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Security strategies: formal definition

failure in rock-paper-scissorsnice outcome for hawk-dove

Worst result for player i while playing strategy xi ∈ Si

wi (xi ) = min{ui (xi , x−i ) : x−i ∈ S−i}

Playing any
x̄i ∈ arg max{wi (xi ) : xi ∈ Si},

player i gets at least vi = max{wi (xi ) : xi ∈ Si}

Definition

Any such x̄i is called a security strategy for player i

vi = max{wi (xi ) : xi ∈ Si} is called the security level of player i

I/II paper scissors rock min

paper (0,0) (-1,1) (1,-1) -1

scissors (1,-1) (0,0) (-1,1) -1

rock (-1,1) (1,-1) (0,0) -1

min -1 -1 -1

every strategy is a security strategy

I/II hawk dove min

hawk (-2,-2) (2,0) -2

dove (0,2) (1,1) 0

min -2 0

dove and dove are the security strategies
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Strictly competitive games with two players

Definition

A two player game is strictly competitive if

u1(x1, x2) > u1(x ′1, x
′
2) ⇐⇒ u2(x1, x2) < u2(x ′1, x

′
2)

u1(x1, x2) < u1(x ′1, x
′
2) ⇐⇒ u2(x1, x2) > u2(x ′1, x

′
2)

hold for all pairs of strategy profiles (x1, x2), (x ′1, x
′
2) ∈ S1 × S2.

rock-paper-scissors is strictly competitive, hawk-dove is not

Definition

A two player game is a zero-sum game if

u1(x1, x2) + u2(x1, x2) = 0

holds for all strategy profiles (x1, x2) ∈ S1 × S2.

Any strictly competitive game ≡ zero-sum game by replacing u2 by −u1
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Two player zero-sum games

Since u1 + u2 ≡ 0, a unique utility function u = u1 can be considered:

player 1 aims at maximizing u, player 2 at maximizing −u (minimizing u)

Security level of player 1: v = max{min{u(x1, x2) : x2 ∈ S2} : x1 ∈ S1}

Security level of player 2: v = min{max{u(x1, x2) : x1 ∈ S1} : x2 ∈ S2}

Proposition

v ≤ v

Definition

A two player zero-sum game has a value if v = v

Security strategies are referred to as minimax strategies

rock-paper-scissors does not have a value: v = −1 < 1 = v
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Minimax strategies and Nash equilibria

Alternative formulation

(x∗1 , x
∗
2 ) is a Nash equilibrium if and only if it is a saddle point of u, i.e.,

u(x1, x
∗
2 ) ≤ u(x∗1 , x

∗
2 ) ≤ u(x∗1 , x2) for all x1 ∈ S1, x2 ∈ S2.

Nash ≡ minimax

(i) If (x∗1 , x
∗
2 ) is a Nash equilibrium, then the game has a value u(x∗1 , x

∗
2 )

and x∗1 and x∗2 are minimax strategies.

(ii) If the game has a value, then any pair of minimax strategies (x∗1 , x
∗
2 ) is

a Nash equilibrium.

existence of Nash equilibria ≡ existence of minimax value

Shuffling equilibria

Let (x∗1 , x
∗
2 ) and (x ◦1 , x

◦
2 ) be two Nash equilibria.

(i) u(x∗1 , x
∗
2 ) = u(x ◦1 , x

◦
2 )

(ii) (x∗1 , x
◦

2 ) and (x ◦1 , x
∗
2 ) are also Nash equilibria.
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Two player zero-sum games: the finite case

S1 = {1, ...,m1}, S2 = {1, ...,m2}

ak` = u(k , `) payoff when player 1 plays k and player 2 plays `

Alternative formulation

The strategy profile (k̄, ¯̀) is a Nash equilibrium if and only if any k,` satisfy
ak ¯̀≤ ak̄ ¯̀≤ ak̄`

I/II 1○ 2○ 3○ 4○

min

1○ 4 7 2 3

2

2○ 1 5 2 4

1

3○ 3 4 3 6

3

max 4 7 3 6

maxmin: v = 3

minimax v = 3

the game has value 3 and ( 3○, 3○) is a Nash equilibrium

computational complexity:
compute maxima/minima in (m1 + m2 + 2) arrays



Two player zero-sum games: the finite case

S1 = {1, ...,m1}, S2 = {1, ...,m2}

ak` = u(k , `) payoff when player 1 plays k and player 2 plays `

Alternative formulation

The strategy profile (k̄, ¯̀) is a Nash equilibrium if and only if any k,` satisfy
ak ¯̀≤ ak̄ ¯̀≤ ak̄`

