Algorithmic game theory

Laurea Magistrale in Computer Science 2024/25

Lecture 9

Can equilibria be dynamically learnt?

Can equilibria be dynamically learnt?

General framework

- mixed strategies
- successive repetitions of the (same) game
- players have complete knowledge of past actions

Can equilibria be dynamically learnt?

General framework

- mixed strategies
- successive repetitions of the (same) game
- players have complete knowledge of past actions

Fictitious play (Brown 1949, 1951)

Can equilibria be dynamically learnt?

General framework

- mixed strategies
- successive repetitions of the (same) game
- players have complete knowledge of past actions

Fictitious play (Brown 1949, 1951) players:

- keep track of all the previous rounds
- compute the average behaviour of the other players
- best respond to the average behaviour

average behaviour = average of the (mixed) strategies players chose in all rounds

Learning through averaging

$$S_i = \{1, ..., m_i\} \ (i = 1, ..., n)$$

Ficititious play process

② compute
$$\hat{\sigma}_{-i}^{k} = \left(\sum_{\ell=1}^{k} \sigma_{-i}^{\ell}\right)/k$$

③ σ_{i}^{k+1} is a best response to $\hat{\sigma}_{-i}^{k}$ $\left(\sigma_{i}^{k+1} \in R_{i}(\hat{\sigma}_{-i}^{k})\right)$ $\Rightarrow \sigma^{k+1} \in R(\hat{\sigma}^{k})$

$$\bullet$$
 $k = k + 1$ and go back to 2

Knowledge of other players' utility functions is not required

Lack of a stopping criterion (other than " σ^k is a Nash equilibrium")

I/II	paper	scissors	rock
paper	0	-1	1
scissors	1	0	-1
rock	-1	1	0

$$h(p,q) = p^{T}Aq = \begin{cases} p_{1}(q_{3} - q_{2}) + p_{2}(q_{1} - q_{3}) + p_{3}(q_{2} - q_{1}) \leftarrow \max_{p} \\ q_{1}(p_{2} - p_{3}) + q_{2}(p_{3} - p_{1}) + q_{3}(p_{1} - p_{2}) \leftarrow \min_{q} \end{cases}$$

I/II	paper	scissors	rock
paper	0	-1	1
scissors	1	0	-1
rock	-1	1	0

$$h(p,q) = p^{T}Aq = \begin{cases} p_{1}(q_{3} - q_{2}) + p_{2}(q_{1} - q_{3}) + p_{3}(q_{2} - q_{1}) \leftarrow \max_{p} \\ q_{1}(p_{2} - p_{3}) + q_{2}(p_{3} - p_{1}) + q_{3}(p_{1} - p_{2}) \leftarrow \min_{q} \end{cases}$$

it.
$$k$$
 chosen strategies σ^k average behaviours $\hat{\sigma}^k$
1 (1,0,0) (0,1,0) (1,0,0) (0,1,0)

I/II	paper	scissors	rock
paper	0	-1	1
scissors	1	0	-1
rock	-1	1	0

$$h(p,q) = p^{T} Aq = \begin{cases} p_{1}(q_{3} - q_{2}) + p_{2}(q_{1} - q_{3}) + p_{3}(q_{2} - q_{1}) \leftarrow \max_{p} \\ q_{1}(p_{2} - p_{3}) + q_{2}(p_{3} - p_{1}) + q_{3}(p_{1} - p_{2}) \leftarrow \min_{q} \end{cases}$$

it.
$$k$$
 chosen strategies σ^k average behaviours $\hat{\sigma}^k$ 1 (1,0,0) (0,1,0) (1,0,0) (0,1,0) 2 (0,0,1) (0,1,0)

I/II	paper	scissors	rock
paper	0	-1	1
scissors	1	0	-1
rock	-1	1	0

$$h(p,q) = p^{T} A q = \begin{cases} p_{1}(q_{3} - q_{2}) + p_{2}(q_{1} - q_{3}) + p_{3}(q_{2} - q_{1}) \leftarrow \max_{p} \\ q_{1}(p_{2} - p_{3}) + q_{2}(p_{3} - p_{1}) + q_{3}(p_{1} - p_{2}) \leftarrow \min_{q} \end{cases}$$

```
it. k chosen strategies \sigma^k average behaviours \hat{\sigma}^k

1 (1,0,0) (0,1,0) (1,0,0) (0,1,0)

2 (0,0,1) (0,1,0) (1/2,0,1/2) (0,1,0)
```

