Algorithmic game theory

Laurea Magistrale in Computer Science 2024/25

Lecture 2

A description of the strategic interactions between players

- (a finite number of) players
- strategies: the actions a player can take
- outcome: it depends on the strategies selected by all players
- preferences: a player's binary relation between outcomes (complete, reflexive and transitive [total pre-order])

preferences are often given through an utility function [payoff]

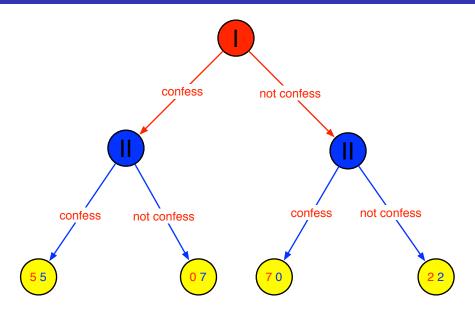
The prisoner's dilemma

2 prisoners are accused of having committed a felony together Years in jail are decided upon the prisoners' admissions of guilt

I/II	not confess	confess
not confess	(2,2)	(7 , 0)
confess	(<mark>0</mark> ,7)	(<mark>5</mark> ,5)

A.W.Tucker, A Two-Person Dilemma, memo at Stanford University, 1950

Another description of the prisoner's dilemma



A coordination game: the battle of sexes

A couple's evening out:

she would prefer go dancing, he would prefer the football game

A coordination game: the battle of sexes

A couple's evening out:

she would prefer go dancing, he would prefer the football game

both wish to go to the same place together rather than going alone

he/she	football	dancing
football	(2,1)	(<mark>0,0</mark>)
dancing	(<mark>0,0</mark>)	(1, <mark>2</mark>)

based on the stag hunt situation by Jean-Jacques Rousseau Discours sur l'origine et les fondements de l'inégalité parmi les hommes, 1755

A coordination game: the battle of sexes

A couple's evening out:

she would prefer go dancing, he would prefer the football game

both wish to go to the same place together rather than going alone

he/she	football	dancing
football	(A,a)	(<mark>C,c</mark>)
dancing	(B,b)	(D,d)

A > B, D > C, a > c, d > b

An anti-coordination game: hawk-dove (Maynard Smith-Price 1973)

Two animals to contest food:

hawk = aggressive behaviour (physically attack the other)

dove = cooperative behaviour (pacific attitude to share the food)

I/II	hawk	dove
hawk	(-2,-2)	(2, <mark>0</mark>)
dove	(0,2)	(1,1)

anti-coordination games: hawk-dove, chicken, graph colouring (brinkmanship in nuclear warfare)

An anti-coordination game: hawk-dove (Maynard Smith-Price 1973)

Two animals to contest food:

hawk = aggressive behaviour (physically attack the other)

dove = cooperative behaviour (pacific attitude to share the food)

/	hawk	dove
hawk	(A,A)	(<mark>B,b</mark>)
dove	(<mark>b</mark> ,B)	(D,D)

anti-coordination games: B > D > b > A

(brinkmanship in nuclear warfare)

Rock-paper-scissors

paper covers rock - rock crushes scissors - scissors cuts paper

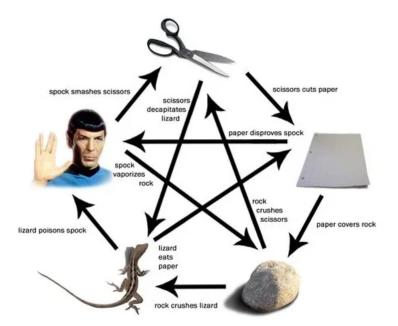
1/11	paper	scissors	rock
paper	(0,0)	(-1,1)	(1,-1)
scissors	(1,-1)	(0,0)	(-1,1)
rock	(-1,1)	(1,-1)	(0,0)

Rock-paper-scissors

paper covers rock - rock crushes scissors - scissors cuts paper

1/11	paper	scissors	rock
paper	(0,0)	(-1,1)	(1,-1)
scissors	(1,-1)	(0,0)	(-1,1)
rock	(-1,1)	(1,-1)	(0,0)

The Lizard-Spock expansion



Rock-paper-scissors-lizard-Spock

scissors cuts paper - paper covers rock - rock crushes lizard lizard poisons Spock -Spock smashes scissors - scissors decapitates lizard lizard eats paper- paper disproves Spock - Spock vaporizes rock rock crushes scissors

1/11	paper	scissors	rock	lizard	Spock
paper	(0,0)	(-1,1)	(1,-1)	(-1,1)	(1,-1)
scissors	(1,-1)	(0,0)	(-1,1)	(1,-1)	(-1,1)
rock	(-1,1)	(1,-1)	(0,0)	(1,-1)	(-1,1)
lizard	(1,-1)	(-1,1)	(-1,1)	(0,0)	(1,-1)
Spock	(-1,1)	(1,-1)	(1,-1)	(-1,1)	(0,0)

