Algorithmic game theory

Laurea Magistrale in Computer Science 2024/25

Lecture 10

2 firms producing the same homogeneous commodity - competition over quantity

$$S_1 = S_2 = [0, +\infty)$$
 $u_i(x_1, x_2) = x_i \max\{T - (x_1 + x_2), 0\} - cx_i$ $(T > c)$ inverse demand function prod. cost

 \Rightarrow firm 1 chooses x_1 first, firm 2 notices the choice and responds [optimally]

2 firms producing the same homogeneous commodity - competition over quantity

$$S_1 = S_2 = [0, +\infty)$$
 $u_i(x_1, x_2) = x_i \max\{T - (x_1 + x_2), 0\} - cx_i$ $(T > c)$ inverse demand function prod. cost

 \Rightarrow firm 1 chooses x_1 first, firm 2 notices the choice and responds [optimally]

$$R_2(\mathbf{x}_1) = \begin{cases} (T - c - \mathbf{x}_1)/2 & \text{if } \mathbf{x}_1 \le T - c \\ 0 & \text{if } \mathbf{x}_1 \ge T - c \end{cases}$$

2 firms producing the same homogeneous commodity - competition over quantity

$$S_1 = S_2 = [0, +\infty)$$
 $u_i(x_1, x_2) = x_i \max\{T - (x_1 + x_2), 0\} - cx_i$ $(T > c)$ inverse demand function prod. cost

 \Rightarrow firm 1 chooses x_1 first, firm 2 notices the choice and responds [optimally]

$$R_2(x_1) = \begin{cases} (T - c - x_1)/2 & \text{if } x_1 \le T - c \\ 0 & \text{if } x_1 \ge T - c \end{cases}$$

$$u_1(x_1, R_2(x_1)) = \begin{cases} x_1(T - c - x_1)/2 & \text{if } x_1 \le T - c \\ < 0 & \text{if } x_1 > T - c \end{cases}$$

$$\arg\max\{u_1(x_1,R_2(x_1)) : x_1 \in S_1\} = \{(T-c)/2\}$$

2 firms producing the same homogeneous commodity - competition over quantity

$$S_1 = S_2 = [0, +\infty)$$
 $u_i(x_1, x_2) = x_i \max\{T - (x_1 + x_2), 0\} - cx_i$ $(T > c)$ inverse demand function prod. cost

 \Rightarrow firm 1 chooses x_1 first, firm 2 notices the choice and responds [optimally]

$$R_2(x_1) = \begin{cases} (T - c - x_1)/2 & \text{if } x_1 \le T - c \\ 0 & \text{if } x_1 \ge T - c \end{cases}$$

$$u_1(x_1, R_2(x_1)) = \begin{cases} x_1(T - c - x_1)/2 & \text{if } x_1 \le T - c \\ < 0 & \text{if } x_1 > T - c \end{cases}$$

$$\arg\max\{u_1(x_1,R_2(x_1)) \ : \ x_1 \in \mathcal{S}_1\} = \{(T-c)/2\}$$

$$R_2((T-c)/2) = \{(T-c)/4\}$$

Stackelberg equilibrium: ((T-c)/2, (T-c)/4)

Monopoly, Cournot & Stackelberg duopolies: a comparison

	production	unitary price	utility per firm	system utility
monopoly	(T-c)/2	(T + c)/2	$(T-c)^2/4$	$(T-c)^2/4$
	^	V	V	V
Cournot	2(T-c)/3	(T+2c)/3	$(T-c)^2/9$	$2(T-c)^2/9$
	^	V	$\wedge \vee$	V
Stackelberg	3(T-c)/4	(T+3c)/4	$\frac{1}{2} (T-c)^2/8$ $\frac{1}{2} (T-c)^2/16$	$3(T-c)^2/16$
	ı			

