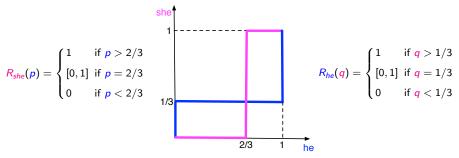
Algorithmic game theory

Laurea Magistrale in Computer Science 2024/25

Lecture 7

Mixed equilibria in the battle of sexes

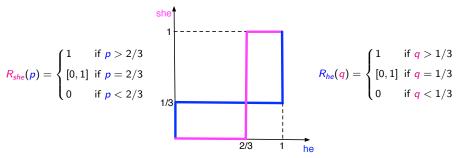
		q	1-q
	he/she	football	dancing
p	football	(2, <mark>1</mark>)	(<mark>0,0</mark>)
1- <i>p</i>	dancing	(<mark>0,0</mark>)	(1, <mark>2</mark>)



Nash equilibria are mutual best responses
$$(p^*, q^*) = (1, 1), (0, 0), (2/3, 1/3)$$

Mixed equilibria in the battle of sexes

		q	1-q
	he/she	football	dancing
p	football	(2, <mark>1</mark>)	(0,0)
1- <i>p</i>	dancing	(<mark>0,0</mark>)	(1, <mark>2</mark>)



Nash equilibria are mutual best responses
$$(p^*, q^*) = (1, 1), (0, 0), (2/3, 1/3)$$

- the best response to a pure strategy is the same pure strategy
- both pure strategies are best responses to the equilibrium mixed strategy

Mixed strategy equilibria as a combinatorial problem

Theorem

In a finite game $(N,(S_i)_{i\in N},(u_i)_{i\in N})$ a (mixed) strategy profile $\sigma^*\in\Delta_S$ is a Nash equilibrium in mixed strategies if and only if every pure strategy $x_i\in S_i$ such that $\sigma_i^*(x_i)>0$ is a best response to σ_{-i}^* for each player $i\in N$.

Corollary

Let $\sigma^* \in \Delta_S$ be a Nash equilibrium in mixed strategies of a finite game. Every pure strategy $x_i \in S_i$ such that $\sigma_i^*(x_i) > 0$ yields player i the same payoff (provided the other players choose σ_{-i}^*).

$$\{x_i \in S_i : \sigma_i(x_i) > 0\}$$
 support of $\sigma_i \in \Delta(S_i)$

Mixed strategy equilibria as a combinatorial problem

Theorem

In a finite game $(N,(S_i)_{i\in N},(u_i)_{i\in N})$ a (mixed) strategy profile $\sigma^*\in\Delta_S$ is a Nash equilibrium in mixed strategies if and only if every pure strategy $x_i \in S_i$ such that $\sigma_i^*(x_i) > 0$ is a best response to σ_{-i}^* for each player $i \in N$.

Corollary

Let $\sigma^* \in \Delta_S$ be a Nash equilibrium in mixed strategies of a finite game. Every pure strategy $x_i \in S_i$ such that $\sigma_i^*(x_i) > 0$ yields player i the same payoff (provided the other players choose σ^* ;).

$$\{x_i \in S_i : \sigma_i(x_i) > 0\}$$
 support of $\sigma_i \in \Delta(S_i)$

finding equilibria \equiv finding a suitable support for each player

- choose 'supports' (subsets of strategies)
- assign probabilities inside the supports check pure strategies entail the same payoff \longrightarrow system of equations

Mixed strategy equilibria as a combinatorial problem

Theorem

In a finite game $(N,(S_i)_{i\in N},(u_i)_{i\in N})$ a (mixed) strategy profile $\sigma^*\in\Delta_S$ is a Nash equilibrium in mixed strategies if and only if every pure strategy $x_i \in S_i$ such that $\sigma_i^*(x_i) > 0$ is a best response to σ_{-i}^* for each player $i \in N$.

Corollary

Let $\sigma^* \in \Delta_S$ be a Nash equilibrium in mixed strategies of a finite game. Every pure strategy $x_i \in S_i$ such that $\sigma_i^*(x_i) > 0$ yields player i the same payoff (provided the other players choose σ^* ;).

$$\{x_i \in S_i : \sigma_i(x_i) > 0\}$$
 support of $\sigma_i \in \Delta(S_i)$

finding equilibria \equiv finding a suitable support for each player

- choose 'supports' (subsets of strategies)
- assign probabilities inside the supports check pure strategies entail the same payoff \longrightarrow system of equations
- check pure strategies are indeed best responses --> system of inequalities

1/11	1	2	3	4
1	(4,3)	(7,4)	(5,2)	(3,4)
2	(5,5)	(5,7)	(2,1)	(2,5)
3	(3,4)	(<mark>4,2</mark>)	(5,5)	(6,3)

