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Mixed equilibria in the battle of sexes

q 1-q
he/she | football | dancing
p | football | (2,1) (0,0)
1-p | dancing | (0,0) (1,2)

she
1 ___________

1 if p>2/3 1 if g>1/3
Rehe(p) = { [0,1] if p=2/3 Rhe(q) = ¢ [0,1] if g=1/3
0 if p<2/3 i 0 ifg<1/3
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Nash equilibria are mutual best responses
(p*,q") =(1,1),(0,0),(2/3,1/3)
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Nash equilibria are mutual best responses
(p*,q") =(1,1),(0,0),(2/3,1/3)

— the best response to a pure strategy is the same pure strategy
— both pure strategies are best responses to the equilibrium mixed strategy



Mixed strategy equilibria as a combinatorial problem

Theorem

In a finite game (N, (S;)ien, (ui)ien) @ (mixed) strategy profile o* € As is
a Nash equilibrium in mixed strategies if and only if every pure strategy
xj € Sj such that o (x;) > 0 is a best response to c* ; for each playeri € N.

Corollary

Let o* € Ag be a Nash equilibrium in mixed strategies of a finite game.
Every pure strategy x; € S; such that o (x;) > 0 yields player i the same
payoff (provided the other players choose o* ;).

A

{xi € Si : oi(x;) > 0} support of o; € A(S))
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Mixed strategy equilibria as a combinatorial problem

Theorem

In a finite game (N, (S;)ien, (ui)ien) @ (mixed) strategy profile o* € As is
a Nash equilibrium in mixed strategies if and only if every pure strategy
xj € Sj such that o (x;) > 0 is a best response to c* ; for each playeri € N.

Corollary

Let o* € Ag be a Nash equilibrium in mixed strategies of a finite game.
Every pure strategy x; € S; such that o (x;) > 0 yields player i the same
payoff (provided the other players choose o* ;).

A

{xi € Si : oi(x;) > 0} support of o; € A(S))

finding equilibria = finding a suitable support for each player

- choose ‘supports’ (subsets of strategies)
- assign probabilities inside the supports .

. . — system of equations
- check pure strategies entail the same payoff

- check pure strategies are indeed best responses — system of inequalities



Looking for suitable supports

D@10 [®
(4,3) (7,4) (5,2) (3,4)
(55) | (6:7) | (21) | (25)
(3.4) | (42) | (5.5) | (6,3)

=
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same payoffs: u1((D), 02) = u1(®), 02):
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il o1 @ | 8 | @
@© | (43) | (74) | (52) | (3.4)
@ [ (55) | (57) | (1) | (25)
® 16442 ]65)](63)

choose supports:  {@D, 3} {3}

assign probabilities: p,1 —p 1 (61 =(p,0,1—p), 0o = (0,0,1)) [p>0])
same payoffs: u1(@), 72) = u1(®),02): 5=5

best responses: (1) and (3) are best responses to 7> = (3)

3p+4(1—p) @
(3) is a best response to o1: 2p+5(1—p) > 4p+2(l—p) @ +— 0<p<1/2
4p+3(l—p) @

{((p,0,1—=p),(0,0.1)) : 0 < p<1/2} are Nash equilibria in mixed strategies

exercise: try supports {@D, @} {1, 3, D}



Mathematical background: compactness

Definition
Aset SCR™is

(i) closed if the limit of any sequence of points x¥ € S belongs to S, i.e.,

xK s x = xe8§

(ii) bounded if there exists M > 0 such that S C {x € R™ : ||x|| < M}

(IIx]l, = v/x2 + - - - + x& is the Euclidean norm)

(iii) compact if it is closed and bounded

Extreme value theorem (Bolzano, Weierstrass): if S C R™ is compact, any continuous
function f : S — R has at least one maximum (minimum) point over S

(any sequence in a compact set admits a convergent subsequence)



Mathematical background: convexity for sets

Definition
S C R™ is a convex set if

x,y €S, Ae[0,1]] = Mx+(1-ANyeS

Ax+(1-A)y

convex nonconvex



Existence of Nash equilibria

Theorem (Nikaido-Isoda 1955)

Let (N,(Si)ien, (ui)ien) be a strategic game. If any i € N satisfies
(i) Si CR™ js convex and compact

(ii) u; is continuous

(iii) the set of best responses R;(x_;) is convex for all x_j € S_;

then the game has at least one Nash equilibrium.

