
Constrained Automata: a Formal Tool for
ICT Risk Assessment

F.Baiardi a, F.Martinellib, L.Riccia, C.Telmona
aDipartimento di Informatica, Università di Pisa, Italy

bIstituto di Informatica e Telecomunicazioni, CNR, Pisa, Italy

Abstract Conditional security assesses the security of an ICT system in a specifc
context. A fundamental step of this assessment determines the threats that can
implement an attack against the system. Constrained attack automata are finite
state automata to formally conducting this step by decomposing complex attacks
into a sequences of elementary attacks. Each state of the automata corresponds to a
set of resources controlled by the attacker while a while final states correspond to
the success of a sequence of attacks so that one threat has reached one of its goals.
Each transition is paired with some constrains on the amount of computational
resources, the skills and the knowledge required to implement the elementary
attack. To exploit these automata, each threat is modeled in terms of the amount of
computational resources, skills and knowledge that it has available and this
amount is modelled as a tuple of elements of partially ordered sets. By comparing
the amount of resources a threat can access against that required by an attack, we
can determine if there is at least one threat that can implement the attack and
available countermeasures. We also consider risk mitigation the application of a
set of static countermeasures or of dynamic ones. A static countermeasure prevents
a threat from exploiting a vulnerability and it is modeled by removing some
automata transitions. Lastly, we discuss redundant countermeasures and how
constrained attack automata can model dynamic countermeasures, i.e. actions that
are executed as the attack is going on to stop the attack itself.

Keywords. Attack, state automata, threats, countermeasure, redundancy

Introduction

While a large amount of attention has been paid to formal models for
unconditionally security, i.e. the ability of a system or of a component to withstand any
attack, less attention has been paid to conditional security, i.e. to evaluate whether a
system can withstand the attacks that can occur in a given context only [4-6, 14, 25, 26,
29, 33]. The goal of conditional security is a better return on the investment, roi,
because it is focused only on the attacks that may occur in the considered context.
From an operational point of view, the evaluation of conditional security corresponds
to the risk assessment of the target system TS. This assessment should determine:

1. the vulnerabilities of the target system [1, 2, 15, 17, 22],
2. the attacks enabled by these vulnerabilities,
3. the threats that can implement these attacks in the considered context,
4. the attacks that may occur in the context,

5. the impact of attacks, i.e. the losses due to successful attacks,
6. the countermeasures that may be adopted either to prevent the success of an

attack or to reduce the impact of successful attacks.

A threat is a source of attacks: physical events such a storm or a flooding, legal or

illegal users of the system are a few examples of possible threats that results in distinct
attacks to the system. However, in the following we neglect all attacks due to physical
events and focus on those implemented by human beings. An important step of the
assessment determines the possible threats, together with the resources available to
each threat, in the considered context. We use resources in a fairly broad sense ranging
from computational resources to skills or information on the system architecture. Step
d) of the assessment merges the information about the threats and the attacks to define
the attacks that may occur in the context. The last step of the assessment, risk
mitigation, chooses a set of countermeasures, i.e. mechanisms and policies, to either
prevent some attacks or to minimize their impacts on the target system. To achieve a
satisfactory roi, the countermeasures are defined with reference to the attacks returned
by step d) only, the only ones that may be successful in the considered context.

The matching of threats with the attacks they can implement against TS is one of

the focuses of this paper, that introduces constrained attack automata as formal tool to
support the matching. A constrained automaton CA(TS, T) is a finite state automaton
that models the attacks that can be implemented by the threat T against TS as a
sequence of state transitions, each corresponding to a elementary attack. With respect
to traditional automata, constrained automata take into account the resources an attack
requires, so that a state transition occurs if and only if T can access the resource to
implement the corresponding elementary attack. To define CA(TS, T), T is modelled in
terms of the goals it is trying to achieve, of the resources it can control as well as of
risk aversion, i.e. the attitude of T with respect to possible prosecution. To this purpose,
we introduce a distinct poset P(Kr) for each kind Kr of resources that attacks require.
The elements of P(Kr) represents distinct levels of availability of Kr. Hence, n distinct
kinds of resources are modelled by n posets P(Kr1), …, P(Krn) and a threat T will be
modelled as a tuple <ra1, …, ran>, where each rai belongs to P(Kri). An elementary
attack A is modelled in terms of posets too because it is represented by a tuple <rr1, …,
rrn> where each rri belongs to P(Kri) and it defines the amount of the resource that is
required to implement A. A threat T can implement the attack A only if each value of
<ra1, …, ran>is not smaller than the corresponding one of <rr1, …, rrn>. n is fixed for
the assessment and it depends upon the detail level of the assessment.