I/II	paper	scissors	rock
paper	0	-1	1
scissors	1	0	-1
rock	-1	1	0

$$h(p,q) = p^{T} Aq = \begin{cases} p_{1}(q_{3} - q_{2}) + p_{2}(q_{1} - q_{3}) + p_{3}(q_{2} - q_{1}) \leftarrow \max_{p} \\ q_{1}(p_{2} - p_{3}) + q_{2}(p_{3} - p_{1}) + q_{3}(p_{1} - p_{2}) \leftarrow \min_{q} \end{cases}$$

```
it. k chosen strategies \sigma^k average behaviours \hat{\sigma}^k 1 (1,0,0) (0,1,0) (1,0,0) (0,1,0) 2 (0,0,1) (0,1,0) (1/2,0,1/2) (0,1,0) 3 (0,0,1) (1,0,0)
```

I/II	paper	scissors	rock
paper	0	-1	1
scissors	1	0	-1
rock	-1	1	0

$$h(p,q) = p^{T} A q = \begin{cases} p_{1}(q_{3} - q_{2}) + p_{2}(q_{1} - q_{3}) + p_{3}(q_{2} - q_{1}) \leftarrow \max_{p} \\ q_{1}(p_{2} - p_{3}) + q_{2}(p_{3} - p_{1}) + q_{3}(p_{1} - p_{2}) \leftarrow \min_{q} \end{cases}$$

```
it. k chosen strategies \sigma^k average behaviours \hat{\sigma}^k
1 \quad (1,0,0) \quad (0,1,0) \quad (1,0,0) \quad (0,1,0)
2 \quad (0,0,1) \quad (0,1,0) \quad (1/2,0,1/2) \quad (0,1,0)
3 \quad (0,0,1) \quad (1,0,0) \quad (1/3,0,2/3) \quad (1/3,2/3,0)
```

I/II	paper	scissors	rock
paper	0	-1	1
scissors	1	0	-1
rock	-1	1	0

$$h(p,q) = p^{T} Aq = \begin{cases} p_{1}(q_{3} - q_{2}) + p_{2}(q_{1} - q_{3}) + p_{3}(q_{2} - q_{1}) \leftarrow \max_{p} \\ q_{1}(p_{2} - p_{3}) + q_{2}(p_{3} - p_{1}) + q_{3}(p_{1} - p_{2}) \leftarrow \min_{q} \end{cases}$$

```
it. k chosen strategies \sigma^k average behaviours \hat{\sigma}^k
1 \quad (1,0,0) \quad (0,1,0) \quad (1,0,0) \quad (0,1,0)
2 \quad (0,0,1) \quad (0,1,0) \quad (1/2,0,1/2) \quad (0,1,0)
3 \quad (0,0,1) \quad (1,0,0) \quad (1/3,0,2/3) \quad (1/3,2/3,0)
4 \quad (0,1,0) \quad (1,0,0)
```

I/II	paper	scissors	rock
paper	0	-1	1
scissors	1	0	-1
rock	-1	1	0

$$h(p,q) = p^{T} Aq = \begin{cases} p_{1}(q_{3} - q_{2}) + p_{2}(q_{1} - q_{3}) + p_{3}(q_{2} - q_{1}) \leftarrow \max_{p} \\ q_{1}(p_{2} - p_{3}) + q_{2}(p_{3} - p_{1}) + q_{3}(p_{1} - p_{2}) \leftarrow \min_{q} \end{cases}$$