the proof relies on Kakutani's fixed point theorem (1941):
x* Nash equilibrium <= x™ € R(x™) = Ri(x*1) X - -+ X Rao(x*,)



Existence of Nash equilibria

Theorem (Nikaido-Isoda 1955)

Let (N,(Si)ien, (ui)ien) be a strategic game. If any i € N satisfies
(i) Si CR™ js convex and compact

(ii) u; is continuous

(iii) the set of best responses R;(x_;) is convex for all x_j € S_;

then the game has at least one Nash equilibrium.

the proof relies on Kakutani's fixed point theorem (1941):
x* Nash equilibrium <= x™ € R(x™) = Ri(x*1) X - -+ X Rao(x*,)

- |Ri(x=j)| =1 = Ri(x_;) convex (uniqueness = Nash 1951)
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Let S C R™ be convex. f : R™ — R is a convex function on S if

FOXx+ (1= A)y) S M)+ (1= NFf(y)
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Mathematical background: convexity for functions

Definition

Let S C R™ be convex. f : R™ — R is a convex function on S if
FOX + (L= N)y) < A(x)+ (1= N)f(y)

holds for all x,y € S, A € [0,1].

Proposition

Let S CR™ be convex. f : R™ — R is a convex function on S if and only
if (the restriction of) its epigraph (to S), namely,

epis(f) ={(x,t) e SxR : t > f(x)}

is a convex set in RM+1,




Mathematical background: convexity for functions

Definition

Let S C R™ be convex. f : R™ — R is a convex function on S if

FOXx+ (1= A)y) S M)+ (1= NFf(y)
holds for all x,y € S, A € [0,1].

f :R™ — R is a concave function on S if —f is a convex function on S

M) +(1-Nf(y)

v

X 7 v
AX+(1-N)y



Existence of Nash equilibria: finite games

Theorem (Nikaido-Isoda 1955)

Let (N, (Si)ien, (ui)ien) be a strategic game. If any i € N satisfies
(i) Si € R™ s convex and compact
(ii) u; is continuous

(iii) the set of best responses Ri(x_;) is convex for all x_; € S_;

then the game has at least one Nash equilibrium.

o ) ) ) ui(+, x—i) linear
finite game in mixed strategies:
i = A, convex and compact

Every finite game has at least one Nash equilibrium in mixed strategies.




Existence of Nash equilibria: two player zero-sum games

Minimax theorem (von Neumann 1928)

Let ({1,2},{51,S2}), u) be a two player zero-sum game. If
(i) Si CR™ js convex and compact (i =1,2)

(ii) u is continuous

(iii) u(-, x2) : x1 — u(x1,x2) is concave for all xo € S,

(iv) u(xi,-) : xo — u(x1,x2) is convex for all x; € 51

then . :
max min u(xy,x2) = min max u(xy,x2).
X1651 X2€Sg X2€52 X1€Sl

Hence, the game has at least one Nash equilibrium.

minimax equality — security/minimax strategies <— Nash equilibrium

convexity/concavity can be replaced by quasiconvexity/concavity



Learning a game

Can equilibria be learnt?



Learning a game

Can equilibria be learnt?

players/agents:

choose their strategies
- observe the state of the game/system
update strategies if profitable

- observe the new state of the game/system

dynamics

(another view of the basic idea in Cournot’s approach to duopoly)



Learning a Cournot duopoly

© | © | @ ©) @ ® ©®
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(120) [ 03 [ (64 | (33) (0,0) (:3.5) | (-6.12)

) (

)

)

=

12,0 [ 82) [ (42) 0,0) (44 | (-8-10) | (-12,-18)
10,0) | 5.1) | (0.0) | (-5.2) | (-10,8) | (-15,15) | (-15, 18)
(6,0) | (0.0) | (-6,2) | (-12,6) | (-18,12) | (-18,15) | (-18,19)

OOELEE©




Learning a Cournot duopoly

/] © @® @ ® @ ® ®
© | (0.0) | (0,0 [ (0,10) | (0.12) | (0.12) | (0,10 (0,6
D1 (60 (G5 ] @) | B9 | 25 | @5 | (00
@ | (10,0) | (84) | (6.6) | (4.5) (2.4) (0.0) (-2.-6)
® | (120 @3 64 | (33) ©0.0) | (3.5 | (6,12
@ [ (@120 [ @2 | 2 | (0.0) (44 | (-8-10) | (-12,-18)
® [ (10,0) | 5.1 | (0.0) | (5.2) | (-10,8) | (-15,15) | (-15, 18)
©® | 6.0) | (00) | (-6.2) | (-12.6) | (-18,12) | (-18,15) | (-18,18)
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new state: ((2),(2)) — equilibrium state reached