1/11	1	2	3	4
1	(4,3)	(7,4)	(5,2)	(3,4)
2	(5,5)	(5,7)	(2,1)	(2,5)
3	(3,4)	(<mark>4,2</mark>)	(5,5)	(6,3)

choose supports: $\{1,3\}$ $\{2,3\}$

1/11	1	2	3	4
1	(4,3)	(7,4)	(5,2)	(3,4)
2	(5,5)	(5,7)	(2,1)	(2,5)
3	(3,4)	(<mark>4,2</mark>)	(5,5)	(6,3)

```
choose supports: \{1,3\} \{2,3\} assign probabilities: p,1-p q,1-q (\sigma_1=(p,0,1-p),\sigma_2=(0,q,1-q)) [p,q>0])
```

1/11	1	2	3	4
1	(4,3)	(7,4)	(5,2)	(3,4)
2	(5,5)	(5,7)	(2,1)	(2,5)
3	(3,4)	(4,2)	(5,5)	(6,3)

```
choose supports: \{1,3\} \{2,3\} assign probabilities: p,1-p q,1-q (\sigma_1=(p,0,1-p),\sigma_2=(0,q,1-q)) [p,q>0]) same payoffs: u_1(1,\sigma_2)=u_1(3,\sigma_2):
```

1/11	1	2	3	4
1	(4,3)	(7,4)	(5,2)	(3,4)
2	(5,5)	(5,7)	(2,1)	(2,5)
3	(3,4)	(4,2)	(5,5)	(6,3)

```
choose supports: \{1,3\} \{2,3\} assign probabilities: p,1-p q,1-q (\sigma_1=(p,0,1-p),\sigma_2=(0,q,1-q)) [p,q>0]) same payoffs: u_1(1,\sigma_2)=u_1(3,\sigma_2): 7q+5(1-q)=4q+5(1-q)\longrightarrow q=0 failure
```

1/11	1	2	3	4
1	(4,3)	(7,4)	(5,2)	(3,4)
2	(5,5)	(5,7)	(2,1)	(2,5)
3	(3,4)	(<mark>4,2</mark>)	(5,5)	(6,3)

choose supports: $\{1,3\}$

1/11	1	2	3	4
1	(4,3)	(7,4)	(5,2)	(3,4)
2	(5,5)	(5,7)	(2,1)	(2,5)
3	(3,4)	(4,2)	(5,5)	(6,3)

```
 \begin{array}{ll} \text{choose supports:} & \{ \textcircled{1}, \textcircled{3} \} & \{ \textcircled{3} \} \\ \text{assign probabilities:} & p, 1-p & 1 & (\sigma_1=(p,0,1-p),\, \sigma_2=(0,0,1)) \; [p>0] ) \end{array}
```

I/II	1	2	3	4
1	(4,3)	(7,4)	(5,2)	(3,4)
2	(5,5)	(5,7)	(2,1)	(2,5)
3	(3,4)	(<mark>4,2</mark>)	(5,5)	(6,3)

```
choose supports: \{(1), (3)\} \{(3)\} assign probabilities: p, 1-p 1 (\sigma_1 = (p, 0, 1-p), \sigma_2 = (0, 0, 1)) [p > 0]) same payoffs: u_1((1), \sigma_2) = u_1((3), \sigma_2): 5=5
```

1/11	1	2	3	4
1	(4,3)	(7,4)	(5,2)	(3,4)
2	(5,5)	(5,7)	(2,1)	(2,5)
3	(3,4)	(4,2)	(5,5)	(6,3)

```
choose supports: \{(1), (3)\} \{(3)\} assign probabilities: p, 1-p 1 (\sigma_1 = (p, 0, 1-p), \sigma_2 = (0, 0, 1)) [p > 0]) same payoffs: u_1((1), \sigma_2) = u_1((3), \sigma_2): 5=5 best responses:
```

1/11	1	2	3	4
1	(4,3)	(7,4)	(5,2)	(3,4)
2	(5,5)	(5,7)	(2,1)	(2,5)
3	(3,4)	(<mark>4,2</mark>)	(5,5)	(6,3)

```
choose supports: \{(1), (3)\} \{(3)\} assign probabilities: p, 1-p 1 (\sigma_1 = (p, 0, 1-p), \sigma_2 = (0, 0, 1)) [p > 0]) same payoffs: u_1((1), \sigma_2) = u_1((3), \sigma_2): 5=5 best responses: (1) and (3) are best responses to \sigma_2 \equiv (3)
```

1/11	1	2	3	4
1	(4,3)	(7,4)	(5,2)	(3,4)
2	(5,5)	(5,7)	(2,1)	(2,5)
3	(3,4)	(<mark>4,2</mark>)	(5,5)	(6,3)

```
choose supports: \{(1), (3)\} \{(3)\} assign probabilities: p, 1-p 1 (\sigma_1 = (p, 0, 1-p), \sigma_2 = (0, 0, 1)) [p > 0]) same payoffs: u_1((1), \sigma_2) = u_1((3), \sigma_2): 5=5 best responses: (1) and (3) are best responses to \sigma_2 \equiv (3)
```

