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Abstract Conditional security assesses the security of an ICT system in a specifc 
context. A fundamental step of this assessment determines the threats that can 
implement an attack against the system. Constrained attack automata are finite 
state automata to formally conducting this step by decomposing complex attacks 
into a sequences of elementary attacks. Each state of the automata corresponds to a 
set of resources controlled by the attacker while a while final states correspond to 
the success of a sequence of attacks so that one threat has reached one of its goals. 
Each transition is paired with some constrains on the amount of computational 
resources, the skills and the knowledge required to implement the elementary 
attack. To exploit these automata, each threat is modeled in terms of the amount of 
computational resources, skills and knowledge that it has available and this 
amount is modelled as a tuple of elements of partially ordered sets. By comparing 
the amount of resources a threat can access against that required by an attack, we 
can determine if there is at least one threat that can implement the attack and 
available countermeasures. We also consider risk mitigation the application of a 
set of static countermeasures or of dynamic ones. A static countermeasure prevents 
a threat from exploiting a vulnerability and it is modeled by removing some 
automata transitions. Lastly, we discuss redundant countermeasures and how 
constrained attack automata can model dynamic countermeasures, i.e. actions that 
are executed as the attack is going on to stop the attack itself. 
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Introduction 

While a large amount of attention has been paid to formal models for 
unconditionally security, i.e. the ability of a system or of a component to withstand any 
attack, less attention has been paid to conditional security, i.e. to evaluate whether a 
system can withstand the attacks that can occur in a given context only [4-6, 14, 25, 26, 
29, 33]. The goal of conditional security is a better return on the investment, roi, 
because it is focused only on the attacks that may occur in the considered context. 
From an operational point of view, the evaluation of conditional security corresponds 
to the risk assessment of the target system TS. This assessment should determine: 

1. the vulnerabilities of the target system [1, 2, 15, 17, 22],  
2. the attacks enabled by these vulnerabilities, 
3. the threats that can implement these attacks in the considered context, 
4. the attacks that may occur in the context, 



5. the impact of attacks, i.e. the losses due to successful attacks, 
6. the countermeasures that may be adopted either to prevent the success of an 

attack or to reduce the impact of successful attacks. 
 
A threat is a source of attacks: physical events such a storm or a flooding, legal or 

illegal users of the system are a few examples of possible threats that results in distinct 
attacks to the system. However, in the following we neglect all attacks due to physical 
events and focus on those implemented by human beings. An important step of the 
assessment determines the possible threats, together with the resources available to 
each threat, in the considered context. We use resources in a fairly broad sense ranging 
from computational resources to skills or information on the system architecture. Step 
d) of the assessment merges the information about the threats and the attacks to define 
the attacks that may occur in the context. The last step of the assessment, risk 
mitigation, chooses a set of countermeasures, i.e. mechanisms and policies, to either 
prevent some attacks or to minimize their impacts on the target system. To achieve a 
satisfactory roi, the countermeasures are defined with reference to the attacks returned 
by step d) only, the only ones that may be successful in the considered context.   

 
The matching of threats with the attacks they can implement against TS is one of 

the focuses of this paper, that introduces constrained attack automata as formal tool to 
support the matching. A constrained automaton CA(TS, T) is a finite state automaton 
that models the attacks that can be implemented by the threat T against TS as a 
sequence of state transitions, each corresponding to a elementary attack. With respect 
to traditional automata, constrained automata take into account the resources an attack 
requires, so that a state transition occurs if and only if T can access the resource to 
implement the corresponding elementary attack. To define CA(TS, T), T is modelled in 
terms of the goals it is trying to achieve, of the resources it can control as well as of 
risk aversion, i.e. the attitude of T with respect to possible prosecution. To this purpose, 
we introduce a distinct poset P(Kr) for each kind Kr of resources that attacks require. 
The elements of P(Kr) represents distinct levels of availability of Kr. Hence, n distinct 
kinds of resources are modelled by n posets P(Kr1), …, P(Krn) and a threat T will be 
modelled as a tuple <ra1, …, ran>, where each rai belongs to P(Kri). An elementary 
attack A is modelled in terms of posets too because it is represented by a tuple <rr1, …, 
rrn> where each rri belongs to P(Kri) and it defines the amount of the resource that is 
required to implement A. A threat T can implement the attack A only if each value of 
<ra1, …, ran>is not smaller than the corresponding one of <rr1, …, rrn>. n is fixed for 
the assessment and it depends upon the detail level of the assessment.  