Monopoly, Cournot & Stackelberg duopolies: a comparison

	production	unitary price	utility per firm	system utility
monopoly	(T-c)/2	(T+c)/2	$(T-c)^2/4$	$(T-c)^2/4$
	\wedge	V	V	V
Cournot	2(T-c)/3	(T+2c)/3	$(T-c)^2/9$	$2(T-c)^2/9$
	^	V	$\wedge \vee$	V
Stackelberg	3(T-c)/4	$\left (T+3c)/4 \right $	$\frac{1}{2} (T - c)^2 / 8$ $\frac{1}{2} (T - c)^2 / 16$	$3(T-c)^2/16$

Stackelberg duopoly

- dynamic/sequential game (game with successive moves)
- complete information (knowledge of other players' utilities)
- perfect information (knowledge of all the previous moves)

Stackelberg game

- $N=\{1,2\}\longrightarrow 2$ players player 1 the leader chooses first player 2 the follower reacts to the leader's choice
- S_1 , S_2 sets of (available) strategies
- u_1 , u_2 : S_1 × S_2 → \mathbb{R} utility functions

Working assumption:

$$R_2(x_1) = \operatorname{arg\,max}\{u_2(x_1, x_2) : x_2 \in S_2\}$$
 is a singleton for any $x_1 \in S_1$

Stackelberg equilibrium

 $x_1^* \in S_1$ is a Stackelberg solution if

$$x_1^* \in \arg\max\{u_1(x_1, R_2(x_1)) : x_1 \in S_1\}$$

 $(x_1^*, R_2(x_1^*))$ is a Stackelberg equilibrium if x_1^* is a Stackelberg solution.

Stackelberg and Nash equilibria may be different

leader/follower	ℓ_2	<i>r</i> ₂
ℓ_1	(2,2)	(4,1)
<i>r</i> ₁	(1,0)	$(3,\gamma)$

$$(\gamma > 0)$$

 (ℓ_1,ℓ_2) unique Nash equilibrium (r_1,r_2) unique Stackelberg equilibrium

Stackelberg and Nash equilibria may be different

leader/follower	ℓ_2	<i>r</i> ₂
$\ell_{\scriptscriptstyle 1}$	(2,2)	(4,1)
r ₁	(1,0)	$(3,\gamma)$

$$(\gamma > 0)$$

 (ℓ_1,ℓ_2) unique Nash equilibrium (r_1,r_2) unique Stackelberg equilibrium

Proposition

If $(\bar{x}_1, \bar{x}_2) \in S_1 \times S_2$ is a Nash equilibrium and $x_1^* \in S_1$ is a Stackelberg solution, then $u_1(x_1^*, R_2(x_1^*)) \ge u_1(\bar{x}_1, \bar{x}_2).$

Stackelberg and Nash equilibria may be different

leader/follower	ℓ_2	r_2
$\ell_{\scriptscriptstyle 1}$	(2,2)	(4,1)
<i>r</i> ₁	(1,0)	$(3,\gamma)$

$$(\gamma > 0)$$

 (ℓ_1,ℓ_2) unique Nash equilibrium (r_1,r_2) unique Stackelberg equilibrium

Proposition

If $(\bar{x}_1, \bar{x}_2) \in S_1 \times S_2$ is a Nash equilibrium and $x_1^* \in S_1$ is a Stackelberg solution, then $u_1(x_1^*, R_2(x_1^*)) \geq u_1(\bar{x}_1, \bar{x}_2).$

$$u_1(r_1, r_2) = 3 \ge 2 = u_1(\ell_1, \ell_2)$$

 $u_2(r_1, r_2) = \gamma \ge 2 = u_2(\ell_1, \ell_2)$
(leadership gives some advantage)

Stackelberg versus Nash equilibria in extensive form

Nash equilibria somehow neglect sequential moves Extensive form suits sequential (finite) games much better

Stackelberg versus Nash equilibria in extensive form

Nash equilibria somehow neglect sequential moves Extensive form suits sequential (finite) games much better

leader/follower	$\ell_{\scriptscriptstyle 2}\ell'_{\scriptscriptstyle 2}$	$\ell_2 r_2'$	$r_2\ell_2'$	$r_2 r_2'$
$\ell_{\scriptscriptstyle 1}$	(2,2)	(2,2)	(4,1)	(4,1)
r ₁	(1,0)	(3,1)	(1,0)	(3,1)