 \bigcirc is a best response to σ_1

1/11	1	2	3	4
1	(4,3)	(7,4)	(5,2)	(3,4)
2	(5,5)	(5,7)	(2,1)	(2,5)
3	(3,4)	(4,2)	(5,5)	(6,3)

```
choose supports: \{1,3\} \{3\} assign probabilities: p, 1-p 1 (\sigma_1 = (p,0,1-p), \sigma_2 = (0,0,1)) [p>0]) same payoffs: u_1(1,\sigma_2) = u_1(3,\sigma_2): 5=5 best responses: (1) and (3) are best responses to \sigma_2 \equiv (3)
```

(3) is a best response to
$$\sigma_1$$
: $2p + 5(1-p) \ge \begin{cases} 3p + 4(1-p) & \text{(1)} \\ 4p + 2(1-p) & \text{(2)} \\ 4p + 3(1-p) & \text{(4)} \end{cases} \longleftrightarrow 0 \le p \le 1/2$

1/11	1	2	3	4
1	(4,3)	(<mark>7,4</mark>)	(5,2)	(3,4)
2	(5,5)	(5,7)	(2,1)	(2,5)
3	(3,4)	(4,2)	(5,5)	(6,3)

```
choose supports: \{1,3\} \{3\} assign probabilities: p,1-p 1 (\sigma_1=(p,0,1-p),\sigma_2=(0,0,1)) [p>0]) same payoffs: u_1(1,\sigma_2)=u_1(3,\sigma_2): 5=5 best responses: 1 and 3 are best responses to \sigma_2\equiv 3
```

(3) is a best response to
$$\sigma_1$$
: $2p + 5(1-p) \ge \begin{cases} 3p + 4(1-p) & \text{(1)} \\ 4p + 2(1-p) & \text{(2)} \end{cases} \longleftrightarrow 0 \le p \le 1/2$
 $4p + 3(1-p)$ (4)

 $\{((p,0,1-p),(0,0,1)):0\leq p\leq 1/2\}$ are Nash equilibria in mixed strategies

1/11	1	2	3	4
1	(4,3)	(7,4)	(5,2)	(3,4)
2	(5,5)	(5,7)	(2,1)	(2,5)
3	(3,4)	(<mark>4,2</mark>)	(5,5)	(6,3)

```
choose supports: \{1,3\} \{3\} assign probabilities: p,1-p 1 (\sigma_1=(p,0,1-p),\sigma_2=(0,0,1)) [p>0]) same payoffs: u_1(1,\sigma_2)=u_1(3,\sigma_2): 5=5 best responses: 1 and 3 are best responses to \sigma_2\equiv 3
```

(3) is a best response to
$$\sigma_1$$
: $2p + 5(1-p) \ge \begin{cases} 3p + 4(1-p) & \text{(1)} \\ 4p + 2(1-p) & \text{(2)} \end{cases} \longleftrightarrow 0 \le p \le 1/2$
 $4p + 3(1-p)$ (4)

 $\{((p,0,1-p),(0,0,1)):0\leq p\leq 1/2\}$ are Nash equilibria in mixed strategies

exercise: try supports $\{1,3\}$ $\{1,3,4\}$

Mathematical background: compactness

Definition

A set $S \subseteq \mathbb{R}^m$ is

(i) closed if the limit of any sequence of points $x^k \in S$ belongs to S, i.e.,

$$x^k \to x \implies x \in S$$

(ii) bounded if there exists M>0 such that $S\subseteq\{x\in\mathbb{R}^m:\|x\|\leq M\}$ $(\|x\|_2=\sqrt{x_1^2+\cdots+x_m^2})$ is the Euclidean norm)

(iii) compact if it is closed and bounded

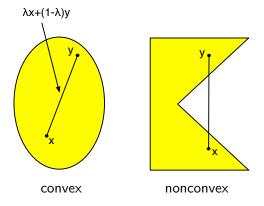
Extreme value theorem (Bolzano, Weierstrass): if $S \subseteq \mathbb{R}^m$ is compact, any continuous function $f: S \to \mathbb{R}$ has at least one maximum (minimum) point over S

(any sequence in a compact set admits a convergent subsequence)

Definition

 $S \subseteq \mathbb{R}^m$ is a convex set if

$$x, y \in S, \ \lambda \in [0,1] \implies \lambda x + (1-\lambda)y \in S$$



Existence of Nash equilibria

Theorem (Nikaido-Isoda 1955)

Let $(N,(S_i)_{i\in N},(u_i)_{i\in N})$ be a strategic game. If any $i\in N$ satisfies

- (i) $S_i \subseteq \mathbb{R}^{m_i}$ is convex and compact
- (ii) u_i is continuous
- (iii) the set of best responses $R_i(x_{-i})$ is convex for all $x_{-i} \in S_{-i}$ then the game has at least one Nash equilibrium.