 
We model the goals of a threat T as a subset SR(T) of the resources of TS. In this 

way, we can deduce the attacks T is interested in because each successful attack 
enables T to control a subset of the resources of TS. In turn, this implies that each state 
S of the automata may be mapped into the resources R(S) that a threat control after 
executing the attacks leading to S. Hence, T is interested in executing the attacks 
leading to state S only if interested in controlling R(Fs), that is if R(Fs) ⊆ SR(T).  

 
Sect. 1 discusses the modeling of threats and of elementary attacks in terms of the 

resources they, respectively, control and require. Attack automata and constrained 
attack automata are introduced in Sect. 2. The risk mitigation step and the definition of 
attack countermeasure is discussed in Sect. 3. Each countermeasure may consist in a 



new component or in a control that prevents the success of an elementary attack.  This 
section formally defines the notion of a complete set of countermeasures i.e. a set of 
countermeasures that can stop any attack against the target system. Formally, the 
definition of a complete set of countermeasures for a constrained attack automaton 
prevent some transitions in the automata and it may be described as a cut set of a graph 
defined in terms of the automaton. Lastly, we define a k-redundant set of 
countermeasures, where k>1, defined a set of countermeasures that can prevent an 
attack even if at most k of its controls are faulty.  

 
The notion of constrained attack automaton is inspired to that of attack graph [1, 9, 

12, 16, 18, 23, 24, 27, 30, 34, 35] and several concepts are similar in the two 
frameworks. The main difference is that automata do explicitly model the order in 
which elementary attacks are executed while a graph may state that some attacks are 
required before a further one can be implemented but does not need to specify the 
execution order of such attacks. From this point of view, attack graphs are similar to 
And/Or attack tree [9, 17, 28] because they define the decomposition of complex 
attacks into elementary ones without constraining the execution order of elementary 
attacks. From our point of view, the order of attacks is important when defining the 
countermeasure of attacks. As attack graphs, attack automata may be exploited both in 
the planning of attacks or of countermeasures as well as in the analysis of information 
returned by a set of sensors to discover attacks that are currently going on against the 
system [7, 10, 11, 14, 20, 21, 26]. However, attack graphs have never been considered 
in the framework of modelling resources available to the various threats [33].  

1.  Modelling Threats and Elementary Attacks through Posets 

This section discusses the modelling of elementary attacks and threats as tuples of 
elements of a poset. The model does not fix the number of elements in a tuple because 
it depends upon both the considered assessment and the detail level of the assessment. 
We discuss at first the modelling of threats in terms of poset and then the modelling of 
attacks. In the following, we neglect threats such as a flooding or an earthquake. 

1.1.  Threat Modelling 

A threat can successfully implement an attack provided that it can access the 
resources the attack requires and it is willing to accept the risk of being discovered. 
Each feature may be modelled in terms of a partially ordered set, a set of elements and 
a partial order among the elements. In the following, the poset <SA,  <sa > and  the 
poset <SR,  <sr > describe, respectively, the resources available and the risk aversion of 
the threats. In security, posets have been often be applied to model access rights [4]. 

 
At first, we consider SA and  <sa . Any element of SA corresponds to a distinct 

amount of resources. If a1 and a2 belong to SA and a1 <sa a2, then the amount of 
resources modelled by a1 is smaller than the one modelled by a2. Smaller means that it 
can be collected more easily or, from another point of view, that is available to a larger 
number of people. The adoption of partial order make it possible to consider also cases 
where some of the elements cannot be compared. As an example, this happens if the 



resources are skills and abilities. Two attacks could require, respectively, skills and 
abilities in distinct languages and ordering these skills and abilities is not only rather 
complex but also inappropriate.  