I/II	paper	scissors	rock
paper	0	-1	1
scissors	1	0	-1
rock	-1	1	0

$$h(p,q) = p^{T} A q = \begin{cases} p_{1}(q_{3} - q_{2}) + p_{2}(q_{1} - q_{3}) + p_{3}(q_{2} - q_{1}) \leftarrow \max_{p} \\ q_{1}(p_{2} - p_{3}) + q_{2}(p_{3} - p_{1}) + q_{3}(p_{1} - p_{2}) \leftarrow \min_{q} \end{cases}$$

```
it. k chosen strategies \sigma^k average behaviours \hat{\sigma}^k
1 \quad (1,0,0) \quad (0,1,0) \quad (1,0,0) \quad (0,1,0)
2 \quad (0,0,1) \quad (0,1,0) \quad (1/2,0,1/2) \quad (0,1,0)
3 \quad (0,0,1) \quad (1,0,0) \quad (1/3,0,2/3) \quad (1/3,2/3,0)
4 \quad (0,1,0) \quad (1,0,0) \quad (1/4,1/4,1/2) \quad (1/2,1/2,0)
5 \quad \cdots \quad \cdots \quad \cdots \quad \cdots
```

convergence to the unique Nash equilibrium ((1/3,1/3,1/3),(1/3,1/3,1/3))?

1/11	Left	Middle	Right
Тор	(0,0)	(1,0)	(0,1)
Middle	(0,1)	(0,0)	(1,0)
Down	(1, <mark>0</mark>)	(0,1)	(0,0)

I/II	Left	Middle	Right
Тор	(0,0)	(1,0)	(0,1)
Middle	(0,1)	(0,0)	(1,0)
Down	(1, <mark>0</mark>)	(0,1)	(0,0)

it.
$$k$$
 chosen strategies σ^k average behaviours $\hat{\sigma}^k$ 1 (1,0,0) (0,1,0) (1,0,0) (0,1,0)

I/ <mark>II</mark>	Left	Middle	Right
Тор	(0,0)	(1,0)	(0,1)
Middle	(0,1)	(0,0)	(1,0)
Down	(1, <mark>0</mark>)	(0,1)	(0,0)

```
it. k chosen strategies \sigma^k average behaviours \hat{\sigma}^k 1 (1,0,0) (0,1,0) (1,0,0) (0,1,0) 2 (1,0,0) (0,0,1)
```

I/ <mark>II</mark>	Left	Middle	Right
Тор	(0,0)	(1,0)	(0,1)
Middle	(0,1)	(0,0)	(1,0)
Down	(1, <mark>0</mark>)	(0,1)	(0,0)

```
it. k chosen strategies \sigma^k average behaviours \hat{\sigma}^k
1 \qquad (1,0,0) \quad (0,1,0) \qquad (1,0,0) \quad (0,1,0)
2 \qquad (1,0,0) \quad (0,0,1) \qquad (1,0,0) \quad (0,1/2,1/2)
```

I/ <mark>II</mark>	Left	Middle	Right
Тор	(0,0)	(1,0)	(0,1)
Middle	(0,1)	(0,0)	(1,0)
Down	(1, <mark>0</mark>)	(0,1)	(0,0)

it. <i>k</i>	chosen strategies σ^k	average b	ehaviours $\hat{\sigma}^k$
1	(1,0,0) $(0,1,0)$	(1,0,0)	(0,1,0)
2	(1,0,0) $(0,0,1)$	(1,0,0)	(0,1/2,1/2)
3	(1,0,0) $(0,0,1)$	(1,0,0)	(0,1/3,2/3)

I/II	Left	Middle	Right
Тор	(0,0)	(1,0)	(0,1)
Middle	(0,1)	(0,0)	(1,0)
Down	(1, <mark>0</mark>)	(0,1)	(0,0)

no actual loss \rightarrow not a zero-sum game

convergence to the unique Nash equilibrium ((1/3,1/3,1/3),(1/3,1/3,1/3))?

