Algorithmic game theory

Laurea Magistrale in Computer Science 2024/25

Lecture 6

Security strategies: formal definition

Worst result for player *i* while playing strategy $x_i \in S_i$ $w_i(x_i) = \min\{u_i(x_i, x_{-i}) : x_{-i} \in S_{-i}\}$

Playing any

 $\bar{x}_i \in \arg \max\{w_i(x_i) : x_i \in S_i\},\$

player *i* gets at least $v_i = \max\{w_i(x_i) : x_i \in S_i\}$

Definition

Any such \bar{x}_i is called a security strategy for player *i*

 $v_i = \max\{w_i(x_i) : x_i \in S_i\}$ is called the security level of player i

Security strategies: failure in rock-paper-scissors

Worst result for player *i* while playing strategy $x_i \in S_i$ $w_i(x_i) = \min\{u_i(x_i, x_{-i}) : x_{-i} \in S_{-i}\}$

Playing any

 $\bar{x}_i \in \arg \max\{w_i(x_i) : x_i \in S_i\},\$

player *i* gets at least $v_i = \max\{w_i(x_i) : x_i \in S_i\}$

Definition

Any such \bar{x}_i is called a security strategy for player *i*

 $v_i = \max\{w_i(x_i) : x_i \in S_i\}$ is called the security level of player i

/	paper	scissors	rock	min
paper	(<mark>0,0</mark>)	(-1,1)	(1,-1)	-1
scissors	(1,-1)	(<mark>0,0</mark>)	(-1 , 1)	-1
rock	(-1,1)	(<mark>1,-1</mark>)	(<mark>0,0</mark>)	-1
min	-1	-1	-1	

every strategy is a security strategy

Security strategies: nice outcome for hawk-dove

Worst result for player *i* while playing strategy $x_i \in S_i$ $w_i(x_i) = \min\{u_i(x_i, x_{-i}) : x_{-i} \in S_{-i}\}$

Playing any

 $\bar{x}_i \in \arg \max\{w_i(x_i) : x_i \in S_i\},$

player *i* gets at least $v_i = \max\{w_i(x_i) : x_i \in S_i\}$

Definition

Any such \bar{x}_i is called a security strategy for player *i*

 $v_i = \max\{w_i(x_i) : x_i \in S_i\}$ is called the security level of player i

/	hawk	dove	min
hawk	(- <mark>2</mark> ,-2)	(<mark>2,0</mark>)	-2
dove	(<mark>0,2</mark>)	(1,1)	0
min	-2	0	

dove and dove are the security strategies

Strictly competitive games with two players

Definition

A two player game is strictly competitive if

$$u_1(x_1, x_2) > u_1(x'_1, x'_2) \iff u_2(x_1, x_2) < u_2(x'_1, x'_2)$$

$$u_1(x_1, x_2) < u_1(x'_1, x'_2) \iff u_2(x_1, x_2) > u_2(x'_1, x'_2)$$

hold for all pairs of strategy profiles $(x_1, x_2), (x_1', x_2') \in S_1 \times S_2$.

rock-paper-scissors is strictly competitive, hawk-dove is not

Strictly competitive games with two players

Definition

A two player game is strictly competitive if

$$egin{aligned} u_1(x_1,x_2) > u_1(x_1',x_2') & \iff & u_2(x_1,x_2) < u_2(x_1',x_2') \ u_1(x_1,x_2) < & u_1(x_1',x_2') & \iff & u_2(x_1,x_2) > & u_2(x_1',x_2') \end{aligned}$$

hold for all pairs of strategy profiles $(x_1, x_2), (x_1', x_2') \in S_1 \times S_2$.

rock-paper-scissors is strictly competitive, hawk-dove is not

Definition

A two player game is a zero-sum game if

$$u_1(x_1, x_2) + u_2(x_1, x_2) = 0$$

holds for all strategy profiles $(x_1, x_2) \in S_1 \times S_2$.