 
Each element of SR corresponds to a risk the threat is willing to accept. An 

element of SR is larger than another if it corresponds to the acceptance of a larger risk. 
In other word, if two threats are paired with, respectively, r1 and r2 and r1 <sr r2, then 
the threat paired with r2 is willing to accept a risk larger than the other one when 
executing an attack. 

 
In general, one poset does not support an accurate evaluation of the resources 

available to a threat. The accuracy increases if distinct kinds of resources are modelled 
through distinct posets. Hence, in the most general case, each threat T will be 
characterized by a tuple Tu(T) of n, n>1, values. The first n-1 values of Tu(T) describe 
the resources T can exploit in its attack, while the last one describes the attitude of T 
towards risk. Larger values of this element model larger risks T is willing to accept. 
 

Suppose, as an example, attacks against an application written in a language PL 
and running on an operative system OS. In a first, simple, case, we can model the 
knowledge required by an attack through the four elements poset shown in Fig. 1a. If a 
more detailed modelling is required, then we can adopt the poset Fig. 1.b that 
distinguish among distinct levels of knowledge of either or both topics. An even more 
complex solution adopts two posets to model the two know hows. 

 
A further issue to be considering when modelling a threat T is the goals of T. In 

the following we assume that each goal corresponds to a distinct subset of the resources 
of the target system. In the most general case, the resource available to a threat and the 
risk aversion of the threat are a function of its goals. If T has several alternative goals, 
then resource availability and risk aversion change according to the goals. Therefore, in 
the following we decompose T into a set of “virtual” threats, each with just one goal, 
that is one of the goals of T. To interpreter the results of the assessment for T, we 
merge all the results for the virtual threats resulting from the decomposition of T. In the 
following, threat denotes a virtual threat.   

2.2 Attack Modelling 

The first step of attack modelling decomposes each attack into one or more sequences 
of elementary attacks. An elementary attack does not need to be further decomposed  
because it involves the application of  just one exploit. The decomposition will be 
described in more details in the next section. Here we are interested in the description 
of an elementary attack in terms of both the resources it requires implement and the 
corresponding risk. An elementary attack is modelled in the same way of a threat, that 
is through a tuple of values, one for each poset. All the considerations for threats 
applies to attacks as well. Notice that each poset should include all the elements 
required to model both any attack and any threat. Hence, the definition of a poset 
should consider  both all the threats and all the elementary attacks. In turns, this implies 
that an iterative refinement of the posets may be required as new attacks and/or new 
threats are taken into account.  
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b) A more detailed modelling the know-how of a threat 

 
Figure 1 Alternative posets to model a threat 

 

Let us assume that the elementary attack ea and the threat t are paired, respectively, 
with the tuples resreq(ea) and resav(t). The attack ea is feasible for T if and only if 
each element of resreq(a)  no larger than to the corresponding element of resav(T). 
The notion of feasible attack for a threat resumes the constrains on the resources 
required to successfully implement an attack. In the following we assume that the 
resources used for an elementary attacks may be reused for a further elementary attack. 

2. Attack Automata and Constrained Attack Automata 

This section introduces the notion of attack automata that describes one or more 
complex attacks, i.e. one or more sequences of elementary attacks, against the target 



system. Then, the notion of attack automaton evolves into that of constrained attack 
automaton. While an attack automaton is always associated with a target system, two 
kinds of constrained automata will be introduced that are associated with, respectively, 
a single threat and the target system. 