the proof relies on Kakutani's fixed point theorem (1941): x^* Nash equilibrium $\iff x^* \in R(x^*) = R_1(x^*_{-1}) \times \cdots \times R_n(x^*_{-n})$

Existence of Nash equilibria

Theorem (Nikaido-Isoda 1955)

Let $(N,(S_i)_{i\in N},(u_i)_{i\in N})$ be a strategic game. If any $i\in N$ satisfies

- (i) $S_i \subseteq \mathbb{R}^{m_i}$ is convex and compact
- (ii) u_i is continuous
- (iii) the set of best responses $R_i(x_{-i})$ is convex for all $x_{-i} \in S_{-i}$ then the game has at least one Nash equilibrium.

the proof relies on Kakutani's fixed point theorem (1941):
$$x^*$$
 Nash equilibrium $\iff x^* \in R(x^*) = R_1(x_{-1}^*) \times \cdots \times R_n(x_{-n}^*)$

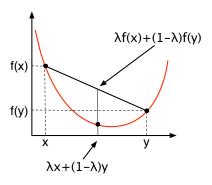
$$-|R_i(x_{-i})|=1 \Longrightarrow R_i(x_{-i}) \text{ convex (uniqueness} \equiv \text{Nash 1951})$$

Definition

Let $S \subseteq \mathbb{R}^m$ be convex. $f : \mathbb{R}^m \to \mathbb{R}$ is a convex function on S if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

holds for all $x, y \in S$, $\lambda \in [0, 1]$.

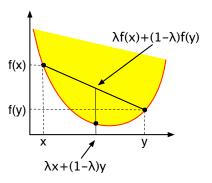


Definition

Let $S \subseteq \mathbb{R}^m$ be convex. $f : \mathbb{R}^m \to \mathbb{R}$ is a convex function on S if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

holds for all $x, y \in S$, $\lambda \in [0, 1]$.



Definition

Let $S \subseteq \mathbb{R}^m$ be convex. $f : \mathbb{R}^m \to \mathbb{R}$ is a convex function on S if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

holds for all $x, y \in S$, $\lambda \in [0, 1]$.

Proposition

Let $S \subseteq \mathbb{R}^m$ be convex. $f : \mathbb{R}^m \to \mathbb{R}$ is a convex function on S if and only if (the restriction of) its epigraph (to S), namely,

$$epi_{S}(f) = \{(x, t) \in S \times \mathbb{R} : t \ge f(x)\}$$

is a convex set in \mathbb{R}^{m+1} .

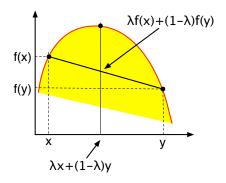
Definition

Let $S \subseteq \mathbb{R}^m$ be convex. $f : \mathbb{R}^m \to \mathbb{R}$ is a convex function on S if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

holds for all $x, y \in S$, $\lambda \in [0, 1]$.

 $f:\mathbb{R}^m o \mathbb{R}$ is a concave function on S if -f is a convex function on S



Existence of Nash equilibria: finite games

Theorem (Nikaido-Isoda 1955)

Let $(N,(S_i)_{i\in N},(u_i)_{i\in N})$ be a strategic game. If any $i\in N$ satisfies

- (i) $S_i \subseteq \mathbb{R}^{m_i}$ is convex and compact
- (ii) u_i is continuous
- (iii) the set of best responses $R_i(x_{-i})$ is convex for all $x_{-i} \in S_{-i}$ then the game has at least one Nash equilibrium.

$$- u_i(\cdot, x_{-i}): x_i \longmapsto u_i(x_i, x_{-i}) \text{ concave} + S_i \text{ convex} \Longrightarrow R_i(x_{-i}) \text{ convex}$$
finite game in mixed strategies:
$$\begin{cases} u_i(\cdot, x_{-i}) \text{ linear} \\ S_i = \Delta_{m_i} \text{ convex and compact} \end{cases}$$

Corollary

Every finite game has at least one Nash equilibrium in mixed strategies.

Existence of Nash equilibria: two player zero-sum games

Minimax theorem (von Neumann 1928)

Let $(\{1,2\},\{S_1,S_2\}),u)$ be a two player zero-sum game. If

- (i) $S_i \subseteq \mathbb{R}^{m_i}$ is convex and compact (i = 1, 2)
- (ii) u is continuous

(iii)
$$u(\cdot, x_2): x_1 \longmapsto u(x_1, x_2)$$
 is concave for all $x_2 \in S_2$

(iv)
$$u(x_1, \cdot): x_2 \longmapsto u(x_1, x_2)$$
 is convex for all $x_1 \in S_1$

then

$$\max_{x_1 \in S_1} \min_{x_2 \in S_2} u(x_1, x_2) = \min_{x_2 \in S_2} \max_{x_1 \in S_1} u(x_1, x_2).$$

Hence, the game has at least one Nash equilibrium.

minimax equality → security/minimax strategies ← Nash equilibrium

convexity/concavity can be replaced by quasiconvexity/concavity

Learning a game

Can equilibria be learnt?

