A Mathematical Framework to Assess the Security
of an Information Infrastructure

F.Baiardi, S.Suin, C.Telmon

Dipartimento di Informatica, Universita di Pisa
L.go B.Pontecorvo 3, 56125 - PISA
{f.baiardi, s.suin} Qunipi.it, claudio@next-hop.it

1 Introduction

We propose a mathematical framework to assess the security of an information infras-
tructure focused on the analysis of rights acquired by a threat through attack sequences.
The framework supports distinct abstraction levels to focus the assessment on the most
critical components.

The most critical problem to define the framework is how to deduce all the rights
acquired by a threat through a successful attack. These rights depend upon the rela-
tion among infrastructure components. As an example, a successful attack to control a
component enables the control of any component that trusts the attacked one. To de-
scribe the relation, we model components as objects, each defining of a set of methods
invoked by either a user or other components and describe relations among components
through a labelled hypergraph where a hyperarc denotes a dependency of the desti-
nation node from the source ones. Relations that are considered concern the ability
of invoking, controlling or managing a method as well as that of determing a security
attribute of a component. The hypergraph is the input of a logic program to compute
the attack sequences that may be implemented against the infrastructure. Lastly, the
framework may be used to define an optimal ordering to remove vulnerabilities and
some programming tools can be defined to support the assessment.

2 Infrastructure Hypergraph

The framework describes the infrastructure as a set of related components. A compo-
nent consists of some internal state and methods, each an operation the component
implements. Legal users own the rights to invoke some methods while threats are inter-
ested in gaining some rights according to their goal. In the following, both legal users
and threats will be denoted simply as user. Each user is paired with a set of rights, a
set of pairs that defines the methods it can invoke. Some of these rights may have been
achieved through a sequence of attacks. For each infrastructure component, we deter-
mine a set of methods such that anyone that has the rights of invoking all the methods
in the set, can control some security attribute of the component. A further relation
among the components describes how a security attribute of a component depends
upon those of other components. Taking into accounts the rights of a user U, i.e. the
methods U can invoke, and the relations among methods and the security attributes of
components we compute the transitive closure of the rights of U. This closure includes
any attribute of a component that U can control because of its rights. Assume, as an



example, that a method M of C determines the integrity of a component C and that
the confidentiality of a distinct component D depends upon the integrity of C. Hence,
any user that can invoke M controls the integrity of D. In another case of interest, a
method M updates the state of a component ACL used to grants or revokes the right
of invoking F. Obviously, if U can invoke M, then it can also grant or revoke the right
of invoking F. Here, any user that can invoke M manages, i.e. controls the availability
of F. In the most general case, the hypergraph includes three kinds of nodes that de-
scribe, respectively, users, components and methods. The following kinds of hyperarcs
are introduced:

1. right hyperarc: from a user node to a non empty set of method nodes. It is not
labelled and it describes a method a user can invoke;

2. source hyperarc: from a set of method nodes to a component node. It is labelled
by one attribute of the component and it describes the methods that control the
corresponding attribute of the component;

3. component hyperarc: from a set of component nodes to a component node. It is
labelled by one attribute for each source component and one attribute for the desti-
nation one. It describes a dependence of the attribute in the destination component
from those of the source ones;

4. destination hyperarc: from a set of components nodes to a method node. It is la-
belled by one attribute for each source node and by an attribute for the destination
one. It describes a dependency of a method from a set of components.

To compute a transitive closure, rights are propagated through the hyperarcs.

3 Vulnerability and Attacks

The framework characterizes an attack in terms of the vulnerabilities that enable it,
the resources and the rights it requires and the rights achieved due to its success. If A
is an attack, V(A) is the set of the component vulnerabilities that enables A and C(A)
is component that is the target of A. A user U can execute A if it can access all the
resources in R(A), i.e. information, tools and know how about A. Furthermore, U can
attempt A only if it satisfies pre(A), the precondition of A. Pre(A) is a set of rights
and U satisfies pre(A) if it owns all the rights in pre(A). If U owns all the resource in
R(A) and satisfies pre(A) then it can execute A and, if A is successful, U will acquire
the set of rights post(A).

Initially, U owns the rights in Init(U) and it executes sequences of attacks. U can
execute the sequence Al...An if it owns the resources for any Ai 1 < i < n and if,
after executing the sequence Al ... Aj, it satisfies pre(Aj+i). Hence, the transitive
closure of Init(T) includes pre(Al) and, after any Ai, ¢« € 1.n — 1, the transitive
closure of Init(T)Upost(Al)...Upost(Ai) includes pre(Ai+1). Each sequence satisfying
these conditions is feasible for U. For simplicity sake, in the following we neglect the
dependency of feasible sequences from the initial set of rights.

Since U is rational, it executes only those feasible sequences that enable it to achieve
one of its goals. Each goals of U is a set of rights and U achieves a goal when and if it
owns the corresponding rights. A feasible sequence that enables U to achieve one of its
goals is an evolution useful for T. Useful evolutions depend upon:

1. the infrastructure hypergraph,



2. the vulnerabilities in the infrastructure components and the attacks they enable,
3. the attacks U can implement and its goals.

4 Security Evolutions of the Infrastructure

Security evolutions describe how the n users in a set SU can achieve n goals, i.e. sets
of rights, SR1, ..., SRn, through a sequence of attacks SA = Al ... Am, where each
attack has been executed by just one user. To define evolutions, we define the projection
PR(SA, U) of the sequence SA onto a user U. PR(SA, U) includes the subsequence of
SA with the attacks implemented by U. This is a subsequence useful for U. If PR(SA,
U) is empty, U is not involved in the evolution due to SA. Since each attack in SA is
implemented by a user in SU as a step to reach a goal, there is a set {U1,...,Uk} C SU
and a corresponding set of projections {PR(SA,U1),..., PR(SA,Uk)} where

1. each attack in SA belongs to one projection
2. distinct projections are disjoint,
3. after the execution of attacks in PR(SA, Ui), Ui achieve its goal SRi.