2.1.  Attack Automata 

An attack automaton AA(TS) is a, nondeterministic or deterministic, finite state 
machine that models attacks of any complexity against  the system TS. To this purpose:  

a) each initial state of the machine corresponds to a state of TS where no attack has 
been executed yet, 

b) each state fs of the machine corresponds a set of resources controlled by an 
attacker, let such resources be denoted by rcs(fs), 

c) each elementary attack at is paired with a unique label la(at) and each 
component c with a unique label la(c) so that each transaction is paired with a 
pair of labels to describe the attack and the component that is attack target , 

d) if la is the label of the attack att(la) then resreq(la) is the n-tuple that describes 
the resources to implement att(la), 

e) if there is a transition from a state s1 to a state s2 then rcs(s1)⊆rcs(s2) because 
each attack cannot decrease the number of resources controlled by the attacker. 
This corresponds to the monotic property of attack graphs [34]. 

  
The mapping of each state into the resources the threat controls is a generalization 

of  [8] that pairs states and access privileges. A complex attack that results in the 
control of a set SR of resources by the attacker is described as a sequence of transitions 
from an initial state to the one corresponding to the control of resources in SR. By 
pairing each transition with both an attack and a component, automata can easily model 
instances of the same attack against distinct components because they will be 
associated with the same attack label. In general, two attacks are instances of the same 
one if they exploit the same vulnerability and the same attack mechanisms in distinct 
instances of the same components. The existence of a label for the component allows 
us to model cases where vulnerabilities has been removed from some but not all the 
instances of the components used in the target system. This simplifies the analysis with 
respect the case where a transaction is labelled by a vulnerability only. 

 
Formally, an attack automaton is a tuple <S, Is, Fs, Al, Co, Tr, Rcs > where 

i) S is the set of the states, 
ii) Is is the set of inital states , Is⊆S, 
iii) Fs is the set of final states, Fs ⊆S, Is ∩Fs =Ø, 
iv) Al is the set of attack labels, 
v) Co is the set of component labels, 
vi) Tr is the set of transitions, Tr⊆S × S ×Al×Co, 
vii)  Rcs maps a state into the resources controlled by the attacker. It  satisfies a non 

decreasing condition so that for  <s1,s2, a, c> ∈ Tr then rcs(s1)⊆rcs(s2). 
 

 
Tr is different from S × S ×Al×Co because an attack may be ineffective in some 

state. Initial and final states of the automata are disjoint because in an initial state a 



threat cannot control the resources it is interested in. Alternative distinct initial states 
support the modelling of attacks of distinct threats. Consider, as an example, an attack 
of a user of the target system, i.e. to increase the available privileges, vs the attack of 
someone that does not have an account on the target system. The two attacks begin in 
distinct states of the target system. In the following, we denote the I-th element of 
AA(TS) by AA(TS)/i , i∈ 1..7. 

 
An important property of attack automata is that they are acyclic, i.e. a sequence of 

transition cannot visit the same state twice or a sequence of attacks cannot lead to one 
of the states that has already been visited. If we consider that each automaton state 
corresponds to a set of resources controlled by the attacker, any cycle includes at least 
one useless attack that cannot increase the resources the threat already controls.  

 
As already recalled, AA(TS) describes all the attacks against TS, independently of 

the existence of a threat that can implement them. The next section describes how to 
simplify the automaton when considering the resources available to threats. 

2.2. Constrained Attack Automata  

 This section introduces a two steps procedure to build the automaton that 
describes all the attacks of a given set of threats against the target system. The first step 
builds, for each threat, an automaton describing all the attacks the threat can 
implement. Then, the second step merges all these automata into a single one. 

2.2.1. Automaton associated with a Threat 

 
CAA(TS, T), the constrained attack automaton associated with TS and with a 

threat T, is an attack automaton that describes the attacks T can implement against TS 
only. CAA(TS,T) is a subset of AA(TS) because it has the same number of elements of 
AA(TS,T) and each element of CAA(TS,T) is included in the corresponding one of 
AA(TS, T). The transformation of AA(TS) into CAA(TS, T) removes 
1. the states T cannot reach or is not interested in reaching 
2. the transitions that cannot occur because T cannot implement the corresponding 

attacks due to resource constrains. 
 