I/II	Left	Middle	Right
Тор	(0,0)	(1,0)	(0,1)
Middle	(0,1)	(0,0)	(1,0)
Down	(1, <mark>0</mark>)	(0,1)	(0,0)

no actual loss \rightarrow not a zero-sum game

convergence to the unique Nash equilibrium ((1/3,1/3,1/3),(1/3,1/3,1/3))? not really! \longrightarrow asymptoically stable limit cycling

A bunch of games

The fictitious play process converges to a Nash equilibrium for

A bunch of games

The fictitious play process converges to a Nash equilibrium for

two player zero-sum games

(Robinson 1951)

A bunch of games

The fictitious play process converges to a Nash equilibrium for

- two player zero-sum games (Robinson 1951)
- two player 2×2 games satisfying the diagonal property (Miyasawa 1961)

diagonal property:

$$a_{11} + a_{22} \neq a_{12} + a_{21}$$
 and $b_{11} + b_{22} \neq b_{12} + b_{21}$ where

1/11	1	2
1	(a_{11}, b_{11})	(a_{12},b_{12})
2	(a_{21}, b_{21})	(a_{22}, b_{22})

A bunch of games

The fictitious play process converges to a Nash equilibrium for

- two player zero-sum games (Robinson 1951)
- two player 2×2 games satisfying the diagonal property (Miyasawa 1961)
- two player 2×n nondegenerate games (Berger 2005)

diagonal property:

$$a_{11}+a_{22} \neq a_{12}+a_{21}$$
 and $b_{11}+b_{22} \neq b_{12}+b_{21}$ where

I/II	1	2
1	(a_{11}, b_{11})	(a_{12},b_{12})
2	(a_{21}, b_{21})	(a_{22}, b_{22})

nondegenerate = unique best response to pure strategies

A bunch of games

The fictitious play process converges to a Nash equilibrium for

- two player zero-sum games (Robinson 1951)
- two player 2×2 games satisfying the diagonal property (Miyasawa 1961)
- two player 2×n nondegenerate games (Berger 2005)
- games that are solvable by the IESDS algorithm

(Milgrom-Roberts 1991)

diagonal property:

$$a_{11} + a_{22} \neq a_{12} + a_{21}$$
 and $b_{11} + b_{22} \neq b_{12} + b_{21}$ where

1	I/II	1	2
	1	(a_{11}, b_{11})	(a_{12},b_{12})
	2	(a_{21}, b_{21})	(a_{22}, b_{22})

nondegenerate = unique best response to pure strategies

A bunch of games

The fictitious play process converges to a Nash equilibrium for

- two player zero-sum games (Robinson 1951)
- two player 2×2 games satisfying the diagonal property (Miyasawa 1961)
- two player 2×n nondegenerate games (Berger 2005)
- games that are solvable by the IESDS algorithm (Milgrom-Roberts 1991)
- ordinal potential games

(Monderer-Shapley 1996)

diagonal property:

$$a_{11} + a_{22} \neq a_{12} + a_{21}$$
 and $b_{11} + b_{22} \neq b_{12} + b_{21}$ where

I/II	1	2
1	(a_{11},b_{11})	(a_{12},b_{12})
2	(a_{21},b_{21})	(a_{22}, b_{22})

nondegenerate = unique best response to pure strategies

A bunch of games

The fictitious play process converges to a Nash equilibrium for

- two player zero-sum games (Robinson 1951)
- two player 2×2 games satisfying the diagonal property (Miyasawa 1961)
- two player $2 \times n$ nondegenerate games (Berger 2005)
- games that are solvable by the IESDS algorithm (Milgrom-Roberts 1991)
- ordinal potential games (Monderer-Shapley 1996)

diagonal property:

$$a_{11} + a_{22} \neq a_{12} + a_{21}$$
 and $b_{11} + b_{22} \neq b_{12} + b_{21}$ where

I/II	1	2
1	(a_{11}, b_{11})	(a_{12}, b_{12})
2	(a_{21}, b_{21})	(a_{22}, b_{22})

nondegenerate = unique best response to pure strategies

rate of convergence in two player zero-sum games (Robinson 1951)

$$0 \le w_2(\sigma_2^k) - w_1(\sigma_1^k) = O(1/\sqrt[m]{k})$$
 with $m = m_1 + m_2 - 2$

$$(w_1(\sigma_1^k) \le \text{value of the game} \le w_2(\sigma_2^k))$$

Another learning approach

General framework

- successive repetitions of the (same) game
- pure strategies are played (no fictitious environment)
- players have complete knowledge of past actions

Another learning approach: avoid regretting

General framework

- successive repetitions of the (same) game
- pure strategies are played (no fictitious environment)
- players have complete knowledge of past actions