 $(\ell_1, \ell_2 \ell_2')$ and $(r_1, \ell_2 r_2')$ are both Nash equilibria

leader/follower	ℓ_2	c ₂	r_2
ℓ_1	(2,2)	(3,0)	(4,1)
r ₁	(1,0)	(1,1)	(3,1)

$$R_2(r_1) = \{c_2, r_2\}$$
 while $u_1(r_1, c_2) = 1$ and $u_1(r_1, r_2) = 3$

leader/follower	ℓ_2	c ₂	r_2
ℓ_1	(2,2)	(3,0)	(4,1)
r ₁	(1,0)	(1,1)	(3,1)

$$R_2(\mathbf{r}_1) = \{c_2, r_2\}$$
 while $u_1(\mathbf{r}_1, c_2) = 1$ and $u_1(\mathbf{r}_1, r_2) = 3$

 $\longrightarrow u_1(x_1, R_2(x_1))$ is not well-defined if $R_2(x_1)$ is not a singleton what possible meanings for arg max $\{u_1(x_1, R_2(x_1)) : x_1 \in S_1\}$?

leader/follower	ℓ_2	c ₂	<i>r</i> ₂
ℓ_1	(2,2)	(3,0)	(4,1)
r ₁	(1,0)	(1,1)	(3,1)

$$R_2(r_1) = \{c_2, r_2\}$$
 while $u_1(r_1, c_2) = 1$ and $u_1(r_1, r_2) = 3$

 $\longrightarrow u_1(x_1,R_2(x_1))$ is not well-defined if $R_2(x_1)$ is not a singleton

what possible meanings for arg max $\{u_1(x_1, R_2(x_1)) : x_1 \in S_1\}$?

Optimistic Stackelberg problem •

$$\max\{u_1(x_1,x_2) : x_1 \in S_1, x_2 \in R_2(x_1)\}$$
 (OS)

(hierarchical/bilevel optimization)

leader/follower	ℓ_2	<i>C</i> ₂	r_2
ℓ_1	(2,2)	(3,0)	(4,1)
r ₁	(1,0)	(1,1)	(3,1)

$$R_2(r_1) = \{c_2, r_2\}$$
 while $u_1(r_1, c_2) = 1$ and $u_1(r_1, r_2) = 3$

 $\longrightarrow u_1(x_1,R_2(x_1))$ is not well-defined if $R_2(x_1)$ is not a singleton

what possible meanings for arg max $\{u_1(x_1, R_2(x_1)) : x_1 \in S_1\}$?

Optimistic Stackelberg problem •

$$\max\{u_1(x_1,x_2) : x_1 \in S_1, x_2 \in R_2(x_1)\}$$

(hierarchical/bilevel optimization)

Pessimistic Stackelberg problem (Leitmann 1978)

$$\max\{\min\{u_1(x_1,x_2) : x_2 \in R_2(x_1)\} : x_1 \in S_1\}$$

(security strategy for the leader)

Existence of Stackelberg equilibria

optimistic Stackelberg equilibria \equiv maximum points (x_1^*, x_2^*) of (OS)

Theorem (Simaan-Cruz 1973)

Let $(\{1,2\},\{S_1,S_2\},\{u_1,u_2\})$ be a Stackelberg game.

If each player $i \in \{1,2\}$ satisfies

- (i) $S_i \subseteq \mathbb{R}^{m_i}$ is compact
- (ii) u_i is continuous on $S_1 \times S_2$

then the game has at least one optimistic Stackelberg equilibrium.

 $\left(\left(\mathit{OS}\right)$ satisfies the assumptions of Weierstrass extreme value theorem)

Existence of Stackelberg equilibria

optimistic Stackelberg equilibria \equiv maximum points (x_1^*, x_2^*) of (OS)

Theorem (Simaan-Cruz 1973)

Let $(\{1,2\}, \{S_1, S_2\}, \{u_1, u_2\})$ be a Stackelberg game.