Any strictly competitive game \equiv zero-sum game by replacing u_2 by $-u_1$

Two player zero-sum games

Since $u_1 + u_2 \equiv 0$, a unique utility function $u = u_1$ can be considered: player 1 aims at maximizing u, player 2 at maximizing -u (minimizing u)

Security level of player 1: $\underline{v} = \max\{\min\{u(x_1, x_2) : x_2 \in S_2\} : x_1 \in S_1\}$ Security level of player 2: $\overline{v} = \min\{\max\{u(x_1, x_2) : x_1 \in S_1\} : x_2 \in S_2\}$

Two player zero-sum games

Since $u_1 + u_2 \equiv 0$, a unique utility function $u = u_1$ can be considered: player 1 aims at maximizing u, player 2 at maximizing -u (minimizing u)

Security level of player 1: $\underline{v} = \max\{\min\{u(x_1, x_2) : x_2 \in S_2\} : x_1 \in S_1\}$ Security level of player 2: $\overline{v} = \min\{\max\{u(x_1, x_2) : x_1 \in S_1\} : x_2 \in S_2\}$

Proposition		
	$\underline{v} \leq \overline{v}$	

Two player zero-sum games

Since $u_1 + u_2 \equiv 0$, a unique utility function $u = u_1$ can be considered: player 1 aims at maximizing u, player 2 at maximizing -u (minimizing u)

Security level of player 1: $\underline{v} = \max\{\min\{u(x_1, x_2) : x_2 \in S_2\} : x_1 \in S_1\}$ Security level of player 2: $\overline{v} = \min\{\max\{u(x_1, x_2) : x_1 \in S_1\} : x_2 \in S_2\}$

Proposition $\underline{v} \leq \overline{v}$

Definition

A two player zero-sum game has a value if $\underline{v} = \overline{v}$

Security strategies are referred to as minimax strategies

rock-paper-scissors does not have a value: $\underline{v} = -1 < 1 = \overline{v}$

Minimax strategies and Nash equilibria

Alternative formulation

 (x_1^*, x_2^*) is a Nash equilibrium if and only if it is a saddle point of u, i.e., $u(x_1, x_2^*) \leq u(x_1^*, x_2^*) \leq u(x_1^*, x_2)$ for all $x_1 \in S_1, x_2 \in S_2$.

Minimax strategies and Nash equilibria

Alternative formulation

 (x_1^*, x_2^*) is a Nash equilibrium if and only if it is a saddle point of u, i.e., $u(x_1, x_2^*) \leq u(x_1^*, x_2^*) \leq u(x_1^*, x_2)$ for all $x_1 \in S_1, x_2 \in S_2$.

$Nash \equiv minimax$

(i) If (x_1^*, x_2^*) is a Nash equilibrium, then the game has a value $u(x_1^*, x_2^*)$ and x_1^* and x_2^* are minimax strategies.

(ii) If the game has a value, then any pair of minimax strategies (x_1^*, x_2^*) is a Nash equilibrium.

existence of Nash equilibria \equiv existence of minimax value

Minimax strategies and Nash equilibria

Alternative formulation

 (x_1^*, x_2^*) is a Nash equilibrium if and only if it is a saddle point of u, i.e., $u(x_1, x_2^*) \leq u(x_1^*, x_2^*) \leq u(x_1^*, x_2)$ for all $x_1 \in S_1, x_2 \in S_2$.

$Nash \equiv minimax$

(i) If (x_1^*, x_2^*) is a Nash equilibrium, then the game has a value $u(x_1^*, x_2^*)$ and x_1^* and x_2^* are minimax strategies.

(ii) If the game has a value, then any pair of minimax strategies (x_1^*, x_2^*) is a Nash equilibrium.

existence of Nash equilibria \equiv existence of minimax value

Shuffling equilibria

Let (x_1^*, x_2^*) and (x_1°, x_2°) be two Nash equilibria.