Learning a game

Can equilibria be learnt?

players/agents:

- choose their strategies
- observe the state of the game/system
- update strategies if profitable
- observe the new state of the game/system

dynamics

(another view of the basic idea in Cournot's approach to duopoly)

1/11	0	1	2	3	4	5	6
0	(0,0)	(0,6)	(0,10)	(0,12)	(0,12)	(0,10)	(0,6)
1	(6, <mark>0</mark>)	(5,5)	(4,8)	(3,9)	(2,8)	(1,5)	(0,0)
2	(10,0)	(<mark>8,4</mark>)	(6,6)	(4, 6)	(2,4)	(0,0)	(-2,-6)
3	(12,0)	(9,3)	(<mark>6,4</mark>)	(3,3)	(0,0)	(-3 ,- 5)	(-6,-12)
4	(12,0)	(8,2)	(4,2)	(0,0)	(-4,-4)	(-8,-10)	(-12,-18)
5	(10,0)	(5,1)	(0,0)	(-5,-3)	(-10,-8)	(-15,-15)	(-15,-18)
6	(<mark>6,0</mark>)	(0,0)	(-6,-2)	(-12,-6)	(-18,-12)	(-18, -15)	(-18,-18)

1/11	0	1	2	3	4	5	6
0	(0,0)	(0,6)	(0,10)	(0,12)	(0,12)	(0,10)	(0,6)
1	(6, <mark>0</mark>)	(5,5)	(4,8)	(3,9)	(2,8)	(1,5)	(0,0)
2	(10,0)	(8,4)	(6,6)	(<mark>4,6</mark>)	(2,4)	(0,0)	(-2,- 6)
3	(12,0)	(9,3)	(<mark>6,4</mark>)	(3,3)	(0,0)	(-3,-5)	(-6,-12)
4	(12,0)	(8,2)	(4,2)	(0,0)	(-4,-4)	(-8,-10)	(-12,-18)
5	(10,0)	(5,1)	(0,0)	(-5,-3)	(-10,-8)	(-15,-15)	(-15,-18)
6	(<mark>6,0</mark>)	(0,0)	(-6,-2)	(-12,-6)	(-18,-12)	(-18,-15)	(-18,-18)

initial state: (2,5)

1/11	0	1	2	3	4	5	6
0	(0,0)	(0,6)	(0,10)	(0,12)	(0,12)	(0,10)	(0,6)
1	(6, <mark>0</mark>)	(5,5)	(4,8)	(3,9)	(2,8)	(1,5)	(0,0)
2	(10,0)	(8,4)	(6,6)	(4, 6)	(2,4)	(0,0)	(-2,-6)
3	(12,0)	(9,3)	(<mark>6,4</mark>)	(3,3)	(0,0)	(-3,-5)	(-6,-12)
4	(12,0)	(8,2)	(<mark>4,2</mark>)	(0,0)	(-4,-4)	(-8,-10)	(-12,-18)
5	(10,0)	(5,1)	(0,0)	(-5,-3)	(-10,-8)	(-15,-15)	(-15,-18)
6	(<mark>6,0</mark>)	(0,0)	(-6,-2)	(-12,-6)	(-18,-12)	(-18,-15)	(-18,-18)

initial state: (2,5)

profitable updates:

1/11	0	1	2	3	4	5	6
0	(0,0)	(0,6)	(0,10)	(0,12)	(0,12)	(0,10)	(0,6)
1	(6, <mark>0</mark>)	(5,5)	(4,8)	(3,9)	(2,8)	(1,5)	(0,0)
2	(10,0)	(8,4)	(6,6)	(4, 6)	(<mark>2,4</mark>)	(0,0)	(-2,-6)
3	(12,0)	(9,3)	(<mark>6,4</mark>)	(3,3)	(0,0)	(-3,-5)	(-6,-12)
4	(12,0)	(8,2)	(4,2)	(0,0)	(-4,-4)	(-8,-10)	(-12,-18)
5	(10,0)	(5,1)	(0,0)	(-5,-3)	(-10,-8)	(-15,-15)	(-15,-18)
6	(6, <mark>0</mark>)	(0,0)	(-6,-2)	(-12,-6)	(-18,-12)	(-18,-15)	(-18,-18)

initial state: (2,5)

profitable updates: 1 is a best response to 5, 2 to 2

1/11	0	1	2	3	4	5	6
0	(0,0)	(0,6)	(0,10)	(0,12)	(0,12)	(0,10)	(0,6)
1	(6, <mark>0</mark>)	(5,5)	(4,8)	(3,9)	(2,8)	(1,5)	(0,0)
2	(10,0)	(8,4)	(6,6)	(4, 6)	(<mark>2,4</mark>)	(0,0)	(-2,-6)
3	(12,0)	(9,3)	(<mark>6,4</mark>)	(3,3)	(0,0)	(-3,-5)	(-6,-12)
4	(12,0)	(8,2)	(4,2)	(0,0)	(-4,-4)	(-8,-10)	(-12,-18)
5	(10,0)	(5,1)	(0,0)	(-5,-3)	(-10,-8)	(-15,-15)	(-15,-18)
6	(6, <mark>0</mark>)	(0,0)	(-6,-2)	(-12,-6)	(-18,-12)	(-18,-15)	(-18,-18)

initial state: (2,5)

profitable updates: ① is a best response to ⑤, ② to ②

new state: (1,2)