If each player $i \in \{1,2\}$ satisfies

- (i) $S_i \subseteq \mathbb{R}^{m_i}$ is compact
- (ii) u_i is continuous on $S_1 \times S_2$

then the game has at least one optimistic Stackelberg equilibrium.

 $((\mathit{OS})$ satisfies the assumptions of Weierstrass extreme value theorem)

pessimistic Stackelberg equilibria: continuity + compactness
$$\Longrightarrow$$
 existence $(S_1 = S_2 = [-1,1], \ u_1(x_1,x_2) = x_1 - x_2, \ u_2(x_1,x_2) = x_1x_2)$

the leader may anticipate the follower's responses

non-optimal responses of the follower are deleted

the leader performs the optimal choice in the restricted game

leader/follower	$\ell_{_2}\ell_{_2}'$	$\ell_2 r_2'$	$r_{_2}\ell'_{_2}$	$r_2 r_2'$
$\ell_{\scriptscriptstyle 1}$	(2,2)	(2,2)	(4,1)	(4,1)
r ₁	(1,0)	(3,1)	(1,0)	(3,1)

what is the difference between $(\ell_1, \ell_2 \ell_2')$ and $(r_1, \ell_2 r_2')$?

what is the difference between
$$(\ell_1, \ell_2 \ell_2')$$
 and $(r_1, \ell_2 r_2')$?

 ℓ_2' is not the best choice for the follower if its tail node is reached $(\ell_1,\ell_2\ell_2') \text{ is not "subgame perfect"}$

Backward induction with nonunique best replies

leader/follower	$\ell_{\scriptscriptstyle 2}\ell'_{\scriptscriptstyle 2}$	$\ell_2 r_2'$	$r_2\ell_2'$	$r_2 r_2'$
$\ell_{\scriptscriptstyle 1}$	(2,2)	(2,2)	(4,1)	(4,1)
r ₁	(1,1)	(3,1)	(1,1)	(3,1)

Backward induction with nonunique best replies: failure

leader/follower	$\ell_{\scriptscriptstyle 2}\ell'_{\scriptscriptstyle 2}$	$\ell_2 r_2'$	$r_2\ell_2'$	$r_2 r_2'$
$\ell_{\scriptscriptstyle 1}$	(2,2)	(2,2)	(4,1)	(4,1)
r ₁	(1,1)	(3,1)	(1,1)	(3,1)

Backward induction with an optimistic attitude

leader/follower	$\ell_{\scriptscriptstyle 2}\ell'_{\scriptscriptstyle 2}$	$\ell_2 r_2'$	$r_2\ell_2'$	$r_2 r_2'$
$\ell_{\scriptscriptstyle 1}$	(2,2)	(2,2)	(4,1)	(4,1)
r ₁	(1,1)	(3,1)	(1,1)	(3,1)

Backward induction with an optimistic attitude

leader/follower	$\ell_{\scriptscriptstyle 2}\ell'_{\scriptscriptstyle 2}$	$\ell_2 r_2'$	$r_2\ell_2'$	$r_2 r_2'$
$\ell_{\scriptscriptstyle 1}$	(2,2)	(2,2)	(4,1)	(4,1)
<u>r</u> ₁	(1,1)	(3,1)	(1,1)	(3,1)

Backward induction with a pessimistic attitude

leader/follower	$\ell_{\scriptscriptstyle 2}\ell'_{\scriptscriptstyle 2}$	$\ell_2 r_2'$	$r_2\ell_2'$	$r_2 r_2'$
$\ell_{\scriptscriptstyle 1}$	(2,2)	(2,2)	(4,1)	(4,1)
<u>r</u> ₁	(1,1)	(3,1)	(1,1)	(3,1)

Backward induction with a pessimistic attitude

leader/follower	$\ell_2\ell_2'$	$\ell_2 r_2'$	$r_2\ell_2'$	$r_2 r_2'$
$\ell_{\scriptscriptstyle 1}$	(2,2)	(2,2)	(4,1)	(4,1)
<u>r</u> ₁	(1,1)	(3,1)	(1,1)	(3,1)

