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Learning in games: best response dynamics

Algorithmic rephrasing of Cournot'’s basic idea

Synchronous distributed algorithm (Jacobi type algorithm)
O X=00....x)eS x-S, k=0

Q x,.kJr1 is a best response to xf,- (xl-k+1 € R,-(xf,-))} = xktle R(xK)
> if xK € Ri(xX,), select x}™™ = xk

Q if xKt1 = xk then STOP

Q@ k= k+1 and go back to 2

All players know the current state (x) and reply [simultaneously]

Knowledge of other players’ utility functions is not required



Synchronous algorithm in finite games (mixed strategies)

q 1-q
he/she | football | dancing
p | football | (2,1) (0,0)
1-p | dancing | (0,0) (1,2)

she
1 ___________

1 if p>2/3 1 ifg>1/3
Rshe(p) = < [0,1] if p=2/3 Rhe(q) = < [0,1] if g=1/3
0 if p<2/3 113 0 ifg<1/3

|

i

1

2/3 he

x0=1(1/2,1/2) — x! =(1,0) — x?=(0,1) — x> =(1,0) — looping
x0 = (1/4,1/4) — x* =(0,0)

— converging
x% = (3/4,3/4) — xt =(1,1)



Another view on successive best responses

Asynchronicity: updated responses of previous players are known too

Asynchronous distributed algorithm (Gauss-Seidel type algorithm)
@ 0= (,...,x0) €51 x-S0, k=0

Q fori=1,..n
k+1 ok ook (k1 k+1 -
X{Th e Ri(XE) with x5, = (%, ..., x ], ) (%K, =xk))
> if xK € Ri(xX,), select x}™ = xk

@ if x*t1 = xk then STOP

Q@ k= k+1 and go back to 2

the way players are ordered may be relevant



Asynchronous algorithm in finite games

he/she | football | dancing
football | (2,1) (0,0)
dancing | (0,0) (1,2)

X0 = (f,d) 225 %0, =(d,d) L= x! =(d,d)

X0 =(d,f) 2 %0, =(f,f) L% x=(f,f)



Asynchronous algorithm in finite games

he/she | football | dancing
football | (2,1) (0,0)
dancing | (0,0) (1,2)

X0 = (f,d) 225 %0, =(d,d) L= x! =(d,d)

X0 =(d,f) 2 %0, =(f,f) L% x=(f,f)

switching the order of players

X0 = (f,d) L5 %0, =(f,f) 2= x1=(f,f)

X0 =(d,f) L5 %0, =(d,d) L= x! =(d,d)



Distributed algorithms and mixed strategies

q 1-q
he/she | football | dancing
p | football | (2,1) (0,0)
1-p | dancing | (0,0) (1,2)

Nash equilibria in mixed strategies: (1,1),(0,0),(2/3,1/3)

she synchronous she asynchronous

1

1/3 13

2/3 1 he 2/3 1 he

loops or red
loops or blue red or blue or green

starting points are coloured according to the reached equilibrium



Distributed algorithms and mixed strategies

g1 g2 g3

[/11 paper | scissors | rock
p1 paper 0 -1 1
P2 | scissors 1 0 -1
P3 rock -1 1 0

Unique Nash equilibrium: ((1/3,1/3,1/3),(1/3,1/3,1/3))

h(p,q) = p"Aq = p1(q5s — q2) + p2(q1 — q3) + p3(q2 — q1)

min{p2 — p3,p3 — p1, p1 — p2} < h(p,q) < max{qs — q2,91 — 43,92 — q1}



Distributed algorithms and mixed strategies

g1 g2 g3

[/11 paper | scissors | rock
p1 paper 0 -1 1
P2 | scissors 1 0 -1
P3 rock -1 1 0

Unique Nash equilibrium: ((1/3,1/3,1/3),(1/3,1/3,1/3))

h(p.q) = p" Aq = p1(gs — a2) + p2(a1 — g3) + p3(q2 — 1)
min{p> — p3, p3 — p1, p1 — P2} < h(p, q) < max{qs — g2, 91 — 43, G2 — q1}
Best responses® always include at most 2 pure strategies
Both the sync and the async algorithm loop or never converge

“to strategies which are not part of the equilibrium



Convergence of distributed algorithms

Basic convergence

Let {x*} be the sequence generated by the [aJsynchronous algorithm.

