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Learning in games: best response dynamics

Algorithmic rephrasing of Cournot’s basic idea

Synchronous distributed algorithm (Jacobi type algorithm)

1 x0 = (x0
1 , . . . , x

0
n ) ∈ S1 × · · · Sn, k = 0

2 xk+1
i is a best response to xk−i

(
xk+1
i ∈ Ri (x

k
−i )
)

� if xki ∈ Ri (x
k
−i ), select xk+1

i = xki

3 if xk+1 = xk then STOP

4 k = k + 1 and go back to 2

}
=⇒ xk+1∈ R(xk)

All players know the current state (xk) and reply [simultaneously]

Knowledge of other players’ utility functions is not required



Synchronous algorithm in finite games (mixed strategies)

p
1–p

q 1–q

he/she football dancing
football (2,1) (0,0)
dancing (0,0) (1,2)

Rshe(p) =


1 if p > 2/3

[0, 1] if p = 2/3

0 if p < 2/3

he

she

1/3

2/3 1

1

Rhe(q) =


1 if q > 1/3

[0, 1] if q = 1/3

0 if q < 1/3

x0 = (1/2, 1/2) −→ x1 = (1, 0) −→ x2 = (0, 1) −→ x3 = (1, 0) −→ looping

x0 = (1/4, 1/4) −→ x1 = (0, 0)

x0 = (3/4, 3/4) −→ x1 = (1, 1)

}
−→ converging



Another view on successive best responses

Asynchronicity: updated responses of previous players are known too

Asynchronous distributed algorithm (Gauss-Seidel type algorithm)

1 x0 = (x0
1 , . . . , x

0
n ) ∈ S1 × · · · Sn, k = 0

2 for i = 1, ...n

xk+1
i ∈ Ri (x̄

k
−i ) with x̄k−i = (xk+1

1 , . . . , xk+1
i−1 , xki+1, . . . , x

k
n ) (x̄k−1 = xk−1)

� if xki ∈ Ri (x̄
k
−i ), select xk+1

i = xki

3 if xk+1 = xk then STOP

4 k = k + 1 and go back to 2

the way players are ordered may be relevant



Asynchronous algorithm in finite games

he/she football dancing

football (2,1) (0,0)

dancing (0,0) (1,2)

x0 = (f , d)
he−−→ x̄0

−2 = (d , d)
she−−−→ x1 = (d , d)

x0 = (d , f )
he−−→ x̄0

−2 = (f , f )
she−−−→ x1 = (f , f )

switching the order of players

x0 = (f , d)
she−−−→ x̄0

−2 = (f , f )
he−−→ x1 = (f , f )

x0 = (d , f )
she−−−→ x̄0

−2 = (d , d)
he−−→ x1 = (d , d)
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Distributed algorithms and mixed strategies

p
1–p

q 1–q

he/she football dancing
football (2,1) (0,0)
dancing (0,0) (1,2)

Nash equilibria in mixed strategies: (1, 1), (0, 0), (2/3, 1/3)

he

she

1/3

2/3 1

1

loops loops or red
loops or blue

synchronous

he

she

1/3

2/3 1

1

red or blue or green

asynchronous

starting points are coloured according to the reached equilibrium



Distributed algorithms and mixed strategies

p1

p2

p3

q1 q2 q3

I/II paper scissors rock
paper 0 -1 1

scissors 1 0 -1
rock -1 1 0

Unique Nash equilibrium:
(
(1/3, 1/3, 1/3), (1/3, 1/3, 1/3)

)
h(p, q) = pTAq = p1(q3 − q2) + p2(q1 − q3) + p3(q2 − q1)

min{p2 − p3, p3 − p1, p1 − p2} ≤ h(p, q) ≤ max{q3 − q2, q1 − q3, q2 − q1}

Best responses∗ always include at most 2 pure strategies

Both the sync and the async algorithm loop or never converge

∗to strategies which are not part of the equilibrium
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Convergence of distributed algorithms

Basic convergence

Let {xk} be the sequence generated by the [a]synchronous algorithm.

(i) If the sequence is finite, then the last point is a Nash equilibrium.

(ii) In any finite game the sequence is finite or the algorithm loops.

(iii) Suppose that S ⊆ Rm is closed and ui is continuous on S for all
i ∈ N. If the sequence is infinite and xk → x∗ for some x∗ ∈ S , then x∗ is
a Nash equilibrium.

– finite games in mixed strategies fall within (iii)

– no guarantee that the infinite sequence in (iii) converges
(rock-paper-scissors in mixed strategies)



Convergence of distributed algorithms: Cournot duopoly

x1

x

x

x

1

0

2

asynchronous

T-c

x2 

T

T-c Tx1

x1=R1(x2)
x2=R2(x1)

x

x

x

x
1

0

3

2

synchronous

T-c

T-c T

x2 

T



Potential games: exactness

Definition (Monderer-Shapley 1996)

G is an exact potential game if there exists P : S → R such that whatever
i ∈ N is considered the equality

ui (xi , x−i )− ui (x
′
i , x−i ) = P(xi , x−i )− P(x ′i , x−i )

holds for all xi , x
′
i ∈ Si and all x−i ∈ S−i .

The function P is called an exact potential for G .

Proposition

(i) If P is an exact potential function for G , then the function P + a is an
exact potential for G for any a ∈ R.

(ii) If P and Q are exact potential functions for G , then P−Q is constant.

