Algorithmic game theory

Laurea Magistrale in Computer Science
2024 /25

Lecture 6



Security strategies: formal definition

Worst result for player i while playing strategy x; € S;
wi(x;) = min{ui(xj,x ;) x5}

Playing an
ying any X; € argmax{w;(x;) : x; € §;},

player i gets at least v; = max{w;(x;) : x; € 5;}

Definition

Any such X; is called a security strategy for player i

vi = max{w;(x;) : x; € S;} is called the security level of player i




Security strategies: failure in rock-paper-scissors

Worst result for player i while playing strategy x; € S;
wi(x;) = min{ui(xj, x )+ x ;€ 5.}

Playing an
ying any X; € argmax{w;(x;) : x; € §;},

player i gets at least v; = max{w;(x;) : x; € 5;}

Definition

Any such X; is called a security strategy for player i

vi = max{w;(x;) : x; € S;} is called the security level of player i

1/11 paper | scissors | rock | min
paper | (0,0) | (-1,1) | (1,-1) | -1
scissors | (1,-1) | (0,0) | (-1,1) | -1
rock (-1,1) | (1,-1) (0,0) | -1
min -1 -1 -1

every strategy is a security strategy



Security strategies: nice outcome for hawk-dove

Worst result for player i while playing strategy x; € S;
wi(x;) = min{ui(xj,x ;) x5}

Playing an
ying any X; € argmax{w;(x;) : x; € §;},

player i gets at least v; = max{w;(x;) : x; € 5;}

Definition

Any such X; is called a security strategy for player i

vi = max{w;(x;) : x; € S;} is called the security level of player i

1/11 hawk | dove | min
hawk | (-2,-2) | (2,0) | -2
dove | (0,2) | (1,1) | O
min -2 0

dove and dove are the security strategies



Strictly competitive games with two players

A two player game is strictly competitive if

ur(x1,x2) > ui(x], %) <= w(x1,x) < ta(x],x5)
ur(x1, %) < u1(x], ) <= w(x1,x2) > (X1, x3)

hold for all pairs of strategy profiles (x1, x2), (x1,x5) € S1 X S».

rock-paper-scissors is strictly competitive, hawk-dove is not



Strictly competitive games with two players

A two player game is strictly competitive if

u1(x1, x0) > ur(xq, %) <= wa(x1,x2) < wa(xq, x5)

ur(x1, %) < u1(x], ) <= w(x1,x2) > (X1, x3)

hold for all pairs of strategy profiles (x1, x2), (x1,x5) € S1 X S».

rock-paper-scissors is strictly competitive, hawk-dove is not

Definition

A two player game is a zero-sum game if
ul(Xl,Xz) + U2(X1,X2) =0

holds for all strategy profiles (xi,x2) € S1 X Sa.

Any strictly competitive game = zero-sum game by replacing upy by —uy



Two player zero-sum games

Since u; + up = 0, a unique utility function v = u; can be considered:

player 1 aims at maximizing u, player 2 at maximizing —u (minimizing u)

Security level of player 1: v = max{min{u(x1, ) : o € 55} : x1 € 51}

Security level of player 2: v = min{max{u(x1, ) : x1 € S1} : o € 5}



Two player zero-sum games

Since uy + up = 0, a unique utility function v = u; can be considered:

player 1 aims at maximizing u, player 2 at maximizing —u (minimizing u)

Security level of player 1: v = max{min{u(x1, ) : o € 55} : x1 € 51}

Security level of player 2: v = min{max{u(x1, ) : x1 € S1} : o € 5}

Proposition
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Two player zero-sum games

Since uy + up = 0, a unique utility function v = u; can be considered:

player 1 aims at maximizing u, player 2 at maximizing —u (minimizing u)

Security level of player 1: v = max{min{u(x1, ) : o € 55} : x1 € 51}

Security level of player 2: v = min{max{u(x1, ) : x1 € S1} : o € 5}

Proposition
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Definition

A two player zero-sum game has a value if v = v

Security strategies are referred to as minimax strategies

rock-paper-scissors does not have a value: v=-1<1=v



Minimax strategies and Nash equilibria

Alternative formulation

(xi, x3) is a Nash equilibrium if and only if it is a saddle point of u, i.e.,

u(xy, ) < u(xy, ) < u(xg,x2) forall x; € S1,x € Sy.