(*i*) $u(x_1^*, x_2^*) = u(x_1^\circ, x_2^\circ)$

(ii) (x_1^*, x_2°) and (x_1°, x_2^*) are also Nash equilibria.

 $S_1 = \{1, ..., m_1\}, S_2 = \{1, ..., m_2\}$

 $a_{k\ell} = u(k, \ell)$ payoff when player 1 plays k and player 2 plays ℓ

Alternative formulation

/	1	2	3	4	
	4	7	2	3	
2	1	5	2	4	
3	3	4	3	6	

 $S_1 = \{1, ..., m_1\}, S_2 = \{1, ..., m_2\}$

 $a_{k\ell} = u(k, \ell)$ payoff when player 1 plays k and player 2 plays ℓ

Alternative formulation

/	1	2	3	4	min
1	4	7	2	3	
2	1	5	2	4	
3	3	4	3	6	

 $S_1 = \{1, ..., m_1\}, S_2 = \{1, ..., m_2\}$

 $a_{k\ell} = u(k, \ell)$ payoff when player 1 plays k and player 2 plays ℓ

Alternative formulation

/	1	2	3	4	min
1	4	7	2	3	2
2	1	5	2	4	1
3	3	4	3	6	3

 $S_1 = \{1, ..., m_1\}, S_2 = \{1, ..., m_2\}$

 $a_{k\ell} = u(k, \ell)$ payoff when player 1 plays k and player 2 plays ℓ

Alternative formulation

/	1	2	3	4	min	
1	4	7	2	3	2	
2	1	5	2	4	1	n
3	3	4	3	6	3	

 $S_1 = \{1, ..., m_1\}, S_2 = \{1, ..., m_2\}$

 $a_{k\ell} = u(k, \ell)$ payoff when player 1 plays k and player 2 plays ℓ

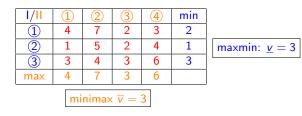
Alternative formulation

/	1	2	3	4	min	
1	4	7	2	3	2	
2	1	5	2	4	1	n
3	3	4	3	6	3	
max	4	7	3	6		

 $S_1 = \{1, ..., m_1\}, S_2 = \{1, ..., m_2\}$

 $a_{k\ell} = u(k, \ell)$ payoff when player 1 plays k and player 2 plays ℓ

Alternative formulation

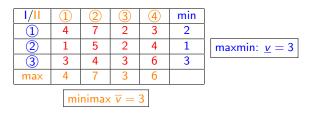


 $S_1 = \{1, ..., m_1\}, S_2 = \{1, ..., m_2\}$

 $a_{k\ell} = u(k, \ell)$ payoff when player 1 plays k and player 2 plays ℓ

Alternative formulation

The strategy profile $(\bar{k}, \bar{\ell})$ is a Nash equilibrium if and only if any k, ℓ satisfy $a_{k\bar{\ell}} \leq a_{\bar{k}\bar{\ell}} \leq a_{\bar{k}\ell}$



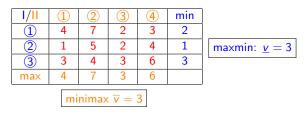
the game has value 3 and (3,3) is a Nash equilibrium

 $S_1 = \{1, ..., m_1\}, S_2 = \{1, ..., m_2\}$

 $a_{k\ell} = u(k, \ell)$ payoff when player 1 plays k and player 2 plays ℓ

Alternative formulation

The strategy profile $(\bar{k}, \bar{\ell})$ is a Nash equilibrium if and only if any k, ℓ satisfy $a_{k\bar{\ell}} \leq a_{\bar{k}\bar{\ell}} \leq a_{\bar{k}\ell}$



the game has value 3 and (3,3) is a Nash equilibrium

computational complexity: compute maxima/minima in $(m_1 + m_2 + 2)$ arrays

I/II	paper	scissors	rock
paper	0	-1	1
scissors	1	0	-1
rock	-1	1	0

No Nash equilibria exist

I/II	paper	scissors	rock
paper	0	-1	1
scissors	1	0	-1
rock	-1	1	0

No Nash equilibria exist

what about repeating the game over and over?

rock and scissors half of times each (probabilities 1/2) never play paper (probability 0) [do people really randomise?]