(iii) Suppose Si is convex, P and ui (·, x−i ) are continuously differentiable
on Si for any x−i ∈ S−i and any i ∈ N. Then, P is an exact potential for G
if and only if each i ∈ N satisfies ∇iP(x) = ∇iui (x) for all x ∈ S .
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Potential games: exactness

exact potential for Cournot duopoly (inverse demand function p(t) = T − t)

P(x1, x2) = T (x1 + x2)− x2
1 − x2

2 − x1x2 − c(x1 + x2)

duopoly with indivisible commodity
I/II 0○ 1○ 2○ 3○ 4○ 5○ 6○
0○ (0,0) (0,6) (0,10) (0,12) (0,12) (0,10) (0,6)

1○ (6,0) (5,5) (4,8) (3,9) (2,8) (1,5) (0,0)

2○ (10,0) (8,4) (6,6) (4,6) (2,4) (0,0) (-2,-6)

3○ (12,0) (9,3) (6,4) (3,3) (0,0) (-3,-5) (-6,-12)

4○ (12,0) (8,2) (4,2) (0,0) (-4,-4) (-8,-10) (-12,-18)

5○ (10,0) (5,1) (0,0) (-5,-3) (-10,-8) (-15,-15) (-15,-18)

6○ (6,0) (0,0) (-6,-2) (-12,-6) (-18,-12) (-18,-15) (-18,-18)

exact potential
I/II 0○ 1○ 2○ 3○ 4○ 5○ 6○
0○ 0 6 10 10 10 8 5

1○ 6 11 14 13 12 9 5

2○ 10 14 16 14 12 8 3

3○ 12 15 16 13 10 5 -1

4○ 12 14 14 10 6 0 -7

5○ 10 11 10 5 0 -7 -10

6○ 6 6 4 -2 -8 -10 -13
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Looking for an exact potential

the battle of sexes

its exact potential

he/she football dancing

football (2,1) (0,0)

dancing (0,0) (1,2)

he/she football dancing

football

22 1

dancing

0 22

Characterization of exact potential games

A game has an exact potential if and only if∑̀
k=1

(
uik (xk)− uik (xk−1)

)
= 0

holds for any cycle (x0, ..., x`), i.e., any finite sequence of strategy profiles
such that x0 = x` and for any k = 1, ..., ` there exists ik s.t. xk−ik = xk−1

−ik .

(` = 4 is enough: cycles involving 2 players only suffice)
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Potential games: ordinals

Definition (Monderer-Shapley 1996)

G is an ordinal potential game if there exists P : S → R such that what-
ever i ∈ N is considered the equivalence

ui (xi , x−i ) > ui (x
′
i , x−i ) ⇐⇒ P(xi , x−i ) > P(x ′i , x−i )

holds for all xi , x
′
i ∈ Si and all x−i ∈ S−i .

The function P is called an ordinal potential for G .

Proposition

(i) If P is an ordinal potential function for G , then the function P + a is
an ordinal potential for G for any a ∈ R.

(ii) If P is an exact potential function for G , then it is also an ordinal
potential function for G .

(iii) Suppose that P is an ordinal potential for G . Then,

x∗i ∈ Ri (x
∗
−i )⇐⇒ x∗i ∈ arg max{P(xi , x

∗
−i ) : xi ∈ Si}
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Potential games: ordinals

ordinal potential for Cournot duopoly (any inverse demand function p)

P(x1, x2) = x1x2(p(x1 + x2)− c)

game its ordinal potential

I/II 1○ 2○

1○ (1,1) (2,3)

2○ (2,1) (3,2)

I/II 1○ 2○

1○ 1 2

2○ 2 3

no exact potential exists

I/II 1○ 2○

1○

0

6 1

2

2○

2 3

Proposition

If G is an ordinal potential game, then there are no weak improvement
cycles, i.e., no cycle (x0, ..., x`) satisfies

uik (xk) ≥ uik (xk−1)

for any k = 1, ..., ` with uik̄ (x k̄) > uik̄ (x k̄−1) for at least one k̄.

The vice versa holds whenever G is finite. (but ` = 4 is not enough)
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The vice versa holds whenever G is finite. (but ` = 4 is not enough)



Potential games: ordinals

ordinal potential for Cournot duopoly (any inverse demand function p)

P(x1, x2) = x1x2(p(x1 + x2)− c)
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Potential games: computation of equilibria

Maxima and equilibria

Suppose P is an ordinal potential for G . Then, any maximum point of P
over S is a Nash equilibrium.

base of the proof

x∗ ∈ arg max{P(x) : x ∈ S} =⇒ x∗i ∈ arg max{P(xi , x
∗
−i ) : xi ∈ Si}

not all Nash equilibria maximize exact/ordinal potentials

asymmetric battle of sexes its exact potential

I/II 1○ 2○

1○ (3,2) (0,0)

2○ (0,0) (1,2)

I/II 1○ 2○

1○ 3 1

2○ 0 2

( 2○, 2○) is a Nash equilibrium not maximizing the potential
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Potential games: existence and computation of equilibria

existence of maximizers of P over S =⇒ existence of equilibria

existence for continuous games

Suppose G = (N, (Si )i∈N , (ui )i∈N) is an exact potential game.
If ui is continuous and Si ⊆ Rmi is compact for any i ∈ N, then G has at
least one Nash equilibrium. (false for ordinal potential games)

existence for finite games

Any finite ordinal potential game has at least one Nash equilibrium.

Convergence of the asynchronous algorithm

Suppose that G is a finite ordinal potential game. Then, the asynchronous
distributed algorithm stops at a Nash equilibrium (after a finite number of
iterations).

(the value of the potential is improved at each iteration)
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