Regret matching (Hart-Mas Colell 2000)

Another learning approach: avoid regretting

General framework

- successive repetitions of the (same) game
- pure strategies are played (no fictitious environment)
- players have complete knowledge of past actions

Regret matching (Hart-Mas Colell 2000) players:

- keep track of all the previous rounds
- measure the regret of not having played other strategies
- choose a pure strategy in a probabilistic fashion according to regrets

higher regret calls for lower probability

1/11	1	2	3	4
1	(5,3)	(<mark>7,4</mark>)	(<mark>5,2</mark>)	(3,4)
2	(5,5)	(5,7)	(1,1)	(2,5)
3	(3,4)	(<mark>4,2</mark>)	(5,5)	(6,3)

pas	st rounds		
it. <i>k</i>	strategies	utility	
1	3 3	5	
2	2 1	5	
3	3 1	3	
4	3 2	4	

1/11	1	2	3	4
1	(5,3)	(7,4)	(<mark>5,2</mark>)	(3,4)
2	(5,5)	(5,7)	(1,1)	(2,5)
3	(3,4)	(<mark>4,2</mark>)	(5,5)	(6,3)

pas	st rounds			
it. <i>k</i>	strategies	utility		
1	3 3	5		
2	2 1	5		
3	3 1	3		
4	3 2	4		

up to now what overall regret of choosing 3 for player I?

I/II	1	2	3	4
1	(5,3)	(<mark>7,4</mark>)	(<mark>5,2</mark>)	(3,4)
2	(5,5)	(5,7)	(1,1)	(2,5)
3	(3,4)	(4,2)	(5,5)	(6,3)

past rounds			what if	regret wrt
it. <i>k</i>	strategies	utility	1 2	1 2
1	3 3	5		
2	2 1	5		
3	3 1	3		
4	3 2	4		

up to now what overall regret of choosing 3 for player I?

I/II	1	2	3	4
1	(5,3)	(7,4)	(<mark>5,2</mark>)	(3,4)
2	(5,5)	(5,7)	(1,1)	(2,5)
3	(3,4)	(4,2)	(5,5)	(6,3)

past rounds			what if		regret wrt	
it. <i>k</i>	strategies	utility	1	2	1 2	
1	3 3	5	5	1	0 -4	
2	2 1	5				
3	3 1	3				
4	3 2	4				

up to now what overall regret of choosing 3 for player I?

I/II	1	2	3	4
1	(5,3)	(7,4)	(5,2)	(3,4)
2	(5,5)	(5,7)	(1,1)	(2,5)
3	(3,4)	(4,2)	(5,5)	(6,3)

pas	st rounds		wha	at if	regret wrt
it. <i>k</i>	strategies	utility	1	2	1 2
1	3 3	5	5	1	0 -4
2	2 1	5	5	0	0 0
3	3 1	3			
4	3 2	4			

up to now what overall regret of choosing 3 for player I?

I/II	1	2	3	4
1	(5,3)	(7,4)	(5,2)	(3,4)
2	(5,5)	(5,7)	(1,1)	(2,5)
3	(3,4)	(4,2)	(5,5)	(6,3)

pas	st rounds		wha	it if	regre	t wrt
it. <i>k</i>	strategies	utility	1	2	1	2
1	3 3	5	5	1	0	-4
2	2 1	5	5	0	0	0
3	3 1	3	5	5	2	2
4	3 2	4				

up to now what overall regret of choosing 3 for player I?

1/11	1	2	3	4
1	(5,3)	(7,4)	(5,2)	(3,4)
2	(5,5)	(5,7)	(1,1)	(2,5)
3	(3,4)	(<mark>4,2</mark>)	(5,5)	(6,3)

pas	st rounds		wha	at if	regre	t wrt
it. <i>k</i>	strategies	utility	1	2	1	2
1	3 3	5	5	1	0	-4
2	2 1	5	5	0	0	0
3	3 1	3	5	5	2	2
4	3 2	4	7	5	3	1

up to now what overall regret of choosing 3 for player I?