We model the goals of a threat T as a subset SR(T) of the resources of TS. In this

way, we can deduce the attacks T is interested in because each successful attack
enables T to control a subset of the resources of TS. In turn, this implies that each state
S of the automata may be mapped into the resources R(S) that a threat control after
executing the attacks leading to S. Hence, T is interested in executing the attacks
leading to state S only if interested in controlling R(Fs), that is if R(Fs) ⊆ SR(T).

Sect. 1 discusses the modeling of threats and of elementary attacks in terms of the

resources they, respectively, control and require. Attack automata and constrained
attack automata are introduced in Sect. 2. The risk mitigation step and the definition of
attack countermeasure is discussed in Sect. 3. Each countermeasure may consist in a

new component or in a control that prevents the success of an elementary attack. This
section formally defines the notion of a complete set of countermeasures i.e. a set of
countermeasures that can stop any attack against the target system. Formally, the
definition of a complete set of countermeasures for a constrained attack automaton
prevent some transitions in the automata and it may be described as a cut set of a graph
defined in terms of the automaton. Lastly, we define a k-redundant set of
countermeasures, where k>1, defined a set of countermeasures that can prevent an
attack even if at most k of its controls are faulty.

The notion of constrained attack automaton is inspired to that of attack graph [1, 9,

12, 16, 18, 23, 24, 27, 30, 34, 35] and several concepts are similar in the two
frameworks. The main difference is that automata do explicitly model the order in
which elementary attacks are executed while a graph may state that some attacks are
required before a further one can be implemented but does not need to specify the
execution order of such attacks. From this point of view, attack graphs are similar to
And/Or attack tree [9, 17, 28] because they define the decomposition of complex
attacks into elementary ones without constraining the execution order of elementary
attacks. From our point of view, the order of attacks is important when defining the
countermeasure of attacks. As attack graphs, attack automata may be exploited both in
the planning of attacks or of countermeasures as well as in the analysis of information
returned by a set of sensors to discover attacks that are currently going on against the
system [7, 10, 11, 14, 20, 21, 26]. However, attack graphs have never been considered
in the framework of modelling resources available to the various threats [33].

1. Modelling Threats and Elementary Attacks through Posets

This section discusses the modelling of elementary attacks and threats as tuples of
elements of a poset. The model does not fix the number of elements in a tuple because
it depends upon both the considered assessment and the detail level of the assessment.
We discuss at first the modelling of threats in terms of poset and then the modelling of
attacks. In the following, we neglect threats such as a flooding or an earthquake.

1.1. Threat Modelling

A threat can successfully implement an attack provided that it can access the
resources the attack requires and it is willing to accept the risk of being discovered.
Each feature may be modelled in terms of a partially ordered set, a set of elements and
a partial order among the elements. In the following, the poset <SA, <sa > and the
poset <SR, <sr > describe, respectively, the resources available and the risk aversion of
the threats. In security, posets have been often be applied to model access rights [4].

At first, we consider SA and <sa . Any element of SA corresponds to a distinct

amount of resources. If a1 and a2 belong to SA and a1 <sa a2, then the amount of
resources modelled by a1 is smaller than the one modelled by a2. Smaller means that it
can be collected more easily or, from another point of view, that is available to a larger
number of people. The adoption of partial order make it possible to consider also cases
where some of the elements cannot be compared. As an example, this happens if the

resources are skills and abilities. Two attacks could require, respectively, skills and
abilities in distinct languages and ordering these skills and abilities is not only rather
complex but also inappropriate.

Each element of SR corresponds to a risk the threat is willing to accept. An

element of SR is larger than another if it corresponds to the acceptance of a larger risk.
In other word, if two threats are paired with, respectively, r1 and r2 and r1 <sr r2, then
the threat paired with r2 is willing to accept a risk larger than the other one when
executing an attack.

In general, one poset does not support an accurate evaluation of the resources

available to a threat. The accuracy increases if distinct kinds of resources are modelled
through distinct posets. Hence, in the most general case, each threat T will be
characterized by a tuple Tu(T) of n, n>1, values. The first n-1 values of Tu(T) describe
the resources T can exploit in its attack, while the last one describes the attitude of T
towards risk. Larger values of this element model larger risks T is willing to accept.

Suppose, as an example, attacks against an application written in a language PL
and running on an operative system OS. In a first, simple, case, we can model the
knowledge required by an attack through the four elements poset shown in Fig. 1a. If a
more detailed modelling is required, then we can adopt the poset Fig. 1.b that
distinguish among distinct levels of knowledge of either or both topics. An even more
complex solution adopts two posets to model the two know hows.

