compute the eigenwalues and eigenvectors of D -+ uu™ .

Solve the secular equation 1+ 37, % 0 to get the eigenvalues
o of D+ uu”.

Use Léowner’s theorem to compute 4 so that the «; are “exact”
eigenvalues of D + 44T .

Use Lemma 5.2 to compute the eigenvectors of D + i’ .