I/II	paper	scissors	rock
paper	0	-1	1
scissors	1	0	-1
rock	-1	1	0

No Nash equilibria exist

what about repeating the game over and over?

rock and scissors half of times each (probabilities 1/2) never play paper (probability 0) [do people really randomise?]

what will the evolution/dynamics of the repeated game be?

Mixed strategies: rock-paper-scissors

A mixed strategy is a probability measure over the set of (pure) strategies

mixed strategies: $p,q \in \mathbb{R}^3_+$ such that $p_1+p_2+p_3=1$ and $q_1+q_2+q_3=1$

		q_1	<i>q</i> ₂	q 3
	/	paper	scissors	rock
p 1	paper	0	-1	1
p ₂	scissors	1	0	-1
p 3	rock	-1	1	0

mixed strategies: $p,q \in \mathbb{R}^3_+$ such that $p_1+p_2+p_3=1$ and $q_1+q_2+q_3=1$

		q_1	q ₂	q 3
	/	paper	scissors	rock
p_1	paper	0	-1	1
p 2	scissors	p ₂ q ₁	0	-1
p 3	rock	-1	1	0

mixed strategies: $p,q \in \mathbb{R}^3_+$ such that $p_1+p_2+p_3=1$ and $q_1+q_2+q_3=1$

		q_1	q ₂	q 3
	<mark> / </mark>	paper	scissors	rock
p_1	paper	0	- p 1q2	p 1 q 3
p ₂	scissors	p ₂ q ₁	0	- p 2 q 3
p 3	rock	- p ₃ q ₁	p 3 q 2	0

mixed strategies: $p,q \in \mathbb{R}^3_+$ such that $p_1+p_2+p_3=1$ and $q_1+q_2+q_3=1$

		q_1	q ₂	q 3
	/	paper	scissors	rock
p 1	paper	0	- p 1 q 2	p 1 q 3
p ₂	scissors	p ₂ q ₁	0	- p ₂ q ₃
p 3	rock	- p ₃ q ₁	p 3 q 2	0

expected utility: $h(p,q) = -p_1q_2 + p_1q_3 + p_2q_1 - p_2q_3 - p_3q_1 + p_3q_2$

mixed strategies: $p,q \in \mathbb{R}^3_+$ such that $p_1+p_2+p_3=1$ and $q_1+q_2+q_3=1$

		q_1	q ₂	q 3
	/	paper	scissors	rock
p 1	paper	0	- p 1 q 2	p 1 q 3
p ₂	scissors	p ₂ q ₁	0	- p ₂ q ₃
p 3	rock	- p ₃ q ₁	p 3 q 2	0

expected utility: $h(p,q) = -p_1q_2 + p_1q_3 + p_2q_1 - p_2q_3 - p_3q_1 + p_3q_2$

extension of the game:

- players: I, II

- strategy sets: Δ_3 , Δ_3 (unitary simplices: $\Delta_m = \{v \in \mathbb{R}^m_+ : v_1 + \cdots + v_m = 1\}$)

- utility functions: h, -h

 $G = (N, \{S_i\}_{i \in N}, \{u_i\}_{i \in N})$ finite (strategic) game: all the sets S_i are finite

A mixed strategy σ_i assigns a probability $\sigma_i(x_i)$ to each strategy $x_i \in S_i$

$$\Delta(S_i) = \{\sigma_i : S_i \rightarrow [0,1] : \sum_{x_i \in S_i} \sigma_i(x_i) = 1 \}$$