I/II 1○ 2○ 3○ 4○ min

1○ 4 7 2 3

2

2○ 1 5 2 4

1

3○ 3 4 3 6

3

max 4 7 3 6

maxmin: v = 3

minimax v = 3

the game has value 3 and ( 3○, 3○) is a Nash equilibrium

computational complexity:
compute maxima/minima in (m1 + m2 + 2) arrays



Two player zero-sum games: the finite case

S1 = {1, ...,m1}, S2 = {1, ...,m2}

ak` = u(k , `) payoff when player 1 plays k and player 2 plays `

Alternative formulation

The strategy profile (k̄, ¯̀) is a Nash equilibrium if and only if any k,` satisfy
ak ¯̀≤ ak̄ ¯̀≤ ak̄`

I/II 1○ 2○ 3○ 4○ min

1○ 4 7 2 3 2

2○ 1 5 2 4 1

3○ 3 4 3 6 3

max 4 7 3 6

maxmin: v = 3

minimax v = 3

the game has value 3 and ( 3○, 3○) is a Nash equilibrium

computational complexity:
compute maxima/minima in (m1 + m2 + 2) arrays



Two player zero-sum games: the finite case

S1 = {1, ...,m1}, S2 = {1, ...,m2}

ak` = u(k , `) payoff when player 1 plays k and player 2 plays `

Alternative formulation

The strategy profile (k̄, ¯̀) is a Nash equilibrium if and only if any k,` satisfy
ak ¯̀≤ ak̄ ¯̀≤ ak̄`

I/II 1○ 2○ 3○ 4○ min

1○ 4 7 2 3 2

2○ 1 5 2 4 1

3○ 3 4 3 6 3

max 4 7 3 6

maxmin: v = 3

minimax v = 3

the game has value 3 and ( 3○, 3○) is a Nash equilibrium

computational complexity:
compute maxima/minima in (m1 + m2 + 2) arrays



Two player zero-sum games: the finite case

S1 = {1, ...,m1}, S2 = {1, ...,m2}

ak` = u(k , `) payoff when player 1 plays k and player 2 plays `

Alternative formulation

The strategy profile (k̄, ¯̀) is a Nash equilibrium if and only if any k,` satisfy
ak ¯̀≤ ak̄ ¯̀≤ ak̄`

I/II 1○ 2○ 3○ 4○ min

1○ 4 7 2 3 2

2○ 1 5 2 4 1

3○ 3 4 3 6 3

max 4 7 3 6

maxmin: v = 3

minimax v = 3

the game has value 3 and ( 3○, 3○) is a Nash equilibrium

computational complexity:
compute maxima/minima in (m1 + m2 + 2) arrays



Two player zero-sum games: the finite case

S1 = {1, ...,m1}, S2 = {1, ...,m2}

ak` = u(k , `) payoff when player 1 plays k and player 2 plays `

Alternative formulation

The strategy profile (k̄, ¯̀) is a Nash equilibrium if and only if any k,` satisfy
ak ¯̀≤ ak̄ ¯̀≤ ak̄`

I/II 1○ 2○ 3○ 4○ min

1○ 4 7 2 3 2

2○ 1 5 2 4 1

3○ 3 4 3 6 3

max 4 7 3 6

maxmin: v = 3

minimax v = 3

the game has value 3 and ( 3○, 3○) is a Nash equilibrium

computational complexity:
compute maxima/minima in (m1 + m2 + 2) arrays



Two player zero-sum games: the finite case

S1 = {1, ...,m1}, S2 = {1, ...,m2}

ak` = u(k , `) payoff when player 1 plays k and player 2 plays `

Alternative formulation

The strategy profile (k̄, ¯̀) is a Nash equilibrium if and only if any k,` satisfy
ak ¯̀≤ ak̄ ¯̀≤ ak̄`

