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Strategic dominance

Let (N, (Si )i∈N , (ui )i∈N) be a strategic game.

Definition

(i) A strategy x∗i ∈ Si is dominant (for player i) if it is a best response to
every strategy profile x−i ∈ S−i , i.e., x∗i ∈ Ri (x−i ) or equivalently

ui (x
∗
i , x−i ) ≥ ui (xi , x−i ) for all xi ∈ Si and all x−i ∈ S−i .

(ii) A strategy x∗i ∈ Si is strictly dominant (for player i) if it is the unique
best response to every strategy profile x−i ∈ S−i , i.e., Ri (x−i ) = {x∗i } or
equivalently

ui (x
∗
i , x−i ) > ui (xi , x−i ) for all xi ∈ Si , xi 6= x∗i , and all x−i ∈ S−i .

Dominant strategies of a player are completely equivalent: same payoffs

If it exists, a strictly dominant strategy is unique

A (rational) player with a strictly dominant strategy is totally predictable



Strategic dominance and equilibria

Definition

A strategy profile x∗ ∈ S is [strictly] dominant if for each player i the
strategy x∗i ∈ Si is [strictly] dominant.

Proposition

(i) A dominant strategy profile is a Nash equilibrium of the game.

(ii) A strictly dominant strategy profile is the unique Nash equilibrium
of the game.

Dominant strategy profiles are unlikely to exist

(none in the battle of sexes and Cournot duopoly)

Both reverse relationships do not hold



Looking for bad strategies

: eliminate them and iterate

I/II 1○ 2○ 3○ 4○
1○ (4,3) (7,4) (5,2) (3,3)

2○ (1,5) (5,7) (2,1) (2,5)

3○ (3,4) (4,3) (4,7) (6,2)

pairwise comparisons:

– 2○ always provides worse payoffs than 1○: player I won’t play it!

– 4○ always provides worse payoffs than 2○: player II won’t play it!

I/II 1○ 2○ 3○
1○ (4,3) (7,4) (5,2)

3○ (3,4) (4,3) (4,7)

iterate elimination
I/II 1○ 2○ 3○
1○ (4,3) (7,4) (5,2)

I/II 2○
1○ (7,4)

Nash equilibrium
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Dominated strategies

Definition

A strategy x̄i ∈ Si for player i is strictly dominated if there exists another
strategy x̂i ∈ Si for player i such that

ui (x̂i , x−i ) > ui (x̄i , x−i ) for all x−i ∈ S−i .

x̂i dominates x̄i but it is not necessarily a dominant strategy
(
x̂i = x̂i (x̄i )

)
A rational player would never play a strictly dominated strategy

x∗ ∈ S is a Nash equilibrium =⇒ x∗i is not strictly dominated for any i ∈ N
⇐=6

I/II 1○ 2○ 3○ 4○
1○ (4,3) (7,4) (5,2) (3,3)

2○ (1,5) (5,7) (2,1) (2,5)

3○ (3,4) (4,3) (4,7) (6,2)

3○ and 3○ are not strictly dominated

( 3○, 3○) is not a Nash equilibrium
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Weakly dominated strategies

Definition

A strategy x̄i ∈ Si for player i is weakly dominated if there exists another
strategy x̂i ∈ Si for player i such that

ui (x̂i , x−i ) ≥ ui (x̄i , x−i ) for all x−i ∈ S−i ,
and

ui (x̂i , x̃−i ) > ui (x̄i , x̃−i )

holds for at least one strategy profile x̃−i ∈ S−i .

A rational player would never play a weakly dominated strategy

x∗ ∈ S is a Nash equilibrium =⇒6 x∗i is not weakly dominated for any i ∈ N

I/II 1○ 2○ 3○
1○ (4,3) (7,4) (5,3)

3○ (3,4) (4,3) (5,7)

3○ is weakly dominated

( 3○, 3○) is a Nash equilibrium
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Equilibria by iterated elimination of dominated strategies

Iterated elimination algorithms (IESDS - IEDS)

1 S0
i = Si (i ∈ N), k = 0

2 G k = (N, (Sk
i )i∈N , (ui )i∈N)

Sk+1
i = Sk

i \ {strictly/weakly dominated strategies for player i in G k}
3 k = k + 1 and go back to 2

Correctness of finite convergence

Suppose that best responses always exist, i.e.,

Ri (x−i ) 6= ∅ for all x−i ∈ S−i and all i ∈ N.

(i) If the iterated elimination of strictly dominated strategies leads to a
unique x∗, then x∗ is the unique Nash equilibrium.