(mixed strategy \equiv vector of $m_i = |S_i|$ nonnegative components whose sum is 1)

pure strategy
$$x_i \in \mathcal{S}_i ~\equiv~ \sigma_{\mathsf{x}_i} \in \Delta(\mathcal{S}_i)$$
 such that $\sigma_{\mathsf{x}_i}(\mathsf{x}_i) = 1$

$$h_i(\sigma) = \sum_{x \in S} u_i(x_1, \ldots, x_n) \sigma_1(x_1) \ldots \sigma_n(x_n)$$

 $G = (N, \{S_i\}_{i \in N}, \{u_i\}_{i \in N})$ finite (strategic) game: all the sets S_i are finite

A mixed strategy σ_i assigns a probability $\sigma_i(x_i)$ to each strategy $x_i \in S_i$

$$\Delta(S_i) = \{\sigma_i : S_i \rightarrow [0,1] : \sum_{x_i \in S_i} \sigma_i(x_i) = 1 \}$$

(mixed strategy \equiv vector of $m_i = |S_i|$ nonnegative components whose sum is 1)

pure strategy
$$x_i \in \mathcal{S}_i ~\equiv~ \sigma_{x_i} \in \Delta(\mathcal{S}_i)$$
 such that $\sigma_{x_i}(x_i) = 1$

$$h_i(\sigma) = \sum_{x \in S} u_i(x_1, \ldots, x_n) \sigma_i(x_i) \sigma_{-i}(x_{-i})$$

with
$$\sigma_{-i}(x_{-i}) = \prod_{j
eq i} \sigma_j(x_j)$$

Nash equilibria in mixed strategies

Mixed extension

Let $G = (N, \{S_i\}_{i \in N}, \{u_i\}_{i \in N})$ be a finite (strategic) game. Then, the game

$$G_{me} = (N, \{\Delta(S_i)_i\}_{i \in N}, \{h_i\}_{i \in N})$$

is called the extension of G to mixed strategies.

(all strategy profiles for G are included in G_{me})

Nash equilibria in mixed strategies = Nash equilibria of the mixed extension

Nash equilibria in mixed strategies

Mixed extension

Let $G = (N, \{S_i\}_{i \in N}, \{u_i\}_{i \in N})$ be a finite (strategic) game. Then, the game

$$G_{me} = (N, \{\Delta(S_i)_i\}_{i \in N}, \{h_i\}_{i \in N})$$

is called the extension of G to mixed strategies.

(all strategy profiles for G are included in G_{me})

Nash equilibria in mixed strategies = Nash equilibria of the mixed extension

How are Nash equilibria for G and G_{me} related?

Proposition

If a strategy profile $x^* = (x_1^*, ..., x_n^*) \in S$ is a Nash equilibrium for G, then $\sigma_{x^*} = (\sigma_{x_1^*}, ..., \sigma_{x_n^*}) \in \Delta_S$ is a Nash equilibrium for G_{me} .

 $(\Delta_S = \Delta(S_1) \times \cdots \times \Delta(S_n))$

Mixed equilibria in rock-paper-scissors

		q_1	q 2	q 3
	/	paper	scissors	rock
p_1	paper	0	-1	1
p 2	scissors	1	0	-1
p 3	rock	-1	1	0

 $h(p,q) = p^T Aq = q_1(p_2 - p_3) + q_2(p_3 - p_1) + q_3(p_1 - p_2)$

Mixed equilibria in rock-paper-scissors

 $h(p,q) = p^T Aq = q_1(p_2 - p_3) + q_2(p_3 - p_1) + q_3(p_1 - p_2)$

security/minimax strategy for player I

 $w_1(p) = \min\{h(p,q) : q \in \Delta_3\} = \min\{(p_2 - p_3), (p_3 - p_1), (p_1 - p_2)\}$

Mixed equilibria in rock-paper-scissors

 $h(p,q) = p^T Aq = q_1(p_2 - p_3) + q_2(p_3 - p_1) + q_3(p_1 - p_2)$

security/minimax strategy for player I

 $w_1(p) = \min\{h(p,q) : q \in \Delta_3\} = \min\{(p_2 - p_3), (p_3 - p_1), (p_1 - p_2)\}$

$$((p_2 - p_3) + (p_3 - p_1) + (p_1 - p_2) = 0 \implies w_1(p) \le 0$$
 for all $p)$