Minimax strategies and Nash equilibria

Alternative formulation

X1, %5 ) is a Nash equilibrium if and only if it is a saddle point of u, i.e.,
ilo7%
u(xy, ) < u(xy, ) < u(xg,x2) forall x; € S1,x € Sy.

Nash = minimax

(1) If (x{,x3) is a Nash equilibrium, then the game has a value u(xj, x3)
and x{ and x; are minimax strategies.

(i) If the game has a value, then any pair of minimax strategies (xi,x,) is
a Nash equilibrium.

v

existence of Nash equilibria = existence of minimax value



Minimax strategies and Nash equilibria

Alternative formulation

(x1,x3) is a Nash equilibrium if and only if it is a saddle point of u, i.e.,
u(xy, ) < u(xy, ) < u(xg,x2) forall x; € S1,x € Sy.

Nash = minimax

(1) If (x{,x3) is a Nash equilibrium, then the game has a value u(xj, x3)
and x{ and x; are minimax strategies.

(i) If the game has a value, then any pair of minimax strategies (xi,x,) is
a Nash equilibrium.

v

existence of Nash equilibria = existence of minimax value

Shuffling equilibria

Let (x{,x) and (x;°, <) be two Nash equilibria.

(1) u(q, ) = ulx, )

(i) (x§, ) and (x,°, ) are also Nash equilibria.




Two player zero-sum games: the finite case

51 == {1, cevy ml}, 52 ={1,..., m2}
axs = u(k, ) payoff when player 1 plays k and player 2 plays /

Alternative formulation

The strategy profile (k, ) is a Nash equilibrium if and only if any k,/ satisfy
S Ay < A
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Two player zero-sum games: the finite case

51 == {1, cevy ml}, 52 ={1,..., m2}
axs = u(k, ) payoff when player 1 plays k and player 2 plays /

Alternative formulation

The strategy profile (k, ) is a Nash equilibrium if and only if any k,/ satisfy
S Ay < A
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Two player zero-sum games: the finite case

51 == {1, cevy ml}, 52 ={1,..., m2}
axs = u(k, ) payoff when player 1 plays k and player 2 plays /

Alternative formulation

The strategy profile (k, ) is a Nash equilibrium if and only if any k,/ satisfy
S Ay < A

T ] D] @] 3] @ | mn
@ |47 2]3] 2
@ 1|5 241
® | 3| 4|36 3




Two player zero-sum games: the finite case

51 == {1, cevy ml}, 52 ={1,..., m2}
axs = u(k, ) payoff when player 1 plays k and player 2 plays /

Alternative formulation

The strategy profile (k, ) is a Nash equilibrium if and only if any k,/ satisfy
S Ay < A
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Two player zero-sum games: the finite case

51 == {1, cevy ml}, 52 ={1,..., m2}
axs = u(k, ) payoff when player 1 plays k and player 2 plays /

Alternative formulation

The strategy profile (k, ) is a Nash equilibrium if and only if any k,/ satisfy
S Ay < A

T [@[@ 0@ [ wn
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@ 1 5 2 4 1 maxmin: v =3
® 3436 3

max 4 7 3 6




Two player zero-sum games: the finite case

51 == {1, cevy ml}, 52 ={1,..., m2}
axs = u(k, ) payoff when player 1 plays k and player 2 plays /

Alternative formulation

The strategy profile (k, ) is a Nash equilibrium if and only if any k,/ satisfy
S Ay < A

T [@[@ 0@ [ wn

@ |47 23] 2

@ 1 5 2 4 1 maxmin: v =3
® 3436 3

max 4 7 3 6

minimax v = 3



Two player zero-sum games: the finite case

51 == {1,...,m1}, 52 ={1,..., m2}

axs = u(k, ) payoff when player 1 plays k and player 2 plays /
Alternative formulation

