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Strategic form of a game

– N = {1, . . . , n} finite set of players

– Si set of strategies for player i ∈ N

S = S1 × · · · × Sn set of all the strategy profiles

– ui : S → R utility (or payoff) function for player i ∈ N

each strategy profile x ∈ S determines a unique outcome, which player i

measures through ui (x): a larger value means a higher preference

x−i = (xj)j 6=i strategy profile for all players except i

S−i =
∏
j 6=i

Sj set of all the strategy profiles for all players except i

Finite game: all the sets Si are finite



Nash equilibria

Let G = (N, {Si}i∈N
, {ui}i∈N

) be a strategic game.

Definition

A Nash equilibrium is a strategy profile x∗ ∈ S such that the strategy x∗i is
a best response/reply to the strategy profile x∗−i for all i ∈ N, i.e.,

x∗i ∈ arg max{ui (xi , x∗−i ) : xi ∈ Si}

or equivalently

ui (x
∗
i , x
∗
−i ) ≥ ui (xi , x

∗
−i ) for all xi ∈ Si

holds for all players i ∈ N.

An equilibrium is a strategy profile with the property that no player can
improve its utility changing strategy while all the other players do not

Players have no incentive to deviate from an equilibrium state unilateraly



Nash equilibria in the prisoner’s dilemma

2 prisoners are accused of having committed a felony together

Years in jail are decided upon the prisoners’ admissions of guilt

(negative values required in the framework of utility maximization)

I/II not confess confess

not confess (-2,-2) (-7,0)

confess (0,-7) (-5,-5)

(confess,confess) is the unique Nash equilibrium

Not Pareto optimal: both players could get a shorter conviction (by both not confessing)

Not socially optimal: it does not provide the joint best result (joint ≡ sum of the utilities)



Nash equilibria in the battle of sexes

A couple’s evening out:

she would prefer the movies, he would prefer the football game

both wish to go to the same place together rather than going alone

he/she football dancing

football (2,1) (0,0)

dancing (0,0) (1,2)

(football,football) and (dancing,dancing) are both Nash equilibria

Not equivalent: different equilibria may lead to different payoffs (not true in optimization)
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Nash equilibria in the hawk-dove game (Maynard Smith-Price 1973)

Two animals to contest food:

hawk = aggressive behaviour (physically attack the other)

dove = cooperative behaviour (pacific attitude to share the food)

I/II hawk dove

hawk (-2,-2) (2,0)

dove (0,2) (1,1)

(dove,hawk) and (hawk,dove) are both Nash equilibria

anti-coordination games: hawk-dove, chicken −→ evolutionary stable equilibria

(brinkmanship in nuclear warfare)
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No equilibria in rock-paper-scissors(-lizard-Spock)

I/II paper scissors rock

paper (0,0) (-1,1) (1,-1)

scissors (1,-1) (0,0) (-1,1)

rock (-1,1) (1,-1) (0,0)

No Nash equilibria exist

Since uI + uII ≡ 0, a unique utility function u = uI can be considered:
player I aims at maximizing u, player II at maximizing −u (minimizing u)

I/II 1○ paper 2○ scissors 3○ rock

1○ paper 0 -1 1

2○ scissors 1 0 -1

3○ rock -1 1 0

Proposition

The strategy profile (k̄, ¯̀) is a Nash equilibrium if and only if any k, ` satisfy
ak ¯̀≤ ak̄ ¯̀≤ ak̄` .

(ak` = u(k, `) payoff when player I plays k and player II plays `)



No equilibria in rock-paper-scissors(-lizard-Spock)

I/II paper scissors rock

paper (0,0) (-1,1) (1,-1)

scissors (1,-1) (0,0) (-1,1)

rock (-1,1) (1,-1) (0,0)

No Nash equilibria exist

Since uI + uII ≡ 0, a unique utility function u = uI can be considered:
player I aims at maximizing u, player II at maximizing −u (minimizing u)

I/II 1○ paper 2○ scissors 3○ rock

1○ paper 0 -1 1

2○ scissors 1 0 -1

3○ rock -1 1 0

Proposition

The strategy profile (k̄, ¯̀) is a Nash equilibrium if and only if any k, ` satisfy
ak ¯̀≤ ak̄ ¯̀≤ ak̄` .