Let us consider, at first, the states removed from AA(TS). They are removed in a 

forward step and in a backward one. The forward step removes from AA(TS) all the 
initial states that T cannot use to begin an attack and all those that can be reached from 
a previously removed state only. Then, the backward step removes all the final states 
that do not correspond to any goal of T and all the states that leads to these states only.  
 
To formally define this, we introduce two sets, Ri and Rf, that include, respectively, the 
initial states of AA(TS) that T cannot use and the final states that T is not interested in  
reaching. Then, we remove  
1. the states in Ri ∪Rf from the states in AA(TS)/1,  
2. the states in Ri from those in AA(TS)/2, 
3. the states in Rf from those in AA(TS)/3. 
 



We recursively remove now any state that either cannot longer be reached from the  
states in AA(TS)/2-Ri or that does no lead to a final state. 

 
We now remove from AA(TS) the transitions corresponding to attacks requiring 

resources not available to T. T can implement any attack corresponding to the 
transition <s1, s2, la, c> only if any element of resreq(la) is not larger than the 
corresponding element of resav(T). Any transaction violating this condition 
corresponds to an attack not feasible for T that should removed from AA(TS) together 
with all the states that cannot be reached from the initial states and those that do no 
leads to a final state. Any remaining state can be reached because T can 

• starts any of its attacks in any initial state 
• implement any attack corresponding to a transaction of CAA(TS,T). 

Furthermore, each state that is not final leads to at least one final state.  
 
In a more formal setting, the constrains on the resources available to, and the risk 

aversion of, T define a subset of attack labels to be removed from AA(TS)/4 and of 
transactions with such labels to be removed from AA(TS)/7. Then, any state that either 
is unreachable or does not lead to a final state is removed from AA(TS)/1 and 
AA(TS)/3.  

 
If CAA(TS,T) does not include at least one final state of AA(TS), i.e. all the final 

states of AA(TS) have been removed or CAA(TS,T)/3 is empty, then any attack of T 
will be unsuccessful because it does not allow T to reach the final states it is interested 
in. Notice that this does not imply that T will not attempt to attack TS but rather that 
these attacks do not allow T to reach its goals. Hence, the assessment may neglect T.  
Obviously, the assessment terminates if no threat can implement a successful attack 
against TS.  
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Figure 2.  A subset of an attack automaton 

 
Consider, as an example, the poset in Fig. 1b) and a threat T that can access a 

know how corresponding to element (OS deep, PL low)  of the poset. Furthermore, let 
AA(TS) include the states represented in Fig. 2 that also shows all and only the 
transactions among the considered states. C, E and G are the final states that enable, 
respectively, the control of  R1, R2 and R3.  If T is not interested in controlling R2, 
then both E and D do not belong to CAA(TS,T) because T is not interested in the 
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C 

D E 

F G 



resources in Rcs(E) while D leads to E only. Furthermore, these states do not belongs 
to CAA(TS,T) also if T cannot access the resources to implement the attack a1 paired 
with the transaction from B to D. As an example, this happens if the attack requires an 
amount of resource corresponding to the maximum of the poset in Fig. 1.b.  If T cannot 
implement a2, paired with the transaction from A to B, then all the states in Fig. 2 are 
eliminated when transforming AA(TS) into CAA(TS, T). 

2.2.2.  Automaton Associated with the Target System 

CAA(TS), the constrained attack automaton associated with TS, is produced by 
merging the constrained automata CAA(TS, T) for any threat T. This implies that a 
state st of AA(TS) belongs to CAA(TS) iff there is at least one threat T such that st 
belongs to CAA(TS,T). In the same way, a transaction tr of AA(TS) belongs to 
CAA(TS) only if it belongs to CAA(TS,T) for some T.   

 
Consider again the automaton described in Fig. 2 and assume that T1 can 

implement the attacks a2 and a3 from A to C, while T2 can implement these attacks as 
well as a1 and a2 from A to E. Lastly, no threat can implement the attack a5 from F to 
G. Fig. 3 shows CAA(TS, T1), CAA(TS, T2) and CAA(TS). 