Learning a Cournot duopoly

/] © @® @ ® @ ® ®
© | (0.0) | (0,0 [ (0,10) | (0.12) | (0.12) | (0,10 (0,6
D1 (60 (G5 ] @) | B9 | 25 | @5 | (00
@ | (10,0) | (84) | (6.6) | (4.5) (2.4) (0.0) (-2.-6)
® | (120 @3 64 | (33) ©0.0) | (3.5 | (6,12
@ [ (@120 [ @2 | 2 | (0.0) (44 | (-8-10) | (-12,-18)
® [ (10,0) | 5.1 | (0.0) | (5.2) | (-10,8) | (-15,15) | (-15, 18)
©® | 6.0) | (00) | (-6.2) | (-12.6) | (-18,12) | (-18,15) | (-18,18)

initial state: ((2),(5))  utilities (0,0)

profitable updates: (I) is a best response to (5), (2) to )
new state: ((1),(2)) utilities (4,8)

profitable updates: (3) is a best response to (2), (3) to @)
new state: ((3),(3))  utilities (3,3)

profitable updates: (2) is a best response to (3), 2) to 3

&/

new state: ((2),(2)) — equilibrium state reached utilities (6,6)



Learning a Cournot duopoly

/] © @® @ ® @ ® ®
© | (0.0) | (0,0 [ (0,10) | (0.12) | (0.12) | (0,10 (0,6
@ | (6,0) | (55) | (453) (3.9) (2,8) (1,5) (0,0)
@ | (10,0) | (84) | (6.6) | (4.5) (2.4) (0.0) (-2.-6)
® | (120 @3 64 | (33) ©0.0) | (3.5 | (6,12
@ [ (@120 [ @2 | 2 | (0.0) (44 | (-8-10) | (-12,-18)
® [ (10,0) | 5.1 | (0.0) | (5.2) | (-10,8) | (-15,15) | (-15, 18)
©® | 6.0) | (00) | (-6.2) | (-12.6) | (-18,12) | (-18,15) | (-18,18)

initial state: ((2),(5))  utilities (0,0)

profitable updates: (I) is a best response to (5), (2) to ) (second not unique)
new state: ((1),(2)) utilities (4,8)

profitable updates: (3) is a best response to (2), (3) to ) (first not unique)
new state: ((3),(3))  utilities (3,3)

profitable updates: (2) is a best response to (3), 2) to 3

&/

new state: ((2),(2)) — equilibrium state reached utilities (6,6)



Best response dynamics

Algorithmic rephrasing of Cournot'’s basic idea

Synchronous distributed algorithm (Jacobi type algorithm)
O X=00....x)eS x-S, k=0

Q x,.kJr1 is a best response to xf,- (xl-k+1 € R,-(xf,-))} = xktle R(xK)
> if xK € Ri(xX,), select x}™™ = xk

Q if xKt1 = xk then STOP

Q@ k= k+1 and go back to 2

All players know the current state (x) and reply [simultaneously]

Knowledge of other players’ utility functions is not required



Avoiding useless switching may prevent looping

/1] © ) @ ® @ ® ®

© | (0.0) | (0.6) | (0,00 | (0.12) | (0.12) | (0,10) (0,6
@ | (60) | (655 | (48) | (389 (2.8) (15) (0,9)
@ | (10,0) | (84) | (6.6) (4.9) (2.4) (0,0) (-2,-6)
® 120 @) | 65 | (32 (0,0) (3.5) | (6. 12)
@ | (120) | 82 | (32) | (0.0) | (44 | (:8.10) | (-12,19)
® [ (10,0) [ (5.1) | (0.0) [ (-5-3) | (-10,8) | (-15-15) | (-15,-18)
® | (6,0) | (0.0) | (-6,2) | (-12,-6) | (-18,12) | (-18,-15) | (-18,-18)