1/11	0	1	2	3	4	(5)	6
0	(0,0)	(0,6)	(0,10)	(0,12)	(0,12)	(0,10)	(0,6)
1	(6, <mark>0</mark>)	(5,5)	(4,8)	(3,9)	(2,8)	(1,5)	(0,0)
2	(10,0)	(8,4)	(6,6)	(4, 6)	(2,4)	(0,0)	(-2,-6)
3	(12,0)	(9,3)	(<mark>6,4</mark>)	(3,3)	(0,0)	(-3 ,- 5)	(-6,-12)
4	(12,0)	(8,2)	(<mark>4,2</mark>)	(0,0)	(-4,-4)	(-8,-10)	(-12,-18)
5	(10,0)	(5,1)	(0,0)	(-5,-3)	(-10,-8)	(-15,-15)	(-15,-18)
6	(<mark>6,0</mark>)	(0,0)	(-6,-2)	(-12,-6)	(-18,-12)	(-18, -15)	(-18,-18)

initial state: (2,5)

profitable updates: 1 is a best response to 5, 2 to 2

new state: (1,2)

profitable updates: 3 is a best response to 2, 3 to 1

new state: (3,3)

1/11	0	1	2	3	4	5	6
0	(0,0)	(0,6)	(0,10)	(0,12)	(0,12)	(0,10)	(0,6)
1	(6, <mark>0</mark>)	(5,5)	(4,8)	(3,9)	(2,8)	(1,5)	(0,0)
2	(10,0)	(8,4)	(<mark>6,6</mark>)	(4, 6)	(2,4)	(0,0)	(-2,- 6)
3	(12,0)	(9,3)	(6,4)	(3,3)	(0,0)	(-3 ,- 5)	(-6,-12)
4	(12,0)	(8,2)	(4,2)	(0,0)	(-4,-4)	(-8,-10)	(-12,-18)
5	(10,0)	(5,1)	(0,0)	(-5,-3)	(-10,-8)	(-15,-15)	(-15,-18)
6	(<mark>6,0</mark>)	(0,0)	(-6,-2)	(-12,-6)	(-18,-12)	(-18,-15)	(-18,-18)

initial state: (2,5)

profitable updates: 1 is a best response to 5, 2 to 2

new state: (1,2)

profitable updates: 3 is a best response to 2, 3 to 1

new state: (3,3)

profitable updates: (2) is a best response to (3), (2) to (3)

new state: (2,2)

I/II	0	1	2	3	4	5	6
0	(0,0)	(0,6)	(0,10)	(0,12)	(0,12)	(0,10)	(0,6)
1	(6, <mark>0</mark>)	(5,5)	(4,8)	(3,9)	(2,8)	(1,5)	(0,0)
2	(10,0)	(8,4)	(6,6)	(4, 6)	(2,4)	(0,0)	(-2,- 6)
3	(12,0)	(9,3)	(<mark>6,4</mark>)	(3,3)	(0,0)	(-3,-5)	(-6,-12)
4	(12,0)	(8,2)	(<mark>4,2</mark>)	(0,0)	(-4,-4)	(-8,-10)	(-12,-18)
5	(10,0)	(5,1)	(0,0)	(-5,-3)	(-10,-8)	(-15,-15)	(-15,-18)
6	(<mark>6,0</mark>)	(0,0)	(-6,-2)	(-12,-6)	(-18,-12)	(-18,-15)	(-18,-18)

initial state: (2,5)

profitable updates: 1 is a best response to 5, 2 to 2

new state: (1,2)

profitable updates: 3 is a best response to 2, 3 to 1

new state: (3,3)

profitable updates: 2 is a best response to 3, 2 to 3

new state: $(2,2) \longrightarrow \text{equilibrium state reached}$

	0	1	2	3	4	5	6
0	(0,0)	(0,6)	(0,10)	(0,12)	(0,12)	(0,10)	(0,6)
1	(6, <mark>0</mark>)	(5,5)	(4,8)	(3,9)	(2,8)	(1,5)	(0,0)
2	(10,0)	(8,4)	(6,6)	(4, 6)	(2,4)	(0,0)	(-2,-6)
3	(12,0)	(9,3)	(<mark>6,4</mark>)	(3,3)	(0,0)	(-3 ,- 5)	(-6,-12)
4	(12,0)	(8,2)	(<mark>4,2</mark>)	(0,0)	(-4,-4)	(-8,-10)	(-12,-18)
5	(10,0)	(5,1)	(0,0)	(-5,-3)	(-10,-8)	(-15,-15)	(-15,-18)
6	(<mark>6,0</mark>)	(0,0)	(-6,-2)	(-12,-6)	(-18,-12)	(-18, -15)	(-18,-18)

```
initial state: (2,5) utilities (0,0)
```