 
CAA(TS) describes the attacks that can be successfully implemented taking into 

account the threats, the elementary attacks, the risk aversion of each threat, the 
resources each attack requires and those available to a threat. This is the minimal attack 
automaton to be considered by the assessment because no transition or no state may 
removed from the automaton without losing information on attacks that may occur. 

3.  Risk Mitigation 

 This step introduces a set of countermeasure for the attacks modeled by CAA(TS). 
We do not detail what a countermeasure is, in general, it is any security mechanism or 
policy that can prevent the successful implementation of an attack. It may consist in  

• a new component that replaces one where a vulnerability has been detected, 
• a set of checks to discover an attack and prevent it successful execution, 
• a new component that prevents the threat from exploiting the vulnerability.  
 
Countermeasures introduce a further constraint on the attacks paired by the same 

label because they are modelled as instances of the same attack, namely the existence 
of at least one countermeasure that prevents all the attacks and that can applied to any 
component affected by the vulnerability. If such a countermeasure does not exist, then 
the attacks are not instances of the same one and the analysis should be repeated after 

• splitting the attacks paired with the same label into disjoint subsets and  
• pairing each subset with a distinct label.  

 
As any other component, a countermeasure may be unsuccessful because of static or 
dynamic faults. To take suh a failure into account, redundancy can be introduced to 
further increase system robustness. In the following, we consider independent 
countermeasures only, i.e. we assume that a failure in one countermeasure does not 
influence any other countermeasure.  
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Figure 3.  Constrained attack automata for distinct threats and the resulting automaton 

3.1. Constrained Attack Automata and Countermeasures 

To model risk mitigation, that is the application of countermeasures, or defensive 
actions [12, 23, 24], we remove from a constrained attack automata the transitions 
paired with attacks prevented by the countermeasures.  This section is focused on static 
countermeasures, defined as those that remove a vulnerability before attacks occur and 
that stop any attack occurring after the risk mitigation step. As defined in the next 
section, a dynamic countermeasures can be applied as the attack is going on only.   

 
Consider an attack a1 associated with a transition of CAA(TS), if can  apply a 

countermeasure for a1., no threat can successfully execute a1 against c, hence < s1, s2, 
a1, c> for any s1 and s2, cannot belong to CAA(TS). Let Acm(CAA(TS)) be the set of 
pairs < a1,c> such that the countermeasure for a1 has been applied to c. We are 
interested in a complete set of countermeasures Cocm(CAA(TS)), or in the critical set of 
attacks [12, 23, 24, 34], that is in a set of pairs such that after removing the 
corresponding transactions, CAA(TS) cannot reach any final state. A set of 
countermeasure is minimal if it is complete and none of its subset is complete.  
In the following we denote by Cocm(TS) a complete set of countermeasure and neglect 
it depends upon CAA(TS). To characterize Cocm(TS), we consider AG(TS), the 
labelled directed graph that describes the automaton of CAA(TS). AG(TS) includes a 
distinct node n(s) for each state s of AG(TS). If s is an initial (final) state, then n(s) is 
an initial (final) node of the graph. Furthermore, AG(TS) includes a arc from n(s1) to 
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n(s2) labeled by <a, c> if < s1, s2, a, c>  belongs to CAA(TS). AG(TS) is acyclic 
because CAA(TS) is acyclic and it includes at least one path from an initial node to a 
final one because if no such path exists, then no countermeasure is required. 
 
We recall that a set of arc CS(G) of a graph G is a cut set of G if, by removing all the 
arcs in S, no final node can be reached. A cut set is minimal if none of its subsets is a 
cut set. Since any set of countermeasures Cocm(TS) removes from AG(TS) all the arcs 
in A(Cocm(TS)) labeled by elements in Cocm(TS). We have that  

• Cocm(TS)  is complete  iff  A(Cocm(TS) ) is a cut set of AG(TS) 
• Cocm(TS) is minimal  iff  A(Cocm(TS)) is a minimal cut set of AG(TS). 
 