current state: ((2,(2)) equilibrium state



Avoiding useless switching may prevent looping

/| © @ @ ® @ ® ®

© | (0,0) | (0,6) | (0,10) | (0,12) (0,12) (0,10) (0,6)
@ | (60) | (55| (48) | (39) (2.8) (1.5) (0,0)
@ | (10,0) | (84) | (66) | (456) (2.4) (0,0) (-2,-6)
® | (12,0) | (9.3) | (6,4) (3.3) (0,0) (-3,-5) (-6,-12)
@ | (12,0) | (82) | (4,2) (0,0) (-4,-4) (-8,-10) | (-12,-18)
® [ (10,0) | G.1) | (0.0) | (-53) | (-10,8) | (-15,15) | (-15,19)
® | (6.0) [(0.0) | (62) | (-12.6) | (-18.12) | (-18,15) | (-18,18)

current state: ((2,(2)) equilibrium state

possible updates: (3) is a best response to (2), (3) to (2)



Avoiding useless switching may prevent looping

/| © @ @ ® @ ® ®
© | (0,0) | (0,6) | (0,10) | (0,12) (0,12) (0,10) (0,6)
@ | (60) | (55| (48) | (39) (2.8) (1.5) (0,0)
@ | (10,0) | (84) | (66) | (456) (2.4) (0,0) (-2,-6)
® | (12,0) | (9.3) | (6,4) (3.3) (0,0) (-3,-5) (-6,-12)
@ | (12,0) | (82) | (4,2) (0,0) (-4,-4) (-8,-10) | (-12,-18)
® [ (10,0) | G.1) | (0.0) | (-53) | (-10,8) | (-15,15) | (-15,19)
® | (6.0) [(0.0) | (62) | (-12.6) | (-18.12) | (-18,15) | (-18,18)
current state: ((2,(2)) equilibrium state

possible updates: (3) is a best response to (2), (3) to (2)

new state: ((3),(3))

profitable updates: (2) is a best response to (3), (2) to (3)

new state: ((2,2))



Avoiding useless switching may prevent looping

/] © @ @ ® @ ® ©®
© | (0,0) | (0,6) | (0,10) | (0,12) (0,12) (0,10) (0,6)
@ | (6,0) | (55) | (48) | (3.9 (2.8) (1.5) (0,0)
@ | (10,0) | (84) | (66) | (456) (2.4) (0,0) (-2,-6)
B3 | (12,0) | (9,3) | (6,4) (3.3) (0,0) (-3,-5) (-6,-12)
@ | (12,0) | (8,2) | (4.2) (0,0) (-4,-4) (-8,-10) | (-12,-18)
® 1 (100) [ G [ (00) | (5.2) | (-10,8) | (-15,15) | (-15, 19)
® | 6.0) | (00) | (-6.2) | -12.6) | (-18,12) | (-18,15) | (-18,18)
current state: (2),2)) equilibrium state

possible updates: (3) is a best response to (2), (3) to 2 useless switch

new state: ((3),(3))

profitable updates: (2) is a best response to (3), (2) to 3

new state: ((2,2))
a possibly endless loop between the two states might occur

avoid useless switches: if x* € R,-(xﬁ,-), select x**1 = xf

i



Synchronous algorithm in finite games

Prisoner's dilemma

/1 not confess | confess
not confess (-2,-2) (-7,0)
confess (0,-7) (-5,-5)

x% = (nc,nc) — xt=(c,c), x®=(c,nc) — x'=(c,c)



Synchronous algorithm in finite games

Prisoner's dilemma

/1 not confess | confess
not confess (-2,-2) (-7,0)
confess (0,-7) (-5,-5)

x% = (nc,nc) — xt=(c,c), x®=(c,nc) — x'=(c,c)

The battle of sexes

he/she | football | dancing
football | (2,1) (0,0)
dancing | (0,0) (1,2)

XX =(f,d) — xt=(d,f) — x®2=(f,d)=x°
the algorithm loops



Synchronous algorithm with mixed strategies

shew

1/3

2/3 T e

X0 =(1/2,1/2) — x}=(1,0) — x?>=(0,1) — x3>=(1,0)

the algorithm loops



Synchronous algorithm with mixed strategies

shew

1/3

2/3 T e

X0 =(1/2,1/2) — x}=(1,0) — x?>=(0,1) — x3>=(1,0)

the algorithm loops

R0=(2/3,1/3) — &' =(1/2,1/2)
1/2 € Rue(1/3) but 2/3 € Rye(1/3)

= %% — &' not allowed
1/2 € Rspe(2/3) but 1/3 € Repe(2/3)