Hence, each evolution results from the interleaving of useful sequences for the considered
users. Two equivalent evolutions result in the same rights for any user in the considered
set. Since user rights are never revoked, we can model monotonic evolutions only, where
the set of user rights never decreases. Given a set of user, each with a goal, they can
achieve their goals iff there is at least one corresponding evolution. Evolutions can
be computed taking into account the infrastructure hypergraph and useful attacks
sequences for the users.

5 Ranking of Vulnerabilities

The proposed framework may exploit alternative metrics to rank vulnerabilities ac-
cording to the attack sequences they enable, the impact of these attacks and so on.
Here we present a metric based upon the smallest sets of countermeasures to prevent
any user from achieving its goals or, alternatively, to stop all evolutions. A counter-
measure for a vulnerability V is any strategy that removes V, i.e. it makes an attack
that exploits V ineffective. In the simplest case, a patch that removes V is applied.
Other countermeasures may change the dependencies among components so that even
if a user owns a set of rights, it cannot control or manage a component. A set of coun-
termeasures is complete if after applying its countermeasures, no evolution is possible
so that no user can achieve any of its goals. A set of countermeasures is minimal if it
is complete and none of its subsets is complete. Minimal sets define the smallest sets
of countermeasures to be applied to stop all the evolutions

To rank a vulnerability V, we consider the percentage of minimal sets with a coun-
termeasure that removes V. If no minimal set removes V, then evolutions can be stopped
even if V is not removed. On the other hand, if any minimal set includes a counter-
measure that removes V, then the only way to stop evolutions is to remove V. The
percentage of minimal sets removing V estimates how critical V is for the infrastructure
security.

Till now we have assumed that any two goals of any user are equivalent. Instead,
in several cases, each goal may be paired with a weight proportional to its impact, i.e.



to the corresponding loss for the infrastructure owner. In the same way, we can define
a minimal set in terms of the cost of the countermeasures rather than of their number.
The framework has been implemented through a logic program that computes

. the sets of rights each user may achieve

. alternative evolutions due to a set of users

. minimal sets of countermeasures

. the set of rights a user may achieve after applying a set of countermeasures.

=N

References

1. P.Ammann, D.Wijesekera, S. Kaushik, Scalable, Graph-based Network Vulnerability Analy-
sis, Proc. of the 9th ACM conference on Computer and communications security, November
18-22, 2002, Washington, DC, USA

2. F.Cuppens, A. Mie'ge, Alert Correlation in a Cooperative Intrusion Detection Frame-
work,JEEE Symp. on Security and Privacy, p.202, May 12-15, 2002

3. J. Dawkins, C. Campbell, J. Hale, Modeling Network Attacks: Extending the Attack Tree
Paradigm, Workshop on Statistical and Machine Learning in Computer Intrusion Detection,
Johns Hopkins University, June 2002.

4. R. P. Goldman, W. Heimerdinger, and S. A. Harp. Information Modeling for Intrusion
Report Aggregation,DARPA Information Survivability Conference and Exposition (DIS-
CEXII), June 2001.

5. S. Jajodia, S. Noel, B. O’Berry, Topological Analysis of Network Attack Vulnerability, in
Managing Cyber Threats: Issues, Approaches and Challenges, V. Kumar, J. Srivastava, A.
Lazarevic (eds.), Kluwer Academic Publisher, 2003.

6. R. A. Martin, Managing vulnerabilities in networked system, IEEE Computer, November
2001. p. 32 - 38.

7. P. Moore, R. J. Ellison, R. C. Linger, Attack modelling for information security and surviv-
ability, CMU /SEIL- 2001-TN001.

8. P. Ning , P.Cui , D. S. Reeves, Constructing attack scenarios through correlation of intru-
sion alerts, 9th ACM Conference on Computer and Communications security, Nov. 2002,
Washington, DC, USA.

9. S. Jha, O. Sheyner , J. Wing, Two Formal Analysis of Attack Graphs, 15th IEEE Computer
Security Foundations Workshop , p.49, June 2002.

10. C. Phillips, L. Painton Swiler, A graph-based system for network-vulnerability analy-
sis,Workshop on New Security Paradigms, p.71-79, Sept.1998.

11. R. Ritchey, B. O’Berry, S. Noel, Representing TCP/IP Connectivity For Topological Anal-
ysis of Network Security, Proc. of the 18th Annual Computer Security Applications Con-
ference, p.25, Dec. 2002.

12. O. Sheyner, J. Haines, S. Jha , R. Lippmann, J. M. Wing, Automated Generation and
Analysis of Attack Graphs, Proc. of the 2002 IEEE Symposium on Security and Privacy,
May 12-15, 2002 .

13. O. M. Sheyner, Scenario Graphs and Attack Graphs, CMU-CS-04-122,2004.

14. L.P. Swiler, C. Phillips, D. Ellis, S. Chakerian, Computer-Attack Graph Generation Tool.
Proc. of the DARPA Information Survivability Conference, June 2001.

15. V.Swarup, S.Jajodia, J.Pamula, Rule-Based Topological Vulnerability Analysis, Proc. of
MMM-ACNS 2005, Sept. 2005.