Mixed equilibria in rock-paper-scissors

 $h(p,q) = p^T Aq = q_1(p_2 - p_3) + q_2(p_3 - p_1) + q_3(p_1 - p_2)$

security/minimax strategy for player I

$$w_1(p) = \min\{h(p,q) : q \in \Delta_3\} = \min\{(p_2 - p_3), (p_3 - p_1), (p_1 - p_2)\}$$

arg max{w_1(p) : $p \in \Delta_3$ } = {(1/3, 1/3, 1/3)} $\longrightarrow \underline{v} = 0$

Mixed equilibria in rock-paper-scissors

 $h(p,q) = p^T Aq = q_1(p_2 - p_3) + q_2(p_3 - p_1) + q_3(p_1 - p_2)$

security/minimax strategy for player I

$$w_1(p) = \min\{h(p,q) : q \in \Delta_3\} = \min\{(p_2 - p_3), (p_3 - p_1), (p_1 - p_2)\}$$

arg max{w_1(p) : $p \in \Delta_3$ } = {(1/3, 1/3, 1/3)} $\longrightarrow \underline{v} = 0$

Same for player II

Mixed strategy equilibrium: each pure strategies is played with probability 1/3

Security/minimax strategies and linear programming

 $w_1(p) = \min\{(p_2 - p_3), (p_3 - p_1), (p_1 - p_2)\}$

 $\max\{w_1(p) : p \in \Delta_3\}$ reads

max	и
	subject to
	$u \leq (p_2 - p_3)$
	$u \leq (p_3 - p_1)$
	$u \leq (p_1 - p_2)$
	$p_1 + p_2 + p_3 = 1$
	$\textbf{\textit{p}}_1 \geq 0, \ \textbf{\textit{p}}_2 \geq 0, \ \textbf{\textit{p}}_3 \geq 0$

 $w_2(q) = \max\{(q_3 - q_2), (q_1 - q_3), (q_2 - q_1)\}$

 $\min\{w_2(q) : q \in \Delta_3\}$ reads

min	V
	subject to
	$v \geq (q_3 - q_2)$
	$v \geq (q_1 - q_3)$
	$v \geq (q_2 - q_1)$
	$q_1 + q_2 + q_3 = 1$
	$q_1\geq 0,\ q_2\geq 0,\ q_3\geq 0$

dual linear programming problems

Security/minimax strategies and linear programming

 $w_1(p) = \min\{(p_2 - p_3), (p_3 - p_1), (p_1 - p_2)\}$

 $\max\{w_1(p) : p \in \Delta_3\}$ reads

max	и
	subject to
	$u \leq (p_2 - p_3)$
	$u \leq (p_3 - p_1)$
	$u \leq (p_1 - p_2)$
	$p_1 + p_2 + p_3 = 1$
	$\textbf{\textit{p}}_1 \geq 0, \ \textbf{\textit{p}}_2 \geq 0, \ \textbf{\textit{p}}_3 \geq 0$

 $w_2(q) = \max\{(q_3 - q_2), (q_1 - q_3), (q_2 - q_1)\}$

 $\min\{w_2(q) : q \in \Delta_3\}$ reads

min	V
	subject to
	$v \geq (q_3 - q_2)$
	$v \geq (q_1 - q_3)$
	$v \geq (q_2 - q_1)$
	$q_1 + q_2 + q_3 = 1$
	$q_1 \geq 0, \ q_2 \geq 0, \ q_3 \geq 0$

dual linear programming problems

strong duality theorem in linear programming \Downarrow existence of a Nash equilibrium in mixed strategies

finite two player zero-sum game $\longrightarrow A \in \mathbb{R}^{m_1 \times m_2}$