 In the graph in Fig.4, where A and H are the initial states and C, E and G the final 

ones, the set of countermeasures for <a1, c1> and <a1, c2> is a complete one because 
by removing the corresponding arcs, no final state can be reached. It is not minimal 
because the property holds even if we do not remove the arc <a1,c2>. Another 
complete, but not minimal, set includes the countermeasures for  <a2,c3>,<a3,c4>, 
<a1,c2>. The set of countermeasures for <a1,c2>, <a3,c4>, <a3,c3> defines a minimal 
and complete set for the graph in Fig.5,  because none of its subset is a cut set. A 
further complete and minimal set includes the countermeasures for <a3,c3> and <a1,c1>. 
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Figure 5. Complete and minimal sets of countermeasures. 
 

A complete set of countermeasure prevents the successful execution of any attack 
because no final state can be reached after removing the elementary attacks prevented 
by the countermeasures. A set of countermeasures is minimal if one final state can be 
reached if any of its countermeasures is not applied. Notice that a minimal set of 
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countermeasure does not define, in general, a minimal cut set of the attack graph 
because any time we introduce a countermeasure for an attack labeled by la and apply 
it to a component c, this removes all the arcs labeled <la,c>. Only if the set of 
countermeasure is optimal, the cut set is a minimal one.  

 
In terms of the automaton, we have that a set of countermeasures is complete if for 

final state and any path, the set include at least one transition on the path.  
 
Another important notion is that of redundant set of countermeasures. Such set 

may include several countermeasures to take into account that some of them could fail 
because of errors or fault in the implementation of the countermeasure. A set of 
countermeasure is k-redundant if can prevent any successful attack even if at most k of 
its countermeasures fail. As an example, a set of countermeasures is  2-redundant if it 
prevents any successful attack even if no more of two countermeasures fail. The set of 
countermeasure previously considered is a 0-redundant set. Since the failure of a 
countermeasure may be described as an arc that has not been removed from AG(TS), a 
k-redundant set of countermeasure can be defined as the union of k pairwise disjoint 
cut sets of AG(TS) so that if one arc is not removed because of the failure of a 
countermeasure, other countermeasures can stop the threat.  

 
In a more formal setting, a k-redundant set of countermeasures is the union of 

CM1, … CMk, where for any 1≤i, j≤k 
• Cmi is a complete set of countermeasures 
• CMi∩CMj=∅. 
 
To prove this consider that in the most general, and severe, graph all the arcs are 

labeled by a distinct pair <a, c> and no arcs on distinct paths from an initial state to a 
final one have the same label. A complete, and minimal, set of countermeasure CS can 
be defined by considering an arc <a,c> for each path and by including in CS a 
countermeasure for <a,c>.  If an arc belongs to two sets of countermeasure, a final 
state can be reached if the corresponding countermeasure fails, hence the two sets do 
not define a k-redundant set for any k≠0. Hence, in general, an intersection between 
two sets of countermeasures reduces by one the degree of redundancy. As a 
consequence, a k-redundant set can be defined only if each path from an initial state to 
a final one includes at least k arcs with distinct labels. Shorter path prevents the 
definition of a k-redundant set because all the countermeasures for the attacks 
corresponding to the labels on the path may fail.  

3.2.  Dynamic Countermeasures 

We consider now dynamic countermeasures, that is countermeasures that do not 
remove the vulnerability but try to prevent the evolution of the target system TS into a 
state where the threat achieve it goals. These countermeasures can be modeled as a set 
of actions to be executed to defend TS upon discovering that it has entered a given 
state. We assume the actions are executed by a defender that is by the system owner to 
prevent an attacker to control TS. As a consequence, the overall situation can be 
modeled by an automaton where some transitions occur because of an elementary 
attack, while other transitions are due to the defender actions. Obviously, the goal of 



threat is a sequence of transitions ending in a final state of the automaton, that of the 
defender is a sequence of transitions that returns TS to an initial state or at least that 
prevents TS from reaching a final state. Notice that some state can be paired with no 
action of the defender. This models the case where the defender has no visibility of the 
state, i.e. the defenders cannot know that TS has entered into the corresponding state. 
Notice that a state can be paired with a defender action provided that it is not a final 
one because final states model the success of the attack. 