The strategy profile (k, ) is a Nash equilibrium if and only if any k,/ satisfy
S Ay < A

T [@[@ 0@ [ wn

@ |47 23] 2

@ 1 5 2 4 1 maxmin: v =3
® 3436 3

max 4 7 3 6

minimax v = 3

the game has value 3 and ((3),(3)) is a Nash equilibrium



Two player zero-sum games: the finite case

51 == {1,...,m1}, 52 ={1,..., m2}

axs = u(k, ) payoff when player 1 plays k and player 2 plays /
Alternative formulation

The strategy profile (k, ) is a Nash equilibrium if and only if any k,/ satisfy
S Ay < A

T [@[@ 0@ [ wn

@ |47 23] 2

@ 1 5 2 4 1 maxmin: v =3
® 3436 3

max 4 7 3 6

minimax v = 3

the game has value 3 and ((3),(3)) is a Nash equilibrium

computational complexity:
compute maxima/minima in (m; + my + 2) arrays




No equilibria in rock-paper-scissors

1/l paper | scissors | rock
paper 0 -1 1
scissors 1 0 -1

rock -1 1 0

No Nash equilibria exist



No equilibria in rock-paper-scissors: enter randomness

1/l paper | scissors | rock
paper 0 -1 1
scissors 1 0 -1
rock -1 1 0

No Nash equilibria exist

what about repeating the game over and over?

rock and scissors half of times each (probabilities 1/2) never play paper (probability 0)
[do people really randomise?]



No equilibria in rock-paper-scissors: enter randomness

1/l paper | scissors | rock
paper 0 -1 1
scissors 1 0 -1
rock -1 1 0

No Nash equilibria exist

what about repeating the game over and over?

rock and scissors half of times each (probabilities 1/2) never play paper (probability 0)
[do people really randomise?]

what will the evolution/dynamics of the repeated game be?



Mixed strategies

A mixed strategy is a probability measure over the set of (pure) strategies



Mixed strategies: rock-paper-scissors

A mixed strategy is a probability measure over the set of (pure) strategies

mixed strategies: p,q € Ri suchthat py+pp+ps=land g1+ + g3 =1

g1 g2 K]
[/11 paper | scissors | rock
p1 paper 0 -1 1
P2 | scissors 1 0 -1
P3 rock -1 1 0




Mixed strategies

A mixed strategy is a probability measure over the set of (pure) strategies

mixed strategies: p,q € R such that py+po+ps=1and g1 + ¢ + g =1

g1 g2 K]
[/11 paper | scissors | rock
p1 paper 0 -1 1
P2 | scissors | paqs 0 -1
P3 rock -1 1 0




Mixed strategies

A mixed strategy is a probability measure over the set of (pure) strategies

mixed strategies: p,q € R such that py+po+ps=1and g1 + ¢ + g =1

a1 g2 a3
[/11 paper | scissors | rock
p1 | paper 0 -p12 | p1g3
p> | scissors | paqs 0 -p243
ps | rock -39 | P 0




Mixed strategies

A mixed strategy is a probability measure over the set of (pure) strategies

mixed strategies: p,q € R such that py+po+ps=1and g1 + ¢ + g =1

a1 g2 a3
[/11 paper | scissors | rock
p1 | paper 0 -p12 | p1g3
p> | scissors | paqs 0 -p243
ps | rock -39 | P 0

expected utility: h(p, q) = —p1g> + p1G3 + P2g1 — P23

— P3d1 + p3ao



Mixed strategies

A mixed strategy is a probability measure over the set of (pure) strategies

mixed strategies: p,q € R such that py+po+ps=1and g1 + ¢ + g =1

a1 g2 a3
[/11 paper | scissors | rock
p1 | paper 0 -p12 | p1g3
p> | scissors | paqs 0 -p243
ps | rock -39 | P 0

expected utility: h(p, q) = —p1G> + P19z + P21 — P2G3 — P31 + P33>

extension of the game:
— players: I, Il
— strategy sets: Az, Az (unitary simplices: Ap={veRT : vi + -+ vy =1})
— utility functions: h, —h