(i) If the sequence is finite, then the last point is a Nash equilibrium.
(ii) In any finite game the sequence is finite or the algorithm loops.

(iii) Suppose that S C R™ is closed and u; is continuous on S for all
i € N. If the sequence is infinite and x* — x* for some x* € S, then x* is
a Nash equilibrium.

— finite games in mixed strategies fall within (iii)

— no guarantee that the infinite sequence in (iii) converges

(rock-paper-scissors in mixed strategies)



Convergence of distributed algorithms: Cournot duopoly

synchronous asynchronous

x1=Ri(x2) X T
T X2=Ra(x1) T

T-c




Potential games: exactness

Definition (Monderer-Shapley 1996)

G is an exact potential game if there exists P : S — R such that whatever
i € N is considered the equality

ui(xi, x_;) — ui(x}, x_;) = P(xi, x_;) — P(x{,x_;)
holds for all x;,x! € S; and all x_; < 5_;.

The function P is called an exact potential for G.




Potential games: exactness

Definition (Monderer-Shapley 1996)

G is an exact potential game if there exists P : S — R such that whatever
i € N is considered the equality

ui(xi, x_;) — ui(x!, x_;) = P(xi, x_;) — P(x}, x_;)

holds for all x;,x! € S; and all x_; < 5_;.

The function P is called an exact potential for G.

Proposition

| \

(i) If P is an exact potential function for G, then the function P + a is an
exact potential for G for any a € R.

(ii) If P and Q are exact potential functions for G, then P—Q is constant.

(iii) Suppose S; is convex, P and uj(-,x_;) are continuously differentiable
on S; forany x_; € S_; and any i € N. Then, P is an exact potential for G
if and only if each i € N satisfies V;P(x) = Vuj(x) for all x € S.

v




Potential games: exactness

exact potential for Cournot duopoly (inverse demand function p(t) = T — t)

P(x1,x) = T(x1 + x2) — X12 — X22 — x1x2 — ¢(x1 + x2)



Potential games: exactness

exact potential for Cournot duopoly (inverse demand function p(t) = T — t)
P(x1,%) = T(xa + x2) — x2 — x5 — x1x0 — c(x1 + x2)

duopoly with indivisible commodity

M © [ © ] 0 ©) @ ® ©
© | (0.0) | (0.6) [ (0,10) | (0.12) | (0,12) (0,10) (0.6)
@[ (60 [ (65 [ @8 | (39 | @5 | @5 | (0.0
@ | (10,0) | (84) | (6.6) (4.6) (24) (0,0) (-2,-6)
® [ (120) | 23 | (62 | (32) (0,0) (3.5) | (-6,12)
@ | (12.0) | 82) | (&2 | (0.0) | (42 | (-8,.10) | (-12,18)
® | (10,0) | (5.1) | (0.0) | (-5.3) | (-10,8) | (-15,15) | (-15,-18)
® | (6,0) | (0.0) | (-6,2) | (-12,6) | (-18,-12) | (-18,-15) | (-18,-18)




Potential games: exactness

exact potential for Cournot duopoly (inverse demand function p(t) = T — t)
P(x1,%) = T(xa + x2) — x2 — x5 — x1x0 — c(x1 + x2)

duopoly with indivisible commodity

1/11 © @) @) [©) [O) ® ®
© | (0,0) | (0,6) | (0,10) | (0,12) (0,12) (0,10) (0,6)
® [ (6,0) [ (55) | (498) (3.9) (2:8) (1,5) (0,0)
@ | (10,0) | (8.4) | (6,6) (4.6) (2.4 (0,0) (-2,6)
® | (12,0) | (9.3) | (6,4) (3.3) (0,0) (-3,5) (-6,-12)
@ | (120) | 82) | (42) (0,0) (-4,4) (-8,-10) | (-12,-18)
® | (10,0) | (5.1) | (0,0) (-5,-3) (-10,-8) | (-15,-15) | (-15,-18)
® | (6,0) | (0,0) ] (-6,2) | (-12,6) | (-18,-12) | (-18,-15) | (-18,-18)

exact potential

Mol ® | ®
@ | 0] 6 |10]10[10] 8 |5
@O | 6 |11 14|13 |12 9 | 5
@ |10 | 14 |16 | 14 | 12| 8 | 3
® |12 |15 |16 | 13 | 10 | 5 | -1
@ |12 |14 |14 [ 10| 6 | 0 | 7
® | 10|11 [10] 5 | 0 | -7 | -10
® | 6 | 6 | 4| 2] 8 |-10]-13




