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Learning in finite games

Can equilibria be dynamically learnt?
General framework
— mixed strategies
— successive repetitions of the (same) game

— players have complete knowledge of past actions

Fictitious play (Brown 1949, 1951)
players:
— keep track of all the previous rounds
— compute the average behaviour of the other players

— best respond to the average behaviour

average behaviour = average of the (mixed) strategies players chose in all rounds



Learning through averaging

S,' = {1, m,-} (f = 1, ceey I‘l)

Ficititious play process
(1) ol :(g%,...,o‘%) GAml % "'Am,,, k=1

k
Q compute &%, = <Z af,-)/k
. =t . } — oktle R(6%)
@ o "t is a best response to 6%, (a¥T1e Ri(6%;))

Q@ k= k+1 and go back to 2

Knowledge of other players’ utility functions is not required

Lack of a stopping criterion (other than “o* is a Nash equilibrium”)
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1/11 paper | scissors | rock
paper 0 -1 1
scissors 1 0 -1
rock -1 1 0
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convergence to the unique Nash equilibrium ((1/3,1/3,1/3),(1/3,1/3,1/3))?
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Fictitious play in a gentle rock-paper-scissors (Shapley 1964)

I/11 Left | Middle | Right
Top (0,0) | (1,0) | (0,1)
Middle | (0,1) | (0,0) | (1.0)
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k k
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not really! — asympotically stable limit cycling



Convergence of the fictitious play process

A bunch of games

The fictitious play process converges to a Nash equilibrium for




Convergence of the fictitious play process

A bunch of games

The fictitious play process converges to a Nash equilibrium for

— two player zero-sum games (Robinson 1951)




Convergence of the fictitious play process

A bunch of games

The fictitious play process converges to a Nash equilibrium for
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(Robinson 1951)
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Convergence of the fictitious play process

A bunch of games

The fictitious play process converges to a Nash equilibrium for
— two player zero-sum games (Robinson 1951)
— two player 2x 2 games satisfying the diagonal property (Miyasawa 1961)
— two player 2xn nondegenerate games (Berger 2005)
— games that are solvable by the IESDS algorithm (Milgrom-Roberts 1991)
— ordinal potential games (Monderer-Shapley 1996))

diagonal property:
ai1 + ax # a2 + a» and bi1 + by # biz + bo1 where 1 (a11,011) | (a12.b12)

2 (a21.001) | (a22.b20)

nondegenerate = unique best response to pure strategies

rate of convergence in two player zero-sum games (Robinson 1951)
0 < wa(o%) — wi(of) = O(1/ V/k) with m= my + mp — 2

(wi(o%) < value of the game < wy(0%))
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Another learning approach: avoid regretting

General framework
— successive repetitions of the (same) game
— pure strategies are played (no fictitious environment)

— players have complete knowledge of past actions

Regret matching (Hart-Mas Colell 2000)
players:
— keep track of all the previous rounds
— measure the regret of not having played other strategies

— choose a pure strategy in a probabilistic fashion according to regrets

higher regret calls for lower probability
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past rounds what if  regret wrt

it. k strategies utility @ @ ON®)
1 ONO 5 5 1 0 -4
2 @ @ 5 5 0 0 0
3 3 @ 3 5 5 2 2
4 ONO 4 7 5 3 1
5 -4

up to now what overall regret of choosing (3) for player 17

draw a pure strategy for round k =5 from the probability distribution

P(D)=5/1k, P(D)=0, p(®)=1-5/1«

(for some suitable p > 0)



Learning through no regrets

Regret matching process
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Learning through no regrets

Regret matching process

QO A=(x,....x})eS x-S, k=1 (Si={1,...m}i=1,..n)
@ compute regrets R¥(s, x¥) for all s € S;, s # x¥
k+1
= x
© draw x ™ from pk € A,
©Q k=k+1 and go back to 2
v
previous rounds where player i chose strategy x/ € Si: T/ (x/') = {t < k : x/ = x}

regret of choosing x/ over any other s € S; in the previous rounds:

i
Rf(s,xF) = [ Z (ui(s,x%;) — u,-(x,-k,xi,»))] (la]* = max{a, 0})
fETI.k(xl.k)
probability distribution:
plk(s) - le(s Xlk)/,uf( S 7é Xik7 prk(xlk) =1 72 p/k(s)
xk#seS;

/zf< > k(m; — 1) max{ |u;j(xj, x—;) — ui(x/,x_;)| : xi,x €S, x_j € S_;}
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Empirical distribution z : S — R provided by the process after k rounds:
ze(x) = {t <k : x"=x}|/k

(zk(x) = frequency of the strategy profile x in the first k rounds)

Convergence of the regret matching process

The sequence of empirical distributions z, converges almost surely as k — 400 to
the set of correlated equilibria

Correlated equilibria are probability distribution over S providing some conditions of
equilibrium for strategies not necessarily “independent” of each other (Aumann 1974)

{Nash equilibria in mixed strategies} C {correlated equilibria}
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Correlation devices and correlated equilibria

Let (N, (Si)ien, (ui)icn) be a finite strategic game.

Definition
A correlation device is a probability measure/distribution over S, namely any
z: S5 — Ry such that Z
z(x) = 1.
X€ES

Definition

A correlated equilibrium is a correlation device z such that any players i € N
satisfies the incentive constraints

> z(xi, %) (i, x-i) — i/, x-7)) 2 0
X_i€S_;
for any x;, x! € ;.

X; is a best response to the mixed strategies of the other players induced by the correlation device

provided that the pure strategy x; is played (induced mixed strategy=conditional probability)
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Mixed strategies and the geometry of correlated equilibria

Mixed strategies as correlated equilibria

Let o* = (07,...,0}) be a mixed strategy profile. Then, o* is a Nash equilibrium
in mixed strategies if and only if the correlation device z given by
z(x) = 0*(x1)...0%(x,) is a correlated equilibrium.

(the incentive constraints collpase to the definition of Nash equilibrium)

— The set CE of correlated equilibria is always a polytope — linear programming

— The convex hull of the set of Nash equilibria can be a proper subset of CE

he/she | football | dancing
football (2,1) (0,0)
dancing | (0,0) (1.2)

1/3 2/3
h/s [ F| D h/s [ F| D h/s | F D h/s | F D
Fl1]o0 F o]0 23] F |2/9]4/9 Fl1/4] 0
D|[o]oO D|o]1] s D |[1/9]2/9 D [1/4]1/2

< Nash equilibria — correlated equilibrium