Backward induction with a pessimistic attitude

leader/follower	$\ell_2\ell_2'$	$\ell_2 r_2'$	$r_2\ell_2'$	$r_2 r_2'$
$\ell_{\scriptscriptstyle 1}$	(2,2)	(2,2)	(4,1)	(4,1)
r ₁	(1,1)	(3,1)	(1,1)	(3,1)

$$x_i \in \mathbb{Z}_+$$
 units of the commodity to be produced \longrightarrow at most $(T-c)-1$
$$u_i(x_1,x_2) = x_i \max\{T-(x_1+x_2),0\} - cx_i$$

$$1 = \text{leader} \quad 2 = \text{follower}$$

Example: T = 10, c = 3

1/11	0	1	2	3	4	5	6
0	(0,0)	(0,6)	(0,10)	(0,12)	(0,12)	(0,10)	(0,6)
1	(<mark>6,0</mark>)	(5,5)	(4,8)	(3,9)	(2,8)	(1,5)	(0,0)
2	(10,0)	(8,4)	(6,6)	(4, 6)	(2,4)	(0,0)	(-2,-6)
3	(12,0)	(9,3)	(<mark>6,4</mark>)	(3,3)	(0,0)	(-3,-5)	(-6,-12)
4	(12,0)	(8,2)	(4,2)	(0,0)	(-4,-4)	(-8,-10)	(-12,-18)
5	(10,0)	(5,1)	(0,0)	(-5,-3)	(-10,-8)	(-15,-15)	(-15,-18)
6	(6,0)	(0,0)	(-6,-2)	(-12,-6)	(-18,-12)	(-18,-15)	(-18,-18)

$$x_i \in \mathbb{Z}_+$$
 units of the commodity to be produced \longrightarrow at most $(T-c)-1$
$$u_i(x_1,x_2) = x_i \max\{T-(x_1+x_2),0\} - cx_i$$

$$1 = \text{leader} \quad 2 = \text{follower}$$

Example: T = 10, c = 3

1/11	0	1	2	3	4	5	6
0				(0,12)	(0,12)		
1	(6, <mark>0</mark>)	(5,5)	(4,8)	(3,9)	(2,8)	(1,5)	(0,0)
2	(10,0)	(8,4)	(6,6)	(4, 6)	(2,4)	(0,0)	(-2,- 6)
3	(12,0)	(9,3)	(<mark>6,4</mark>)	(3,3)	(0,0)	(-3,-5)	(-6,-12)
4	(12,0)	(8,2)	(4,2)	(0,0)	(-4,-4)	(-8,-10)	(-12,-18)
5	(10,0)	(5,1)	(0,0)	(-5,-3)	(-10,-8)	(-15,-15)	(-15,-18)
6	(6, <mark>0</mark>)	(0,0)	(-6,-2)	(-12,-6)	(-18,-12)	(-18,-15)	(-18,-18)

the leader anticipates the follower's responses

$$x_i \in \mathbb{Z}_+$$
 units of the commodity to be produced \longrightarrow at most $(T-c)-1$
$$u_i(x_1,x_2) = x_i \max\{T-(x_1+x_2),0\} - cx_i$$

$$1 = \text{leader} \quad 2 = \text{follower}$$

Example: T = 10, c = 3

I/II	0	1	2	3	4	5	6
0				(0,12)	(0,12)		
1				(3,9)			
2	(10,0)	(8,4)	(6,6)	(4, 6)	(2,4)	(0,0)	(-2,-6)
3	(12,0)	(9,3)	(<mark>6,4</mark>)	(3,3)	(0,0)	(-3,-5)	(-6,-12)
4	(12,0)	(8,2)	(<mark>4,2</mark>)	(0,0)	(-4,-4)	(-8,-10)	(-12,-18)
5	(10,0)	(5,1)	(0,0)	(-5,-3)	(-10,-8)	(-15,-15)	(-15,-18)
6	(<mark>6,0</mark>)	(0,0)	(-6,-2)	(-12,-6)	(-18,-12)	(-18,-15)	(-18,-18)

the leader anticipates the follower's responses

$$x_i \in \mathbb{Z}_+$$
 units of the commodity to be produced \longrightarrow at most $(T-c)-1$
$$u_i(x_1, x_2) = x_i \max\{T - (x_1 + x_2), 0\} - cx_i$$
$$1 = \text{leader} \quad 2 = \text{follower}$$