I/II	1	2	3	4
1	(5,3)	(7,4)	(5,2)	(3,4)
2	(5,5)	(5,7)	(1,1)	(2,5)
3	(3,4)	(4,2)	(5,5)	(6,3)

pas	st rounds		wha	at if	regret wrt
it. <i>k</i>	strategies	utility	1	2	1 2
1	3 3	5	5	1	0 -4
2	2 1	5	5	0	0 0
3	3 1	3	5	5	2 2
4	3 2	4	7	5	3 1
					5 -1/1

up to now what overall regret of choosing ③ for player I?

1/11	1	2	3	4
1	(5,3)	(7,4)	(5,2)	(3,4)
2	(5,5)	(5,7)	(1,1)	(2,5)
3	(3,4)	(<mark>4,2</mark>)	(5,5)	(6,3)

pas	st rounds		wha	at if	regre	t wrt
it. <i>k</i>	strategies	utility	1	2	1	2
1	3 3	5	5	1	0	-4
2	2 1	5	5	0	0	0
3	3 1	3	5	5	2	2
4	3 2	4	7	5	3	1
					5	-,11

up to now what overall regret of choosing 3 for player !?

draw a pure strategy for round k=5 from the probability distribution

$$p(1)=5/\mu_k$$
, $p(2)=0$, $p(3)=1-5/\mu_k$
(for some suitable $\mu_k > 0$)

Learning through no regrets

Regret matching process

- ② compute regrets $R_i^k(s, x_i^k)$ for all $s \in S_i$, $s \neq x_i^k$ ③ draw x_i^{k+1} from $p_i^k \in \Delta_{m_i}$ $\Rightarrow x^{k+1}$
- \bullet k = k + 1 and go back to 2

Learning through no regrets

Regret matching process

- 2 compute regrets $R_i^k(s, x_i^k)$ for all $s \in S_i$, $s \neq x_i^k$ $\Longrightarrow x^{k+1}$ 3 draw x_i^{k+1} from $p_i^k \in \Delta_m$
- \bullet k = k + 1 and go back to 2

previous rounds where player *i* chose strategy $x_i^k \in S_i$: $T_i^k(x_i^k) = \{t \le k : x_i^t = x_i^k\}$

regret of choosing x_i^k over any other $s \in S_i$ in the previous rounds:

$$R_i^k(s, x_i^k) = \left[\sum_{t \in T_i^k(x_i^k)} (u_i(s, x_{-i}^t) - u_i(x_i^k, x_{-i}^t)) \right]^+ \qquad ([a]^+ = \max\{a, 0\})$$

probability distribution:

Empirical distribution $z_k : S \to \mathbb{R}$ provided by the process after k rounds:

$$z_k(x) = |\{t \le k : x^t = x\}|/k$$

 $(z_k(x) = \text{frequency of the strategy profile } x \text{ in the first } k \text{ rounds})$

Empirical distribution $z_k : S \to \mathbb{R}$ provided by the process after k rounds:

$$z_k(x) = |\{t \le k : x^t = x\}|/k$$

 $(z_k(x))$ = frequency of the strategy profile x in the first k rounds)

Convergence of the regret matching process

The sequence of empirical distributions z_k converges almost surely as $k \to +\infty$ to the set of correlated equilibria

Empirical distribution $z_k : S \to \mathbb{R}$ provided by the process after k rounds:

$$z_k(x) = |\{t \le k : x^t = x\}|/k$$

 $(z_k(x))$ = frequency of the strategy profile x in the first k rounds)

Convergence of the regret matching process

The sequence of empirical distributions z_k converges almost surely as $k \to +\infty$ to the set of correlated equilibria

Correlated equilibria are probability distribution over S providing some conditions of equilibrium for strategies not necessarily "independent" of each other (Aumann 1974)

		q_1	q ₂
	1/11	L	R
o_1	Т	p_1q_1	$p_1 q_2$
) 2	D	p 2 q 1	$p_2 q_2$

mixed strategies

1/11	L	R
Т	<i>z</i> ₁₁	Z ₁₂
D	<i>Z</i> 21	Z 22

correlation device

Empirical distribution $z_k : S \to \mathbb{R}$ provided by the process after k rounds:

$$z_k(x) = |\{t \le k : x^t = x\}|/k$$

 $(z_k(x))$ = frequency of the strategy profile x in the first k rounds)