Mixed strategies: the finite case

G = (N, {Si},cn- {ui},cy) finite (strategic) game: all the sets S; are finite

A mixed strategy o; assigns a probability oj(x;) to each strategy x; € S;

A(S)={oi: S —[0,1] : > oi(x) =1}
x;€S;

(mixed strategy = vector of m; = |S;| nonnegative components whose sum is 1)

pure strategy x; € S; = oy, € A(S;) such that o,,(x;) =1

hi(o) = Z ui(x1, ..y xn)o1(x1) ... on(xn)

xX€ES



Mixed strategies: the finite case

G = (N, {Si},cn- {ui},cy) finite (strategic) game: all the sets S; are finite

A mixed strategy o; assigns a probability oj(x;) to each strategy x; € S;

A(S)={oi: S —[0,1] : > oi(x) =1}
x;€S;

(mixed strategy = vector of m; = |S;| nonnegative components whose sum is 1)
pure strategy x; € S; = oy, € A(S;) such that o,,(x;) =1

hi(o) = Z ui(x1, -y xn) oi(xi)o—i(x=;)

xX€ES

with o_ HO'J XJ
J#



Nash equilibria in mixed strategies

Mixed extension
Let G = (N,{Si},cn» {Ui},cn) be a finite (strategic) game. Then, the game

Gme = (N, {A(Si)i}feN’ {hi}ieN)

is called the extension of G to mixed strategies.

(all strategy profiles for G are included in Gme)

Nash equilibria in mixed strategies = Nash equilibria of the mixed extension



Nash equilibria in mixed strategies

Mixed extension
Let G = (N,{Si},cn» {Ui},cn) be a finite (strategic) game. Then, the game

Gme = (N, {A(Si)i}feN7 {hi}ieN)

is called the extension of G to mixed strategies.

(all strategy profiles for G are included in Gme)

Nash equilibria in mixed strategies = Nash equilibria of the mixed extension

How are Nash equilibria for G and G, related?

Proposition

If a strategy profile x* = (x{,...,x}) € S is a Nash equilibrium for G, then
Ox+ = (Ox, s 0xx) € As is a Nash equilibrium for Gpe.

(As = A(S1) x -+ x A(Sn))



Mixed equilibria in rock-paper-scissors

a1 P a3

1/11 paper | scissors | rock
p1 paper 0 -1 1
p2 | scissors 1 0 -1
p3 rock -1 1 0

h(p,q) = pTAg = q1(p2 — p3) + a2(p3 — p1) + 93(p1 — p2)



Mixed equilibria in rock-paper-scissors

a1 P a3

1/11 paper | scissors | rock
p1 paper 0 -1 1
p2 | scissors 1 0 -1
p3 rock -1 1 0

h(p,q) = pT Aqg = aq1(p2 — p3) + 22(p3 — p1) + az(p1 — p2)
security/minimax strategy for player |

wi(p) = min{h(p,q) : g < As} =min{(p2 — p3),(p3 — p1), (P — P2)}



Mixed equilibria in rock-paper-scissors

a1 P a3

1/11 paper | scissors | rock
p1 paper 0 -1 1
p2 | scissors 1 0 -1
p3 rock -1 1 0

h(p,q) = pT Aqg = aq1(p2 — p3) + 22(p3 — p1) + az(p1 — p2)
security/minimax strategy for player |

wi(p) = min{h(p,q) : g < As} =min{(p2 — p3),(p3 — p1), (P — P2)}

((p2—p3) +(p3—p1) +(pr — p2) =0 = wi(p) <O for all p)