 
An interactive automaton describes the results of the actions of the attacker, i.e. of 

the threat, and of those of the defender. To define the automaton, we have to specify 
the sequence of elementary attacks to be executed starting from an initial state, the 
equivalence relation among states and the defender actions for the various classes. At 
each step, we consider the current state of the automata cs and the next elementary 
attack, ea, the first action of the attacker sequence of actions still to be considered. The 
actions of the attacker or of the defender are defined a priori, independently of the those 
of the opponent. The following rule is applied: 

• if cs is not paired with an action of the defender, then ea is applied. This 
consumes the action, i.e. the action following ea in the sequence is considered 

• if cs is paired with an action ad of the defender, then the automaton chooses in 
a nondeterministic way whether to execute ad or ea. If it chooses ea, then it 
enters a state where a distinct defender action will be considered. If, instead, it 
chooses ad, then ea is not consumed and it may be executed in the next state. 

 
A further case is the one where the action of the attacker depends upon the 

considered state of the automaton. Now, the attacker actions are not known in advance 
because the i-th action depends upon the i-th state of the automaton. In this case: 

• the attacker actions are a function of the state that has been reached by the 
automaton, an empty action is possible 

• the defender actions may be specified for each state. An empty action is paired 
with a state that is no visible to the defender and with other states as well. 

• in each state that specifies both an attacker action and a defender, a 
nondeterministic choice occurs 

• for each initial state there is at least one sequence of attacker actions that leads 
the automaton in a final state 

• in any initial or final state no action of the defender is possible. 
 
Because of nondeterminism, the execution of the automaton may terminate in a set 

of states. The following cases may occur: 
a) any state is a final one: this denotes a complete success of the attacker, 
b) any state is an initial one: this denotes a complete success of the defender, 
c) at least one state is final: this will be considered as a success of the attacker, 
d) no set is final and at least one is initial: this will be considered as a partial 

success of the defender. 
 

In case a), the actions of the defenders are ineffective because only final states are 
reached. The reverse is true in case b) because the target system is restored into a 
correct state. Case c) is the most interesting one where either a success or a failure of 
the attacks is possible according to the timing of the action. The last case is the most 



ambiguous one because the target system is left in a state that is not correct and where 
new attacks can be more effective.  

 
Consider now an automaton where the execution ends in a set of states including at 

least one final state fs. We say that a state s is critical if an execution reaches fs because 
of a choice done in s.  A state s belongs to cs(fs), the critical set of a final state fs, if it is 
critical for at least one attack sequence. The critical set points out the states where the 
choice of the action to be executed influences the final results.  

In order to automatize such analysis, we plan to model it as a module checking 
problem and apply the formal techniques for checking the behavior of systems in 
presence of several uncertain environments as specified in [12]. Ideally, we could 
model each environment (attacker) that induces an outcome of its interactions on the 
system (defender). With such techniques we can check all the possible outcomes 
(attacks vs countermeasures).  

4. Conclusion 

This work has presented some tools to support a formal approach to risk 
assessment. In particular, we have considered attack automata that support the 
modelling of complex attacks as alternative sequences of elementary attacks against a 
system component. To determine the attacks that can be actually be executed, posets 
are defined to evaluate the resources a threat can access and to compare these resources 
against those required to implement the attack. In this way, the automata that describe 
the attack against the considered target system can be simplified by removing those 
attacks that no threat can execute.  

The adoption of static countermeasures can be formally described in terms of a cut 
set of a graph that describes the attack automaton. Dynamic countermeasures can be 
described as further state transitions besides those modeling elementary attacks.  

 
The main problem still to be considered is the probability that an attack occurs and 

the corresponding risk. A correct evaluation of this probability requires the availability 
of information about the history of the system and not only formal tools for the 
assessment. 
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