(ak` = u(k, `) payoff when player I plays k and player II plays `)



No equilibria in rock-paper-scissors(-lizard-Spock)

I/II paper scissors rock

paper (0,0) (-1,1) (1,-1)

scissors (1,-1) (0,0) (-1,1)

rock (-1,1) (1,-1) (0,0)

No Nash equilibria exist

Since uI + uII ≡ 0, a unique utility function u = uI can be considered:
player I aims at maximizing u, player II at maximizing −u (minimizing u)

I/II 1○ paper 2○ scissors 3○ rock

1○ paper 0 -1 1

2○ scissors 1 0 -1

3○ rock -1 1 0

Proposition

The strategy profile (k̄, ¯̀) is a Nash equilibrium if and only if any k, ` satisfy
ak ¯̀≤ ak̄ ¯̀≤ ak̄` .

(ak` = u(k, `) payoff when player I plays k and player II plays `)



No equilibria in rock-paper-scissors(-lizard-Spock)

I/II paper scissors rock

paper (0,0) (-1,1) (1,-1)

scissors (1,-1) (0,0) (-1,1)

rock (-1,1) (1,-1) (0,0)

No Nash equilibria exist

Since uI + uII ≡ 0, a unique utility function u = uI can be considered:
player I aims at maximizing u, player II at maximizing −u (minimizing u)

I/II 1○ paper 2○ scissors 3○ rock

1○ paper 0 -1 1

2○ scissors 1 0 -1

3○ rock -1 1 0

Proposition

The strategy profile (k̄ , ¯̀) is a Nash equilibrium if and only if any k, ` satisfy
ak ¯̀≤ ak̄ ¯̀≤ ak̄` .

(ak` = u(k , `) payoff when player I plays k and player II plays `)



Two player zero-sum finite symmetric games

Definition

A two player zero-sum finite game is symmetric if

– both players have the same number of strategies (m strategies each)

– aij = −aji for all i , j = 1, ...,m ( =⇒ aii = 0)

(the matrix of the game A is antisymmetric, i.e., A = −AT )

Proposition

A two player zero-sum finite symmetric game has a Nash equilibrium if
and only if there exists k̄ ∈{1, ...,m} such that ak̄` ≥ 0 for all ` = 1, ...,m.
In that case, the strategy profile (k̄, k̄) is a Nash equilibrium.

I/II 1○ fire 2○ water 3○ wind

1○ fire 0 -1 1

2○ water 1 0 0

3○ wind -1 0 0

(water,water) is a Nash equilibrium
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Symmetric games

with two strategies per player

Definition

A finite game is symmetric if

– all players have the same number of strategies

– any shuffling of the players (plus payoffs) does not change the game

examples: the prisoner’s dilemma, hawk-dove

Proposition

Every finite symmetric game with 2 strategies has a Nash equilibrium.

the case of 2 players: I/II 1○ 2○
1○ (a,a) (c,d)

2○ (d,c) (b,b)

– a ≥ d =⇒ ( 1○, 1○) is a Nash equilibrium

– (a < d + c ≥ b) =⇒ ( 1○, 2○) and ( 2○, 1○) are Nash equilibria

– (a < d + c < b) =⇒ ( 2○, 2○) is a Nash equilibrium
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Brute force computation of equilibria: 2 player finite games

Cournot duopoly with indivisible commodity (T = 10, c = 3)

I/II 0○ 1○ 2○ 3○ 4○ 5○ 6○
0○ (0,0) (0,6) (0,10) (0,12) (0,12) (0,10) (0,6)

1○ (6,0) (5,5) (4,8) (3,9) (2,8) (1,5) (0,0)

2○ (10,0) (8,4) (6,6) (4,6) (2,4) (0,0) (-2,-6)

3○ (12,0) (9,3) (6,4) (3,3) (0,0) (-3,-5) (-6,-12)

4○ (12,0) (8,2) (4,2) (0,0) (-4,-4) (-8,-10) (-12,-18)

5○ (10,0) (5,1) (0,0) (-5,-3) (-10,-8) (-15,-15) (-15,-18)