Example: T = 10, c = 3

1/11	0	1	2	3	4	5	6
0				(0,12)	(0,12)		
1				(3,9)			
2			(6,6)	(4, 6)			
3			(<mark>6,4</mark>)				
4		(8,2)	(4,2)				
5		(5,1)					
6	(<mark>6,0</mark>)	(0,0)					

the leader anticipates the follower's responses

$$x_i \in \mathbb{Z}_+$$
 units of the commodity to be produced \longrightarrow at most $(T-c)-1$
$$u_i(x_1, x_2) = x_i \max\{T - (x_1 + x_2), 0\} - cx_i$$
$$1 = \text{leader} \quad 2 = \text{follower}$$

Example: T = 10, c = 3

	0	1	2	3	4	5	6
0				(0,12)	(0,12)		
1				(3,9)			
2			(6,6)	(4, 6)			
3			(<mark>6,4</mark>)				
4		(8,2)	(4,2)				
5		(5,1)					
6	(<mark>6,0</mark>)	(0,0)					

the leader anticipates the follower's responses

optimistic attitude

$$x_i \in \mathbb{Z}_+$$
 units of the commodity to be produced \longrightarrow at most $(T-c)-1$

$$u_i(x_1, x_2) = x_i \max\{T - (x_1 + x_2), 0\} - cx_i$$

$$1 = \text{leader} \quad 2 = \text{follower}$$

Example:
$$T = 10$$
, $c = 3$

1/11	0	1	2	3	4	5	6
0				(0,12)	(0,12)		
1				(3,9)			
2			(6,6)	(4, 6)			
3			(<mark>6,4</mark>)				
4		(8,2)	(4,2)				
5		(5,1)					
6	(<mark>6,0</mark>)	(0,0)					

the leader anticipates the follower's responses

optimistic attitude \longrightarrow (4,1)

$$x_i \in \mathbb{Z}_+$$
 units of the commodity to be produced \longrightarrow at most $(T-c)-1$

$$u_i(x_1, x_2) = x_i \max\{T - (x_1 + x_2), 0\} - cx_i$$

$$1 = \text{leader} \quad 2 = \text{follower}$$

Example:
$$T = 10$$
, $c = 3$

I/II	0	1	2	3	4	(5)	6
0				(0,12)	(0,12)		
1				(3,9)			
2			(6,6)	(4, 6)			
3			(<mark>6,4</mark>)				
4		(8,2)	(4,2)				
5		(5,1)					
6	(<mark>6,0</mark>)	(0,0)					

the leader anticipates the follower's responses

optimistic attitude \longrightarrow (4,1)

pessimistic attitude

$$x_i \in \mathbb{Z}_+$$
 units of the commodity to be produced \longrightarrow at most $(T-c)-1$

$$u_i(x_1, x_2) = x_i \max\{T - (x_1 + x_2), 0\} - cx_i$$

$$1 = \text{leader} \quad 2 = \text{follower}$$

Example:
$$T = 10$$
, $c = 3$

1/11	0	1	2	3	4	5	6
0				(0,12)	(0,12)		
1				(3,9)			
2			(6,6)	(4, 6)			
3			(<mark>6,4</mark>)				
4		(8,2)	(4,2)				
5		(5,1)					
6	(<mark>6,0</mark>)	(0,0)					

the leader anticipates the follower's responses

optimistic attitude \longrightarrow (4,1)

pessimistic attitude \longrightarrow (3),(2)