Looking for an exact potential

the battle of sexes

he/she | football | dancing he/she | football | dancing
football | (2,1) (0,0) football
dancing | (0,0) (1,2) dancing




Looking for an exact potential

the battle of sexes

he/she | football | dancing he/she | football | dancing
football | (2,1) (0,0) football
dancing | (0,0) (1,2) dancing 0




Looking for an exact potential

the battle of sexes

he/she | football | dancing he/she | football | dancing
football | (2,1) (0,0) football 2
dancing | (0,0) (1,2) dancing 0




Looking for an exact potential

the battle of sexes

he/she | football | dancing he/she | football | dancing
football | (2,1) (0,0) football 2 1
dancing | (0,0) (1,2) dancing 0




Looking for an exact potential

the battle of sexes its exact potential
he/she | football | dancing he/she | football | dancing
football | (2,1) (0,0) football 2 1
dancing | (0,0) (1,2) dancing 0 2




Looking for an exact potential

the battle of sexes its exact potential
he/she | football | dancing he/she | football | dancing
football | (2,1) (0,0) football 2 1
dancing | (0,0) (1,2) dancing 0 2




Looking for an exact potential

the battle of sexes its exact potential
he/she | football | dancing he/she | football | dancing
football | (2,1) (0,0) football 2 1
dancing | (0,0) (1,2) dancing 0 2

Characterization of exact potential games

A game has an exact potential if and only if
¢
(w3 (x) = u (x* 1)) = 0
k=1
holds for any cycle (x°,...,x"), i.e., any finite sequence of strategy profiles

such that x° = x* and for any k = 1, ..., { there exists iy s.t. x*. = x*=1.

—ik i

(¢ = 4 is enough: cycles involving 2 players only suffice)



Potential games: ordinals

Definition (Monderer-Shapley 1996)

G is an ordinal potential game if there exists P : S — R such that what-
ever | € N is considered the equivalence

ui(xi, x_;) > ui(x, x_;) <= P(xi,x_;) > P(xj,x_;)
holds for all x;,x! € Sj and all x_; < 5_;.

The function P is called an ordinal potential for G.




Potential games: ordinals

Definition (Monderer-Shapley 1996)

G is an ordinal potential game if there exists P : S — R such that what-
ever i € N is considered the equivalence

ui(xi,x_;) > ui(x},x_;) <= P(xj,x_;) > P(x/,x_;)
holds for all x;,x! € Sj and all x_; < 5_;.

The function P is called an ordinal potential for G.

| \

Proposition
(i) If P is an ordinal potential function for G, then the function P + a is
an ordinal potential for G for any a € R.

(ii) If P is an exact potential function for G, then it is also an ordinal
potential function for G.

(iii) Suppose that P is an ordinal potential for G. Then,

X;,' X;,'




Potential games: ordinals

ordinal potential for Cournot duopoly (any inverse demand function p)

P(x1,x2) = x1x2(p(x1 + x2) — ¢)



Potential games: ordinals

ordinal potential for Cournot duopoly (any inverse demand function p)

P(x1,x2) = x1x2(p(x1 + x2) — ¢)

game its ordinal potential
] @ | @ Ml @]
@ | (L1)](23) @ 1 2
@ |(21)](32) @ | 2 | 3




Potential games: ordinals

ordinal potential for Cournot duopoly (any inverse demand function p)

P(x1,x2) = x1x2(p(x1 + x2) — ¢)

game its ordinal potential
] @ | @ Ml @]
@ | (L1)](23) @ 1 2
@ |(21)](32) @ | 2 | 3




Potential games: ordinals

ordinal potential for Cournot duopoly (any inverse demand function p)

P(x1,x2) = x1x2(p(x1 + x2) — ¢)

game its ordinal potential
] @ | @ Ml @]
@ | (L1)](23) @ 1 2
@ |(21)](32) @ | 2 | 3




Potential games: ordinals

ordinal potential for Cournot duopoly (any inverse demand function p)

P(x1,x2) = x1x2(p(x1 + x2) — ¢)

game its ordinal potential
] @ | @ Ml @]
@ | (L1)](23) @ 1 2
@ |(21)](32) @ | 2 | 3