profitable updates: 1 is a best response to 5, 2 to 2

new state: (1,2) utilities (4,8)

profitable updates: 3 is a best response to 2, 3 to 1

new state: (3,3) utilities (3,3)

profitable updates: (2) is a best response to (3), (2) to (3)

new state: $(2,2) \longrightarrow \text{equilibrium state reached}$ utilities (6,6)

I/II	0	1	2	3	4	5	6
0	(0,0)	(0,6)	(0,10)	(0,12)	(0,12)	(0,10)	(0,6)
1	(6, <mark>0</mark>)	(5,5)	(4,8)	(3,9)	(2,8)	(1,5)	(0,0)
2	(10,0)	(8,4)	(6,6)	(4, 6)	(2,4)	(0,0)	(-2,- 6)
3	(12,0)	(9,3)	(<mark>6,4</mark>)	(3,3)	(0,0)	(-3,-5)	(-6,-12)
4	(12,0)	(8,2)	(<mark>4,2</mark>)	(0,0)	(-4,-4)	(-8,-10)	(-12,-18)
5	(10,0)	(5,1)	(0,0)	(-5,-3)	(-10,-8)	(-15,-15)	(-15,-18)
6	(<mark>6,0</mark>)	(0,0)	(-6,-2)	(-12,-6)	(-18,-12)	(-18,-15)	(-18,-18)

```
initial state: (2,5) utilities (0,0)
```

profitable updates: (1) is a best response to (5), (2) to (2) (second not unique)

new state: (1,2) utilities (4,8)

profitable updates: (3) is a best response to (2), (3) to (1) (first not unique)

new state: (3,3) utilities (3,3)

profitable updates: 2 is a best response to 3, 2 to 3

new state: $(2,2) \longrightarrow \text{equilibrium state reached}$ utilities (6,6)

Best response dynamics

Algorithmic rephrasing of Cournot's basic idea

Synchronous distributed algorithm (Jacobi type algorithm)

- 2 x_i^{k+1} is a best response to x_{-i}^k $\left(x_i^{k+1} \in R_i(x_{-i}^k)\right)$ $\Longrightarrow x^{k+1} \in R(x^k)$ • if $x_i^k \in R_i(x_i^k)$, select $x_i^{k+1} = x_i^k$
- \bullet k = k + 1 and go back to 2

All players know the current state (x^k) and reply [simultaneously]

Knowledge of other players' utility functions is not required

1/11	0	1	2	3	4	5	6
0	(0,0)	(0,6)	(0,10)	(0,12)	(0,12)	(0,10)	(0,6)
1	(<mark>6,0</mark>)	(5,5)	(4,8)	(3,9)	(2,8)	(1,5)	(0,0)
2	(10,0)	(8,4)	(6,6)	(<mark>4,6</mark>)	(2, <mark>4</mark>)	(0,0)	(-2,-6)
3	(12,0)	(9,3)	(6, 4)	(3,3)	(0,0)	(-3,-5)	(-6,-12)
4	(12,0)	(8,2)	(4,2)	(0,0)	(-4,-4)	(-8,-10)	(-12,-18)
5	(10,0)	(5,1)	(0,0)	(-5,-3)	(-10,-8)	(-15,-15)	(-15,-18)
6	(<mark>6,0</mark>)	(0,0)	(-6,-2)	(-12,-6)	(-18,-12)	(-18,-15)	(-18,-18)

current state: (2,2) equilibrium state

1/11	0	1	2	3	4	5	6
0	(0,0)	(0,6)	(0,10)	(0,12)	(0,12)	(0,10)	(0,6)
1	(<mark>6,0</mark>)	(5,5)	(4,8)	(3,9)	(2,8)	(1,5)	(0,0)
2	(10,0)	(8,4)	(6,6)	(4, 6)	(2, <mark>4</mark>)	(0,0)	(-2,-6)
3	(12,0)	(9,3)	(6, 4)	(3,3)	(0,0)	(-3,-5)	(-6,-12)
4	(12,0)	(8,2)	(<mark>4,2</mark>)	(0,0)	(-4,-4)	(-8,-10)	(-12,-18)
5	(10,0)	(5,1)	(0,0)	(-5,-3)	(-10,- <mark>8</mark>)	(-15,-15)	(-15,-18)
6	(<mark>6,0</mark>)	(0,0)	(-6,-2)	(-12,-6)	(-18,-12)	(-18,-15)	(-18,-18)

current state: (2,2) equilibrium state

possible updates: (3) is a best response to (2), (3) to (2)