Mixed equilibria in rock-paper-scissors

a1 P a3

1/11 paper | scissors | rock
p1 paper 0 -1 1
p2 | scissors 1 0 -1
p3 rock -1 1 0

h(p,q) = pT Aqg = aq1(p2 — p3) + 22(p3 — p1) + az(p1 — p2)
security/minimax strategy for player |

wi(p) = min{h(p,q) : g < As} =min{(p2 — p3),(p3 — p1), (P — P2)}
argmax{wi(p) : p€ A3z} ={(1/3,1/3,1/3)} — v =0



Mixed equilibria in rock-paper-scissors

a1 P a3

1/11 paper | scissors | rock
p1 paper 0 -1 1
p2 | scissors 1 0 -1
p3 rock -1 1 0

h(p,q) = pT Aqg = aq1(p2 — p3) + 22(p3 — p1) + az(p1 — p2)
security/minimax strategy for player |

wi(p) = min{h(p,q) : g < As} =min{(p2 — p3),(p3 — p1), (P — P2)}
argmax{wi(p) : p€ A3z} ={(1/3,1/3,1/3)} — v =0

Same for player Il

Mixed strategy equilibrium: each pure strategies is played with probability 1/3



Security/minimax strategies and linear programming

wi(p) = min{(p2 — p3), (p3 — p1), (Pp1 — P2)} wa(q) = max{(qs — 92), (91 — 93), (9> — 1)}

max{wi(p) : p € Az} reads min{wz(q) : g € A3} reads

max u min v
subject to subject to
u<(p2—p3) v> (93— q2)
u<(ps—p1) v>(q1—q3)
u<(p1—p2) v> (g —q)
pi+p2+p3=1 ntaptag=1
p1>0,p2>0,p3>0 g120,92>0,932>0

dual linear programming problems



Security/minimax strategies and linear programming

wi(p) = min{(p2 — p3), (p3 — p1), (Pp1 — P2)} wa(q) = max{(qs — 92), (91 — 93), (9> — 1)}

max{wi(p) : p € Az} reads min{wz(q) : g € A3} reads

max u min v
subject to subject to
u<(p2—p3) v> (93— q2)
u<(ps—p1) v>(q1—q3)
u<(p1—p2) v> (g —q)
pi+p2+p3=1 ntaptag=1
p1>0,p2>0,p3>0 g120,92>0,932>0

dual linear programming problems

strong duality theorem in linear programming

|

existence of a Nash equilibrium in mixed strategies



Finite two player zero-sum games and linear programming

finite two player zero-sum game — A € R™*™

h(p, q) = p" Aq utility/payoff function



Finite two player zero-sum games and linear programming

finite two player zero-sum game — A € R™*™

h(p, q) = p" Aq utility/payoff function

wi(p) =min{(ATp); : i=1,...m,} wa(g) = max{(Aq); : i=1,...m}



Finite two player zero-sum games and linear programming

finite two player zero-sum game — A € R™*™

h(p, q) = p" Aq utility/payoff function

wi(p) = min{(ATp); : i=1,...m,} w2(q) = max{(Aq); : i=1,...m;}
max{wi(p) : p € Az} reads min{wz(q) : g € Az} reads
max u min v
subject to subject to
u<(ATp) i=1,...m, v>(Ag) i=1,...m,
P1+‘“+Pm1:1 q1+"'+Qm2:1
pi>0 i=1...m g>0 i=1...m,

dual linear programming problems



Finite two player zero-sum games and linear programming

finite two player zero-sum game — A € R™*™

h(p, q) = p" Aq utility/payoff function

wi(p) = min{(ATp); : i=1,...m,} w2(q) = max{(Aq); : i=1,...m;}
max{wi(p) : p € Az} reads min{wz(q) : g € Az} reads
max u min v
subject to subject to
u<(ATp) i=1,...m, v>(Ag) i=1,...m,
P1+‘“+Pm1:1 q1+"'+Qm2:1
pi>0 i=1...m g>0 i=1...m,

dual linear programming problems

existence of a Nash equilibrium in mixed strategies

strong duality theorem in linear programming

algorithms for linear programming to compute Nash equilibria



Mixed equilibria in the battle of sexes

Any p, g € [0, 1] identify a pair of mixed strategies
(football with probability p vs g, movies with probability 1 — p vs 1 — q)
q 1-q
he/she | football | dancing
p | football | (2,1) (0,0)
1-p | dancing | (0,0) (1,2)