Potential games: ordinals

ordinal potential for Cournot duopoly (any inverse demand function p)

P(x1,x2) = x1x2(p(x1 + x2) — ¢)

game its ordinal potential
] @ | @ Ml @]
@ | (L1)](23) @ 1 2
@ |(21)](32) @ | 2 | 3




Potential games: ordinals

ordinal potential for Cournot duopoly (any inverse demand function p)

P(x1,x2) = x1x2(p(x1 + x2) — ¢)

game its ordinal potential
] @ | @ Ml @]
@ | (L1)](23) @ 1 2
@ |(21)](32) @ | 2 | 3




Potential games: ordinals

ordinal potential for Cournot duopoly (any inverse demand function p)

P(x1,x2) = x1x2(p(x1 + x2) — ¢)

game its ordinal potential
M @ | @ ] o] e
@ | (L1)](23) @ 1 2
@ |(21)](32) @ | 2 3
no exact potential exists
[/l @ @
@ g1 2

® | 2 3




Potential games: ordinals

ordinal potential for Cournot duopoly (any inverse demand function p)

P(Xl,XQ) = X]_X2(p(X1 + X2) — C)

game its ordinal potential
] @ | @ Ml @]
® [(11)](23) © | 1 2
@ | (21)] B2 @ | 2 3

If G is an ordinal potential game, then there are no weak improvement
cycles, i.e., no cycle (x°, ..., x") satisfies

uj (<) 2 0, (71

for any k =1, ..., ¢ with u,-E(x'?) > u,-E(x’;_l) for at least one k.

The vice versa holds whenever G is finite. (but £ = 4 is not enough)
v




Potential games: computation of equilibria

Maxima and equilibria

Suppose P is an ordinal potential for G. Then, any maximum point of P
over S is a Nash equilibrium.

base of the proof

x* € argmax{P(x) : x € S} = x{" € argmax{P(x;,x*;) : x; € 5;}

v



Potential games: computation of equilibria

Maxima and equilibria

Suppose P is an ordinal potential for G. Then, any maximum point of P
over S is a Nash equilibrium.

base of the proof

x* € argmax{P(x) : x € S} = x{" € argmax{P(x;,x*;) : x; € 5;}

v

not all Nash equilibria maximize exact/ordinal potentials



Potential games: computation of equilibria

Maxima and equilibria

Suppose P is an ordinal potential for G. Then, any maximum point of P
over S is a Nash equilibrium.

base of the proof

| A\

x* € argmax{P(x) : x € S} = x{" € argmax{P(x;,x*;) : x; € 5;}

v

not all Nash equilibria maximize exact/ordinal potentials

asymmetric battle of sexes its exact potential

/1 @ ® /mip o | @
® |(32) (0.0 ©) 3 1
@ | (0,0) | (1,2) ) 0 2

(@, @) is a Nash equilibrium not maximizing the potential



Potential games: existence and computation of equilibria

existence of maximizers of P over S — existence of equilibria



Potential games: existence and computation of equilibria

existence of maximizers of P over S — existence of equilibria

existence for continuous games

Suppose G = (N, (Si)ien, (ui)ien) is an exact potential game.
If u; is continuous and S; C R™i js compact for any i € N, then G has at
least one Nash equi/ibrium. (false for ordinal potential games)




Potential games: existence and computation of equilibria

existence of maximizers of P over S — existence of equilibria

existence for continuous games

Suppose G = (N, (Si)ien, (ui)ien) is an exact potential game.
If u; is continuous and S; C R™i js compact for any i € N, then G has at
least one Nash equi/ibrium. (false for ordinal potential games)

existence for finite games

Any finite ordinal potential game has at least one Nash equilibrium.




Potential games: existence and computation of equilibria

existence of maximizers of P over S — existence of equilibria

existence for continuous games

Suppose G = (N, (Si)ien, (ui)ien) is an exact potential game.
If u; is continuous and S; C R™i js compact for any i € N, then G has at
least one Nash equilibrium.

existence for finite games

Any finite ordinal potential game has at least one Nash equilibrium.

Convergence of the asynchronous algorithm

Suppose that G is a finite ordinal potential game. Then, the asynchronous
distributed algorithm stops at a Nash equilibrium (after a finite number of
iterations).

(the value of the potential is improved at each iteration)