I/II 1○ 2○ 3○ 4○ min

1○ 4 7 2 3 2

2○ 1 5 2 4 1

3○ 3 4 3 6 3

max 4 7 3 6

maxmin: v = 3

minimax v = 3

the game has value 3 and ( 3○, 3○) is a Nash equilibrium

computational complexity:
compute maxima/minima in (m1 + m2 + 2) arrays



Two player zero-sum games: the finite case

S1 = {1, ...,m1}, S2 = {1, ...,m2}

ak` = u(k , `) payoff when player 1 plays k and player 2 plays `

Alternative formulation

The strategy profile (k̄, ¯̀) is a Nash equilibrium if and only if any k,` satisfy
ak ¯̀≤ ak̄ ¯̀≤ ak̄`

I/II 1○ 2○ 3○ 4○ min

1○ 4 7 2 3 2

2○ 1 5 2 4 1

3○ 3 4 3 6 3

max 4 7 3 6

maxmin: v = 3

minimax v = 3

the game has value 3 and ( 3○, 3○) is a Nash equilibrium

computational complexity:
compute maxima/minima in (m1 + m2 + 2) arrays



No equilibria in rock-paper-scissors

: enter randomness

I/II paper scissors rock

paper 0 -1 1

scissors 1 0 -1

rock -1 1 0

No Nash equilibria exist

what about repeating the game over and over?

rock and scissors half of times each (probabilities 1/2) never play paper (probability 0)

[do people really randomise?]

what will the evolution/dynamics of the repeated game be?



No equilibria in rock-paper-scissors: enter randomness

I/II paper scissors rock

paper 0 -1 1

scissors 1 0 -1

rock -1 1 0

No Nash equilibria exist

what about repeating the game over and over?

rock and scissors half of times each (probabilities 1/2) never play paper (probability 0)

[do people really randomise?]
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Mixed strategies

: rock-paper-scissors

A mixed strategy is a probability measure over the set of (pure) strategies

mixed strategies: p, q ∈ R3
+ such that p1 + p2 + p3 = 1 and q1 + q2 + q3 = 1

p1

p2

p3

q1 q2 q3

I/II paper scissors rock
paper 0

-1-p1q2 1p1q3

scissors

1p2q1

0

-1-p2q3

rock

-1-p3q1 1p3q2

0

expected utility: h(p, q) = −p1q2 + p1q3 + p2q1 − p2q3 − p3q1 + p3q2

extension of the game:

– players: I, II

– strategy sets: ∆3, ∆3 (unitary simplices: ∆m = {v ∈ Rm
+ : v1 + · · ·+ vm = 1})

– utility functions: h, −h
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Mixed strategies: the finite case

G = (N, {Si}i∈N , {ui}i∈N ) finite (strategic) game: all the sets Si are finite

A mixed strategy σi assigns a probability σi (xi ) to each strategy xi ∈ Si

∆(Si ) = {σi : Si → [0, 1] :
∑
xi∈Si

σi (xi ) = 1 }

(mixed strategy ≡ vector of mi = |Si | nonnegative components whose sum is 1)

pure strategy xi ∈ Si ≡ σxi ∈ ∆(Si ) such that σxi (xi ) = 1

hi (σ) =
∑
x∈S

ui (x1, . . . , xn)σ1(x1) . . . σn(xn)

σi (xi )σ−i (x−i )

with σ−i (x−i ) =
∏
j 6=i

σj(xj)
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Nash equilibria in mixed strategies

Mixed extension

Let G = (N, {Si}i∈N , {ui}i∈N ) be a finite (strategic) game. Then, the game

Gme = (N, {∆(Si )i}i∈N , {hi}i∈N )

is called the extension of G to mixed strategies.

(all strategy profiles for G are included in Gme)

Nash equilibria in mixed strategies = Nash equilibria of the mixed extension

How are Nash equilibria for G and Gme related?

Proposition

If a strategy profile x∗ = (x∗1 , ..., x
∗
n ) ∈ S is a Nash equilibrium for G, then

σx∗ = (σx∗1 , ..., σx∗n ) ∈ ∆S is a Nash equilibrium for Gme .