- Strategic (or normal) form

best suited for "one shot" games separate description of the ingredients of the game

- Extensive form

suitable for games with finitely many actions for each player enumerative description of the (sequential) structure of the actions taken by the players: "book of the game"

Games in an extensive form can be turned into a strategic form

Strategic form of a game

– $N = \{1, \ldots, n\}$ finite set of players

- S_i set of strategies for player $i \in N$

 $S = S_1 \times \cdots \times S_n$ set of all the strategy profiles

 $-u_i: S \to \mathbb{R}$ utility (or payoff) function for player $i \in N$ each strategy profile $x \in S$ determines a unique outcome, which player imeasures through $u_i(x)$: a larger value means a higher preference

 $x_{-i} = (x_j)_{j \neq i}$ strategy profile for all players except *i*

 $S_{-i} = \prod_{j \neq i} S_j$ set of all the strategy profiles for all players except i

Finite game: all the sets S_i are finite

Colonel Blotto game(s)

2 players: colonel Blotto b, enemy e

limited amount of resources: R_b , R_e (> 0)

n battlefields, each with its own value: $w_1, ..., w_n \ (> 0)$

n

battlefield winner: the player deploying most resources how to allocate resources between the battlefields?

strategies:

$$x_{b/e} \in \mathbb{R}^n_+$$
 s.t. $(x_{b/e})_1 + \dots + (x_{b/e})_n = R_{b/e}$

utility functions:

$$u_b(x_b, x_e) = \sum_{i=1}^n w_i \operatorname{sign}((x_b)_i - (x_e)_i) = -u_e(x_b, x_e)$$

Colonel Blotto game(s)

2 players: colonel Blotto b, enemy e

limited amount of resources: R_b , R_e ($\in \mathbb{Z}_+^n$)

n battlefields, each with its own value: $w_1, ..., w_n \ (> 0)$

n

battlefield winner: the player deploying most resources how to allocate resources between the battlefields?

strategies:

$$x_{b/e} \in \mathbb{Z}_{+}^{n}$$
 s.t. $(x_{b/e})_{1} + \dots + (x_{b/e})_{n} = R_{b/e}$

utility functions:

$$u_b(x_b, x_e) = \sum_{i=1}^n w_i \operatorname{sign}((x_b)_i - (x_e)_i) = -u_e(x_b, x_e)$$

It can be represented by an enumeration tree

 $\mathsf{node} = \mathsf{state} \ \mathsf{of} \ \mathsf{the} \ \mathsf{game}$

 $\mathsf{leaf} = \mathsf{outcome} \ \mathsf{of} \ \mathsf{the} \ \mathsf{game}$

each node (but leafs) belongs to one player

arc = action taken by the "tail node" player

labels on a leaf = utilities/payoffs of the players

the formal mathematical definition is not very handy

A sequential allocation game

2 (identical) objects to be shared by 2 players

player 1 suggests the allocation, players 2 accepts or declines

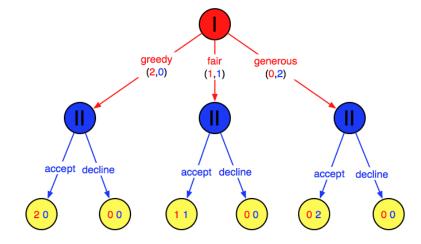
in case of no agreement they both get nothing

A sequential allocation game

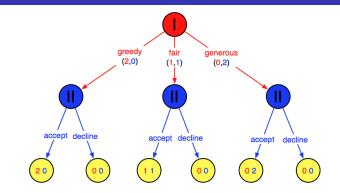
2 (identical) objects to be shared by 2 players

player 1 suggests the allocation, players 2 accepts or declines

in case of no agreement they both get nothing

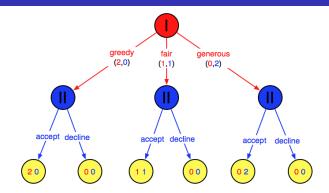


Turning extensive into strategic form



strategy = choice of a forward arc at each node owned by the player

Turning extensive into strategic form



strategy = choice of a forward arc at each node owned by the player

/	ааа	a a d	a d a	daa	d d a	d a d	a d d	d d d
greedy	(<mark>2,0</mark>)	(<mark>2,0</mark>)	(<mark>2,0</mark>)	(<mark>0,0</mark>)	(<mark>0,0</mark>)	(<mark>0,0</mark>)	(<mark>2,0</mark>)	(<mark>0,0</mark>)
fair	(1 , 1)	(1 , 1)	(<mark>0,0</mark>)	(1,1)	(<mark>0,0</mark>)	(<mark>1,1</mark>)	(<mark>0,0</mark>)	(<mark>0,0</mark>)
generous	(<mark>0</mark> ,2)	(<mark>0,0</mark>)	(<mark>0</mark> ,2)	(<mark>0</mark> ,2)	(<mark>0,2</mark>)	(<mark>0,0</mark>)	(<mark>0,0</mark>)	(<mark>0,0</mark>)