 $h(p,q) = p^T A q$ utility/payoff function

finite two player zero-sum game $\longrightarrow A \in \mathbb{R}^{m_1 \times m_2}$

 $h(p,q) = p^T A q$ utility/payoff function

 $w_1(p) = \min\{(A^T p)_i : i = 1, \dots, m_2\}$ $w_2(q) = \max\{(Aq)_i : i = 1, \dots, m_1\}$

finite two player zero-sum game $\longrightarrow A \in \mathbb{R}^{m_1 \times m_2}$ $h(p,q) = p^T A q$ utility/payoff function

$$w_1(p) = \min\{(A^T p)_i : i = 1, \dots, m_2\}$$

 $\max\{w_1(p) : p \in \Delta_3\}$ reads

max	и		
	subject to		
	$\boldsymbol{u} \leq (\boldsymbol{A}^T \boldsymbol{p})_i \ i = 1, \dots m_2$		
	$p_1+\cdots+p_{m_1}=1$		
	$p_i \ge 0$ $i = 1, \dots m_1$		

 $w_2(q) = \max\{(Aq)_i : i = 1, \dots, m_1\}$

 $\min\{w_2(q) : q \in \Delta_3\}$ reads

min	V
	subject to
	$v \geq (Aq)_i$ $i = 1, \ldots m_1$
	$q_1+\cdots+q_{m_2}=1$
	$q_i \geq 0$ $i = 1, \ldots m_2$

dual linear programming problems

finite two player zero-sum game $\longrightarrow A \in \mathbb{R}^{m_1 \times m_2}$ $h(p,q) = p^T A q$ utility/payoff function

$$w_1(p) = \min\{(A^T p)_i : i = 1, \dots, m_2\}$$

 $\max\{w_1(p) : p \in \Delta_3\}$ reads

max	u		
	subject to		
	$\boldsymbol{u} \leq (\boldsymbol{A}^T \boldsymbol{p})_i \ i = 1, \dots m_2$		
	$p_1+\cdots+p_{m_1}=1$		
	$p_i \ge 0$ $i = 1, \dots m_1$		

 $w_2(q) = \max\{(Aq)_i : i = 1, \dots, m_1\}$

 $\min\{w_2(q) : q \in \Delta_3\}$ reads

min	V
	subject to
	$\mathbf{v} \geq (\mathbf{Aq})_i$ $i = 1, \dots m_1$
	$q_1+\cdots+q_{m_2}=1$
	$q_i \geq 0$ $i = 1, \ldots m_2$

dual linear programming problems

existence of a Nash equilibrium in mixed strategies \equiv strong duality theorem in linear programming algorithms for linear programming to compute Nash equilibria

Any $p, q \in [0, 1]$ identify a pair of mixed strategies

(football with probability p vs q, movies with probability 1 - p vs 1 - q)

		q	1-q
	he/she	football	dancing
р	football	(2,1)	(<mark>0,0</mark>)
1– <i>p</i>	dancing	(<mark>0,0</mark>)	(<mark>1,2</mark>)

Any $p, q \in [0, 1]$ identify a pair of mixed strategies (football with probability p vs q, movies with probability 1 - p vs 1 - q)

		q	1-q
	he/she	football	dancing
р	football	(2,1)	(<mark>0,0</mark>)
1– <i>p</i>	dancing	(<mark>0,0</mark>)	(<mark>1,2</mark>)