Convergence of the regret matching process

The sequence of empirical distributions z_k converges almost surely as $k \to +\infty$ to the set of correlated equilibria

Correlated equilibria are probability distribution over *S* providing some conditions of equilibrium for strategies not necessarily "independent" of each other (Aumann 1974)

{Nash equilibria in mixed strategies} \subseteq {correlated equilibria}

		q_1	q_2	
	1/11	L	R	
1	Т	p_1q_1	$p_1 q_2$	
2	D	p_2q_1	$p_2 q_2$	
	\subseteq			

1/11	L	R		
Т	<i>z</i> ₁₁	Z ₁₂		
D	<i>Z</i> 21	Z 22		
correlation device				

Correlation devices and correlated equilibria

Let $(N, (S_i)_{i \in N}, (u_i)_{i \in N})$ be a finite strategic game.

Definition

A correlation device is a probability measure/distribution over S, namely any $z: S \to \mathbb{R}_+$ such that

$$\sum_{x \in S} z(x) = 1.$$

Definition

A correlated equilibrium is a correlation device z such that any players $i \in N$ satisfies the incentive constraints

$$\sum_{x_{-i} \in S_{-i}} z(\mathbf{x}_i, x_{-i}) (u_i(\mathbf{x}_i, x_{-i}) - u_i(\mathbf{x}_i', x_{-i})) \ge 0$$

for any $x_i, x_i' \in S_i$.

 x_i is a best response to the mixed strategies of the other players induced by the correlation device provided that the pure strategy x_i is played (induced mixed strategy=conditional probability)

Mixed strategies as correlated equilibria

Let $\sigma^* = (\sigma_1^*, \dots, \sigma_n^*)$ be a mixed strategy profile. Then, σ^* is a Nash equilibrium in mixed strategies if and only if the correlation device z given by $z(x) = \sigma^*(x_1) \dots \sigma^*(x_n)$ is a correlated equilibrium.

Mixed strategies as correlated equilibria

Let $\sigma^* = (\sigma_1^*, \dots, \sigma_n^*)$ be a mixed strategy profile. Then, σ^* is a Nash equilibrium in mixed strategies if and only if the correlation device z given by $z(x) = \sigma^*(x_1) \dots \sigma^*(x_n)$ is a correlated equilibrium.

- The set CE of correlated equilibria is always a polytope \rightarrow linear programming
- The convex hull of the set of Nash equilibria can be a proper subset of CE

Mixed strategies as correlated equilibria

Let $\sigma^* = (\sigma_1^*, \dots, \sigma_n^*)$ be a mixed strategy profile. Then, σ^* is a Nash equilibrium in mixed strategies if and only if the correlation device z given by $z(x) = \sigma^*(x_1) \dots \sigma^*(x_n)$ is a correlated equilibrium.

- The set CE of correlated equilibria is always a polytope ightarrow linear programming
- The convex hull of the set of Nash equilibria can be a proper subset of CE

he/she	football	dancing	
football	(2, <mark>1</mark>)	(<mark>0,0</mark>)	
dancing	(0, <mark>0</mark>)	(1,2)	

Mixed strategies as correlated equilibria

Let $\sigma^* = (\sigma_1^*, \dots, \sigma_n^*)$ be a mixed strategy profile. Then, σ^* is a Nash equilibrium in mixed strategies if and only if the correlation device z given by $z(x) = \sigma^*(x_1) \dots \sigma^*(x_n)$ is a correlated equilibrium.

- The set CE of correlated equilibria is always a polytope \rightarrow linear programming
- The convex hull of the set of Nash equilibria can be a proper subset of CE

he/she	football	dancing
football	(2, <mark>1</mark>)	(<mark>0,0</mark>)
dancing	(<mark>0,0</mark>)	(1,2)

h/s	F	D
F	1	0
D	0	0

h/s	F	D
F	0	0
D	0	1

		1/3	2/3
	h/s	F	D
2/3	F	2/9	4/9
1/3	D	1/9	2/9

	لتنستا		.:1
corre	ıaτeo	ı eat	Ш

←	Nash	eauil	lihria	\rightarrow