6○ (6,0) (0,0) (-6,-2) (-12,-6) (-18,-12) (-18,-15) (-18,-18)
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Brute force computation of equilibria: 2 player finite games

Si = {1, ...,mi} (i = 1, 2)

player 1: compute all best responses to any strategy of player 2

L1 = {(x1, x2) ∈ S1 × S2 : x1 ∈ R1(x2)}

player 2: compute all best responses to any strategy of player 1

L2 = {(x1, x2) ∈ S1 × S2 : x2 ∈ R2(x1)}

−→ compute maxima in (m1 + m2) arrays −→

{equilibria} = L1 ∩ L2

−→ compute common element(s) of two arrays −→

Polynomial computational complexity
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Looking for a winning strategy

2 prisoners are accused of having committed a felony together

Years in jail are decided upon the prisoners’ admissions of guilt

I/II not confess confess

not confess (-2,-2) (-7,0)

confess (0,-7) (-5,-5)

confess is always a best response for prisoner I

u1(c , nc) > u1(nc , nc), u1(c, c) > u1(nc , c)

confess is always a best response for prisoner II

u2(nc, c) > u2(nc , nc), u2(c, c) > u2(c , nc)

(actually they are both the unique best response)



Looking for a winning strategy

2 prisoners are accused of having committed a felony together

Years in jail are decided upon the prisoners’ admissions of guilt

I/II not confess confess

not confess (-2,-2) (-7,0)

confess (0,-7) (-5,-5)

confess is always a best response for prisoner I

u1(c , nc) > u1(nc , nc), u1(c, c) > u1(nc , c)

confess is always a best response for prisoner II

u2(nc, c) > u2(nc , nc), u2(c, c) > u2(c , nc)

(actually they are both the unique best response)



Looking for a winning strategy

2 prisoners are accused of having committed a felony together

Years in jail are decided upon the prisoners’ admissions of guilt

I/II not confess confess

not confess (-2,-2) (-7,0)

confess (0,-7) (-5,-5)

confess is always a best response for prisoner I

u1(c , nc) > u1(nc , nc), u1(c, c) > u1(nc , c)

confess is always a best response for prisoner II

u2(nc , c) > u2(nc , nc), u2(c, c) > u2(c , nc)

(actually they are both the unique best response)



Strategic dominance

Let (N, (Si )i∈N , (ui )i∈N) be a strategic game.

Definition

(i) A strategy x∗i ∈ Si is dominant (for player i) if it is a best response to
every strategy profile x−i ∈ S−i , i.e., x∗i ∈ Ri (x−i ) or equivalently

ui (x
∗
i , x−i ) ≥ ui (xi , x−i ) for all xi ∈ Si and all x−i ∈ S−i .

(ii) A strategy x∗i ∈ Si is strictly dominant (for player i) if it is the unique
best response to every strategy profile x−i ∈ S−i , i.e., Ri (x−i ) = {x∗i } or
equivalently

ui (x
∗
i , x−i ) > ui (xi , x−i ) for all xi ∈ Si , xi 6= x∗i , and all x−i ∈ S−i .

Dominant strategies of a player are completely equivalent: same payoffs

If it exists, a strictly dominant strategy is unique

A (rational) player with a strictly dominant strategy is totally predictable
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Strategic dominance and equilibria

Definition

A strategy profile x∗ ∈ S is [strictly] dominant if for each player i the
strategy x∗i ∈ Si is [strictly] dominant.

Proposition

(i) A dominant strategy profile is a Nash equilibrium of the game.

(ii) A strictly dominant strategy profile is the unique Nash equilibrium
of the game.

Dominant strategy profiles are unlikely to exist

(none in the battle of sexes and Cournot duopoly)

Both reverse relationships do not hold



An asymmetric prisoner’s dilemma: lack of dominance

2 prisoners are accused of having committed a felony together

Years in jail are decided upon the prisoners’ admissions of guilt

I/II not confess confess

not confess (-2,-2) (-7,0)

confess (-3,-7) (-5,-5)

(confess, confess) is the unique Nash equilibrium

(confess, confess) is not a dominant strategy profile

u1(c, nc) < u1(nc , nc)