 $3 \times 8 = 24$ pairings of strategies to describe only 6 real situations

Individual decision-making under risk

- a unique decision-maker
- *n* mutually exclusive events: A_1, \ldots, A_n (exactly one will occur)
- A_i is preferred to A_{i+1}

Individual decision-making under risk

- a unique decision-maker
- *n* mutually exclusive events: A_1, \ldots, A_n (exactly one will occur)
- A_i is preferred to A_{i+1}

Lottery

 $L = [(A_1, p_1), ..., (A_i, p_i), ..., (A_n, p_n)]$ with $p_i \ge 0$ s.t. $\sum p_i = 1$

 p_i probability that A_i occurs

Individual decision-making under risk

- a unique decision-maker
- *n* mutually exclusive events: A_1, \ldots, A_n (exactly one will occur)
- A_i is preferred to A_{i+1}

Lottery

$$L = [(A_1, p_1), ..., (A_i, p_i), ..., (A_n, p_n)]$$
 with $p_i \ge 0$ s.t. $\sum p_i = 1$

p_i probability that A_i occurs

Preferences over $\mathcal{L} = \{$ lotteries $\}$ through a binary relation \geq satisfying

- reflexivity: $L \ge L$
- transitivity: $L_1 \ge L_2, \ L_2 \ge L_3 \Longrightarrow L_1 \ge L_3$
- completeness: $L_1 \ge L_2$ or $L_2 \ge L_1$ holds

(antisymmetry not required: $L_1 \ge L_2, \ L_2 \ge L_1 \not\Longrightarrow L_1 = L_2$)

equivalence: $L_1 \sim L_2 \iff L_1 \geq L_2$, $L_2 \geq L_1$

Preferences versus utility

Monotonicity

 $p, q \in [0, 1]$: $[(A_1, p), (A_n, 1-p)] \ge [(A_1, q), (A_n, 1-q)] \iff p \ge q$

Continuity

 $\exists \ \mu_i \in [0,1] \ \text{s.t.} \ [(A_i,1)] \sim [(A_1,\mu_i),(A_n,1-\mu_i)]$

▶ [De]composition

 $[(A_1, p_1), ..., (A_i, p_i), ..., (A_n, p_n)] \sim [(A_1, p_1 + p_i \mu_i), ..., (A_i, 0), ..., (A_n, p_n + p_i(1 - \mu_i))]$

Preferences versus utility

Monotonicity

 $p, q \in [0, 1]$: $[(A_1, p), (A_n, 1-p)] \ge [(A_1, q), (A_n, 1-q)] \iff p \ge q$

Continuity

 $\exists \ \mu_i \in [0,1] \ \text{s.t.} \ [(A_i,1)] \sim [(A_1,\mu_i),(A_n,1-\mu_i)]$

▶ [De]composition

 $[(A_1, p_1), ..., (A_i, p_i), ..., (A_n, p_n)] \sim [(A_1, p_1 + p_i \mu_i), ..., (A_i, 0), ..., (A_n, p_n + p_i(1 - \mu_i))]$

Expected utility theorem (von Neumann-Morgenstern 1944)

If the pair (\mathcal{L}, \geq) satisfies the above monotonicity, continuity and [de]composition properties, then there exists $u : \mathcal{L} \to \mathbb{R}$ such that

 $L_1 \geq L_2 \iff u(L_1) \geq u(L_2).$

Preferences versus utility

Monotonicity

 $p, q \in [0, 1]$: $[(A_1, p), (A_n, 1-p)] \ge [(A_1, q), (A_n, 1-q)] \iff p \ge q$

Continuity

 $\exists \ \mu_i \in [0,1] \ \text{s.t.} \ [(A_i,1)] \sim [(A_1,\mu_i),(A_n,1-\mu_i)]$

▶ [De]composition

 $[(A_1, p_1), ..., (A_i, p_i), ..., (A_n, p_n)] \sim [(A_1, p_1 + p_i \mu_i), ..., (A_i, 0), ..., (A_n, p_n + p_i(1 - \mu_i))]$

Expected utility theorem (von Neumann-Morgenstern 1944)

If the pair (\mathcal{L}, \geq) satisfies the above monotonicity, continuity and [de]composition properties, then there exists $u : \mathcal{L} \to \mathbb{R}$ such that

 $L_1 \geq L_2 \iff u(L_1) \geq u(L_2).$

$$u(L) = \sum_{i=1}^{n} p_{i}\mu_{i} \text{ for } L = [(A_{1}, p_{1}), ..., (A_{i}, p_{i}), ..., (A_{n}, p_{n})]$$