 $h_{he}(p,q) = 2pq + (1-p)(1-q), \ h_{she}(p,q) = pq + 2(1-p)(1-q)$

Any $p, q \in [0, 1]$ identify a pair of mixed strategies (football with probability p vs q, movies with probability 1 - p vs 1 - q)

		q	1-q
	he/she	football	dancing
р	football	(2,1)	(<mark>0,0</mark>)
1– <i>p</i>	dancing	(<mark>0,0</mark>)	(1,2)

$$h_{he}(p,q) = 2pq + (1-p)(1-q), \ h_{she}(p,q) = pq + 2(1-p)(1-q)$$

Best responses for her

 $h_{she}(p,q) = q(p) + (1-q)(2(1-p)) \le \max\{p, 2(1-p)\} \quad (q \in [0,1])$

Any $p, q \in [0, 1]$ identify a pair of mixed strategies (football with probability p vs q, movies with probability 1 - p vs 1 - q)

		q	1-q
	he/she	football	dancing
p	football	(2,1)	(<mark>0,0</mark>)
1 - p	dancing	(<mark>0</mark> , <mark>0</mark>)	(1,2)

$$h_{he}(p,q) = 2pq + (1-p)(1-q), \ h_{she}(p,q) = pq + 2(1-p)(1-q)$$

Best responses for her

$$\begin{split} h_{she}(p,q) &= q(p) + (1-q) \big(2(1-p) \big) \leq \max\{p, 2(1-p)\} \quad (q \in [0,1]) \\ \text{If } p &> 2(1-p) \quad [p > 2/3], \text{ then } q_{best} = 1 \\ \text{If } p &< 2(1-p) \quad [p < 2/3], \text{ then } q_{best} = 0 \\ \text{If } p &= 2(1-p) \quad [p = 2/3], \text{ then } q_{best} \in [0,1] \end{split}$$

Any $p, q \in [0, 1]$ identify a pair of mixed strategies (football with probability p vs q, movies with probability 1 - p vs 1 - q)

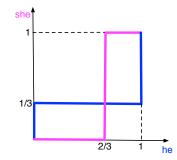
		q	1-q
	he/she	football	dancing
p	football	(2,1)	(<mark>0,0</mark>)
1 - p	dancing	(<mark>0</mark> , <mark>0</mark>)	(1,2)

$$h_{he}(p,q) = 2pq + (1-p)(1-q), \ h_{she}(p,q) = pq + 2(1-p)(1-q)$$

Best responses for her

 $h_{she}(p,q) = q(p) + (1-q)(2(1-p)) \le \max\{p, 2(1-p)\} \quad (q \in [0,1])$ $R_{she}(p) = \begin{cases} 1 & \text{if } p > 2/3 \\ [0,1] & \text{if } p = 2/3 \\ 0 & \text{if } p < 2/3 \end{cases}$

$$R_{she}(p) = \begin{cases} 1 & \text{if } p > 2/3 \\ [0,1] & \text{if } p = 2/3 \\ 0 & \text{if } p < 2/3 \end{cases} \quad R_{he}(q) = \begin{cases} 1 & \text{if } q > 1/3 \\ [0,1] & \text{if } q = 1/3 \\ 0 & \text{if } q < 1/3 \end{cases}$$



$$R_{she}(p) = \begin{cases} 1 & \text{if } p > 2/3 \\ [0,1] & \text{if } p = 2/3 \\ 0 & \text{if } p < 2/3 \end{cases} \xrightarrow{R_{he}(q)} = \begin{cases} 1 & \text{if } q > 1/3 \\ [0,1] & \text{if } q = 1/3 \\ 0 & \text{if } q < 1/3 \end{cases}$$

Nash equilibria are mutual best responses $(p^*, q^*) = (1, 1), (0, 0), (2/3, 1/3)$

$$R_{she}(p) = \begin{cases} 1 & \text{if } p > 2/3 \\ [0,1] & \text{if } p = 2/3 \\ 0 & \text{if } p < 2/3 \end{cases} \xrightarrow{R_{he}(q)} = \begin{cases} 1 & \text{if } q > 1/3 \\ [0,1] & \text{if } q = 1/3 \\ 0 & \text{if } q < 1/3 \end{cases}$$

Nash equilibria are mutual best responses $(p^*, q^*) = (1, 1), (0, 0), (2/3, 1/3)$

change the utility values 2 and 1 with 3 and 2: pure equilibria don't change, the equilibrium in mixed strategies does