(ii) Suppose that the game is finite. If the iterated elimination of weakly
dominated strategies leads to a unique x∗, then x∗ is a Nash equilibrium.
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Restricted games and Nash equilibria

Definition

G ′ = (N, (Ti )i∈N , (vi )i∈N) is a restriction of G = (N, (Si )i∈N , (ui )i∈N) if
each i ∈ N satisfies

– Ti 6= ∅ and Ti ⊆ Si

– vi (x) = ui (x) for all x ∈ T = T1 × ...× Tn

Theorem

Let Ti = Si \ {

strictlyweakly

dominated strategies for player i in G} for all i ∈ N.

(i) If x∗ ∈ S is a Nash equilibrium for G , then x∗ ∈ T and x∗ is a Nash
equilibrium for G ′.

False!

(ii) If x∗ ∈ T is a Nash equilibrium for G ′, then it is a Nash equilibrium for
G as well provided that best responses always exist for G .

the game is finite. False!
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Rationalizability and “never best responses”

Definition

(i) A strategy x∗i ∈Si is never best response if x∗i /∈Ri (x−i ) for all x−i ∈ S−i
or equivalently

for all x−i ∈ S−i there exists xi ∈ Si s.t. ui (x
∗
i , x−i ) < ui (xi , x−i ).

xi ∈ S strictly dominated =⇒ xi is never best response

(no relationship with weak dominance)

Theorem

Let Ti =Si\{never best response strategies for player i in G} for all i ∈ N.

(i) If x∗ ∈ S is a Nash equilibrium for G , then x∗ ∈ T and x∗ is a Nash
equilibrium for G ′.

(ii) Suppose that best replies always exist for G . If x∗ ∈ T is a Nash
equilibrium for G ′, then it is a Nash equilbrium for G .
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Equilibria by iterated elimination of never best responses

Iterated elimination of never best responses (IENBR)

1 S0
i = Si (i ∈ N), k = 0

2 G k = (N, (Sk
i )i∈N , (ui )i∈N)

Sk+1
i = Sk

i \ {never best response strategies for player i in G k}

3 k = k + 1 and go back to 2

Correctness of finite convergence

Suppose that best responses always exist. If the iterated elimination of
never best responses strategies leads to a unique x∗, then x∗ is the unique
Nash equilibrium.



Iterated elimination of never best responses at work

I/II 1○ 2○
1○ (2,1) (0,0)

2○ (0,2) (2,0)

3○ (1,1) (1,2)

– neither strictly nor weakly dominated strategies

– 3○ is never best response

eliminate and iterate
I/II 1○ 2○
1○ (2,1) (0,0)

2○ (0,2) (2,0)

– 2○ is never best response
I/II 1○
1○ (2,1)

2○ (0,2)

I/II 1○
1○ (2,1)

Nash equilibrium
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A Hotelling game (with uncountably many strategies)

– An uniformly distributed population over a segment

[0,100]

– 2 shops to choose a location where to open

x1, x2 ∈ [0, 100]

– customers will choose the closest shop

– utility = percentage of customers

ui (x1, x2) =


(x1 + x2)/2 if xi < x−i

100− (x1 + x2)/2 if xi > x−i

50 if xi = x−i

* x̄i = 0 and x̄i = 100 are strictly dominated by x̂i = 50

* no other strategy is strictly/weakly dominated

* xi = 50 is the unique best response to x−i = 50

* no other strategy admits a best response

IENBR provides the unique equilibrium (50, 50) in just one iteration
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A conservative approach to strategic games

security strategies

– compute the worst possible payoff for each fixed strategy

– choose a strategy maximizing of the above minima

I/II 1○ 2○ 3○ 4○

min

1○ (5,2) (7,4) (5,3) (3,3)

3

2○ (1,5) (5,7) (2,4) (2,5)

1

3○ (4,4) (4,1) (4,3) (6,2)

4

min 2 1 3 2

* 3○ and 3○ are the unique security strategies for the players

* ( 1○, 2○) is the unique Nash equilibrium

Security strategies and equilibria can be meaningfully different
(Cornout duopoly: 0 is the security strategy for each firm)
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Security strategies: formal definition

failure in rock-paper-scissors

Worst result for player i while playing strategy xi ∈ Si

wi (xi ) = min{ui (xi , x−i ) : x−i ∈ S−i}

Playing any
x̄i ∈ arg max{wi (xi ) : xi ∈ Si},

player i gets at least vi = max{wi (xi ) : xi ∈ Si}

Definition

Any such x̄i is called a security strategy for player i

vi = max{wi (xi ) : xi ∈ Si} is called the security level of player i

I/II paper scissors rock min

paper (0,0) (-1,1) (1,-1) -1

scissors (1,-1) (0,0) (-1,1) -1

rock (-1,1) (1,-1) (0,0) -1

min -1 -1 -1

every strategy is a security strategy
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