1/11	0	1	2	3	4	(5)	6
0	(0,0)	(0,6)	(0,10)	(0,12)	(0,12)	(0,10)	(0,6)
1	(<mark>6,0</mark>)	(5,5)	(4,8)	(3,9)	(2,8)	(1,5)	(0,0)
2	(10,0)	(8,4)	(6,6)	(4, 6)	(2,4)	(0,0)	(-2,-6)
3	(12,0)	(9,3)	(<mark>6,4</mark>)	(3,3)	(0,0)	(-3,-5)	(-6,-12)
4	(12,0)	(8,2)	(<mark>4,2</mark>)	(0,0)	(-4,-4)	(-8,-10)	(-12,-18)
5	(10,0)	(5,1)	(0,0)	(-5 ,- 3)	(-10,-8)	(-15, -15)	(-15,-18)
6	(<mark>6,0</mark>)	(0,0)	(-6,-2)	(-12,-6)	(-18,-12)	(-18,-15)	(-18,-18)

current state: (2,2) equilibrium state

possible updates: 3 is a best response to 2, 3 to 2

new state: (3,3)

profitable updates: 2 is a best response to 3, 2 to 3

new state: (2,2)

I/II	0	1	2	3	4	5	6
0	(0,0)	(0,6)	(0,10)	(0,12)	(0,12)	(0,10)	(0,6)
1	(<mark>6,0</mark>)	(5,5)	(4,8)	(3,9)	(2,8)	(1,5)	(0,0)
2	(10,0)	(8,4)	(6,6)	(4, 6)	(2,4)	(0,0)	(-2,-6)
3	(12,0)	(9,3)	(6,4)	(3,3)	(0,0)	(-3,-5)	(-6,-12)
4	(12,0)	(8,2)	(<mark>4,2</mark>)	(0,0)	(-4,-4)	(-8,-10)	(-12,-18)
5	(10,0)	(5,1)	(0,0)	(-5,-3)	(-10,-8)	(-15, -15)	(-15,-18)
6	(<mark>6,0</mark>)	(0,0)	(-6,-2)	(-12,-6)	(-18,-12)	(-18,-15)	(-18,-18)

current state: (2,2) equilibrium state

possible updates: (3) is a best response to (2), (3) to (2) useless switch

new state: (3,3)

profitable updates: (2) is a best response to (3), (2) to (3)

new state: (2,2)

a possibly endless loop between the two states might occur

avoid useless switches: if $x_i^k \in R_i(x_{-i}^k)$, select $x_i^{k+1} = x_i^k$

Synchronous algorithm in finite games

Prisoner's dilemma

1/11	not confess	confess
not confess	(-2,-2)	(-7,0)
confess	(0,-7)	(-5,-5)

$$x^0 = (nc, nc) \longrightarrow x^1 = (c, c), \quad x^0 = (c, nc) \longrightarrow x^1 = (c, c)$$

Synchronous algorithm in finite games

Prisoner's dilemma

1/11	not confess	confess
not confess	(-2,-2)	(-7, <mark>0</mark>)
confess	(0,-7)	(-5,-5)

$$x^0 = (nc, nc) \longrightarrow x^1 = (c, c), \quad x^0 = (c, nc) \longrightarrow x^1 = (c, c)$$

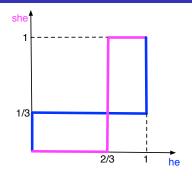
The battle of sexes

he/she	football	dancing
football	(2,1)	(0,0)
dancing	(<mark>0,0</mark>)	(1, <mark>2</mark>)

$$x^0 = (f, d) \longrightarrow x^1 = (d, f) \longrightarrow x^2 = (f, d) = x^0$$

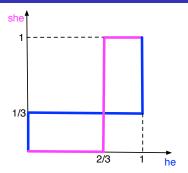
the algorithm loops

Synchronous algorithm with mixed strategies



$$x^0=(1/2,1/2) \longrightarrow x^1=(1,0) \longrightarrow x^2=(0,1) \longrightarrow x^3=(1,0)$$
 the algorithm loops

Synchronous algorithm with mixed strategies



$$x^0 = (1/2, 1/2) \longrightarrow x^1 = (1, 0) \longrightarrow x^2 = (0, 1) \longrightarrow x^3 = (1, 0)$$

the algorithm loops

$$\hat{x}^0 = (2/3, 1/3) \longrightarrow \hat{x}^1 = (1/2, 1/2)$$
 $1/2 \in R_{he}(1/3) \text{ but } 2/3 \in R_{he}(1/3)$
 $1/2 \in R_{she}(2/3) \text{ but } 1/3 \in R_{she}(2/3)$
 $\Rightarrow \hat{x}^0 \to \hat{x}^1 \text{ not allowed}$