(∆S = ∆(S1)× · · · ×∆(Sn))
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Mixed equilibria in rock-paper-scissors

p1

p2

p3

q1 q2 q3

I/II paper scissors rock

paper 0 -1 1

scissors 1 0 -1

rock -1 1 0

h(p, q) = pTAq = q1(p2 − p3) + q2(p3 − p1) + q3(p1 − p2)

security/minimax strategy for player I

w1(p) = min{h(p, q) : q ∈ ∆3} = min{(p2 − p3), (p3 − p1), (p1 − p2)}

arg max{w1(p) : p ∈ ∆3} = {(1/3, 1/3, 1/3)} −→ v = 0(
(p2 − p3) + (p3 − p1) + (p1 − p2) = 0 =⇒ w1(p) ≤ 0 for all p

)
Same for player II

Mixed strategy equilibrium: each pure strategies is played with probability 1/3
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Security/minimax strategies and linear programming

w1(p) = min{(p2 − p3), (p3 − p1), (p1 − p2)} w2(q) = max{(q3 − q2), (q1 − q3), (q2 − q1)}

max{w1(p) : p ∈ ∆3} reads min{w2(q) : q ∈ ∆3} reads

max u

subject to

u ≤ (p2 − p3)

u ≤ (p3 − p1)

u ≤ (p1 − p2)

p1 + p2 + p3 = 1

p1 ≥ 0, p2 ≥ 0, p3 ≥ 0

min v

subject to

v ≥ (q3 − q2)

v ≥ (q1 − q3)

v ≥ (q2 − q1)

q1 + q2 + q3 = 1

q1 ≥ 0, q2 ≥ 0, q3 ≥ 0

dual linear programming problems

strong duality theorem in linear programmingw�
existence of a Nash equilibrium in mixed strategies



Security/minimax strategies and linear programming

w1(p) = min{(p2 − p3), (p3 − p1), (p1 − p2)} w2(q) = max{(q3 − q2), (q1 − q3), (q2 − q1)}

max{w1(p) : p ∈ ∆3} reads min{w2(q) : q ∈ ∆3} reads

max u

subject to

u ≤ (p2 − p3)

u ≤ (p3 − p1)

u ≤ (p1 − p2)

p1 + p2 + p3 = 1

p1 ≥ 0, p2 ≥ 0, p3 ≥ 0

min v

subject to

v ≥ (q3 − q2)

v ≥ (q1 − q3)

v ≥ (q2 − q1)

q1 + q2 + q3 = 1

q1 ≥ 0, q2 ≥ 0, q3 ≥ 0

dual linear programming problems

strong duality theorem in linear programmingw�
existence of a Nash equilibrium in mixed strategies



Finite two player zero-sum games and linear programming

finite two player zero-sum game −→ A ∈ Rm1×m2

h(p, q) = pTAq utility/payoff function

w1(p) = min{(ATp)i : i = 1, . . .m2} w2(q) = max{(Aq)i : i = 1, . . .m1}

max{w1(p) : p ∈ ∆3} reads min{w2(q) : q ∈ ∆3} reads

max u

subject to

u ≤ (ATp)i i = 1, . . .m2

p1 + · · ·+ pm
1

= 1

pi ≥ 0 i = 1, . . .m1

min v

subject to

v ≥ (Aq)i i = 1, . . .m1

q1 + · · ·+ qm
2

= 1

qi ≥ 0 i = 1, . . .m2

dual linear programming problems

existence of a Nash equilibrium in mixed strategies
≡

strong duality theorem in linear programming

algorithms for linear programming to compute Nash equilibria
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Mixed equilibria in the battle of sexes

Any p, q ∈ [0, 1] identify a pair of mixed strategies

(football with probability p vs q, movies with probability 1− p vs 1− q)

p
1–p

q 1–q

he/she football dancing

football (2,1) (0,0)

dancing (0,0) (1,2)

hhe(p, q) = 2pq + (1− p)(1− q), hshe(p, q) = pq + 2(1− p)(1− q)

Best responses for her

hshe(p, q) = q(p) + (1− q)
(
2(1− p)

)
≤ max{p, 2(1− p)} (q ∈ [0, 1])

If p > 2(1− p) [p > 2/3], then qbest = 1

If p < 2(1− p) [p < 2/3], then qbest = 0

If p = 2(1− p) [p = 2/3], then qbest ∈ [0, 1]
Rshe(p) =


1 if p > 2/3

[0, 1] if p = 2/3

0 if p < 2/3
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Mixed equilibria in the battle of sexes

Rshe(p) =


1 if p > 2/3

[0, 1] if p = 2/3

0 if p < 2/3

Rhe(q) =


1 if q > 1/3

[0, 1] if q = 1/3

0 if q < 1/3

he

she

1/3

2/3 1

1

Nash equilibria are mutual best responses
(p∗, q∗) = (1, 1), (0, 0), (2/3, 1/3)

change the utility values 2 and 1 with 3 and 2:
pure equilibria don’t change, the equilibrium in mixed strategies does
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