Mixed equilibria in the battle of sexes

Any p, g € [0, 1] identify a pair of mixed strategies
(football with probability p vs g, movies with probability 1 — p vs 1 — q)
q 1-q
he/she | football | dancing
p | football | (2,1) (0,0)
1-p | dancing | (0,0) (1,2)

hwe(p: @) =2pq + (L= p)(1 — q), hs(p,q) = pg+2(1—p)(1—q)



Mixed equilibria in the battle of sexes

Any p, g € [0, 1] identify a pair of mixed strategies
(football with probability p vs g, movies with probability 1 — p vs 1 — q)
q 1-q
he/she | football | dancing
p | football | (2,1) (0,0)
1-p | dancing | (0,0) (1,2)

hwe(p: @) =2pq + (L= p)(1 — q), hs(p,q) = pg+2(1—p)(1—q)
Best responses for her

hao(p,q) = a(p) + (1 — q)(2(1 — p)) < max{p,2(1 - p)} (q€0.1])



Mixed equilibria in the battle of sexes

Any p, g € [0, 1] identify a pair of mixed strategies
(football with probability p vs g, movies with probability 1 — p vs 1 — q)
q 1-q
he/she | football | dancing
p | football | (2,1) (0,0)
1-p | dancing | (0,0) (1,2)

hwe(p: @) =2pq + (L= p)(1 — q), hs(p,q) = pg+2(1—p)(1—q)
Best responses for her

hao(p,q) = a(p) + (1 — q)(2(1 — p)) < max{p,2(1 - p)} (q€0.1])

If p>2(1—p) [p>2/3] then g,... =1
If p<2(1—p) [p<2/3] then g,... =0
If p=2(1—p) [p=2/3], then g,... €[0,1]



Mixed equilibria in the battle of sexes

Any p, g € [0, 1] identify a pair of mixed strategies
(football with probability p vs g, movies with probability 1 — p vs 1 — q)
q 1-q
he/she | football | dancing
p | football | (2,1) (0,0)
1-p | dancing | (0,0) (1,2)

hwe(p: @) =2pq + (L= p)(1 — q), hs(p,q) = pg+2(1—p)(1—q)
Best responses for her
hae(p, @) = a(p) + (1 — q)(2(1 = p)) < max{p,2(1 = p)} (g€[0,1])
1 if p>2/3

Ra.(p) =< [0,1] if p=2/3
0 if p<2/3



Mixed equilibria in the battle of sexes

1 if p>2/3 1 if g>1/3
Rene(p) =4 [0,1] if p=2/3  Rp(q)=4q [0,1] if g=1/3
0 if p<2/3 0 if g<1/3
she1
1 ___________
1/3
|
|
|
1
.

23 he



Mixed equilibria in the battle of sexes

1 if p>2/3 1 if g>1/3
Rene(p) =4 [0,1] if p=2/3  Rp(q)=4q [0,1] if g=1/3
0 if p<2/3 0 if g<1/3
she1
1 ___________
1/3
|
|
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2/3 T he

Nash equilibria are mutual best responses
(p*,q%) = (1,1),(0,0),(2/3,1/3)



Mixed equilibria in the battle of sexes

1 if p>2/3 1 if g>1/3
Rene(p) =4 [0,1] if p=2/3  Rp(q)=4q [0,1] if g=1/3
0 if p<2/3 0 if g<1/3
she1
1 ___________
1/3
|
|
|
2/3 T he

Nash equilibria are mutual best responses
(p*,q%) = (1,1),(0,0),(2/3,1/3)

change the utility values 2 and 1 with 3 and 2:
pure equilibria don't change, the equilibrium in mixed strategies does