A further issue to be considering when modelling a threat T is the goals of T. In

the following we assume that each goal corresponds to a distinct subset of the resources
of the target system. In the most general case, the resource available to a threat and the
risk aversion of the threat are a function of its goals. If T has several alternative goals,
then resource availability and risk aversion change according to the goals. Therefore, in
the following we decompose T into a set of “virtual” threats, each with just one goal,
that is one of the goals of T. To interpreter the results of the assessment for T, we
merge all the results for the virtual threats resulting from the decomposition of T. In the
following, threat denotes a virtual threat.

2.2 Attack Modelling

The first step of attack modelling decomposes each attack into one or more sequences
of elementary attacks. An elementary attack does not need to be further decomposed
because it involves the application of just one exploit. The decomposition will be
described in more details in the next section. Here we are interested in the description
of an elementary attack in terms of both the resources it requires implement and the
corresponding risk. An elementary attack is modelled in the same way of a threat, that
is through a tuple of values, one for each poset. All the considerations for threats
applies to attacks as well. Notice that each poset should include all the elements
required to model both any attack and any threat. Hence, the definition of a poset
should consider both all the threats and all the elementary attacks. In turns, this implies
that an iterative refinement of the posets may be required as new attacks and/or new
threats are taken into account.

know-how on both PL and OS

knowhow on PL know-how on OS

 no know how

a) A poset modelling the know-how of a threat

OS: deep know-how

PL: deep know-how

OS: deep know-how PL: deep know-how

 PL: low know-how OS: low know-how

 OS: low know-how PL: low know how

 no know how

b) A more detailed modelling the know-how of a threat

Figure 1 Alternative posets to model a threat

Let us assume that the elementary attack ea and the threat t are paired, respectively,
with the tuples resreq(ea) and resav(t). The attack ea is feasible for T if and only if
each element of resreq(a) no larger than to the corresponding element of resav(T).
The notion of feasible attack for a threat resumes the constrains on the resources
required to successfully implement an attack. In the following we assume that the
resources used for an elementary attacks may be reused for a further elementary attack.

2. Attack Automata and Constrained Attack Automata

This section introduces the notion of attack automata that describes one or more
complex attacks, i.e. one or more sequences of elementary attacks, against the target

system. Then, the notion of attack automaton evolves into that of constrained attack
automaton. While an attack automaton is always associated with a target system, two
kinds of constrained automata will be introduced that are associated with, respectively,
a single threat and the target system.

2.1. Attack Automata

An attack automaton AA(TS) is a, nondeterministic or deterministic, finite state
machine that models attacks of any complexity against the system TS. To this purpose:

a) each initial state of the machine corresponds to a state of TS where no attack has
been executed yet,

b) each state fs of the machine corresponds a set of resources controlled by an
attacker, let such resources be denoted by rcs(fs),

c) each elementary attack at is paired with a unique label la(at) and each
component c with a unique label la(c) so that each transaction is paired with a
pair of labels to describe the attack and the component that is attack target ,

d) if la is the label of the attack att(la) then resreq(la) is the n-tuple that describes
the resources to implement att(la),

e) if there is a transition from a state s1 to a state s2 then rcs(s1)⊆rcs(s2) because
each attack cannot decrease the number of resources controlled by the attacker.
This corresponds to the monotic property of attack graphs [34].

The mapping of each state into the resources the threat controls is a generalization

of [8] that pairs states and access privileges. A complex attack that results in the
control of a set SR of resources by the attacker is described as a sequence of transitions
from an initial state to the one corresponding to the control of resources in SR. By
pairing each transition with both an attack and a component, automata can easily model
instances of the same attack against distinct components because they will be
associated with the same attack label. In general, two attacks are instances of the same
one if they exploit the same vulnerability and the same attack mechanisms in distinct
instances of the same components. The existence of a label for the component allows
us to model cases where vulnerabilities has been removed from some but not all the
instances of the components used in the target system. This simplifies the analysis with
respect the case where a transaction is labelled by a vulnerability only.

Formally, an attack automaton is a tuple <S, Is, Fs, Al, Co, Tr, Rcs > where

i) S is the set of the states,
ii) Is is the set of inital states , Is⊆S,
iii) Fs is the set of final states, Fs ⊆S, Is ∩Fs =Ø,
iv) Al is the set of attack labels,
v) Co is the set of component labels,
vi) Tr is the set of transitions, Tr⊆S × S ×Al×Co,
vii) Rcs maps a state into the resources controlled by the attacker. It satisfies a non

decreasing condition so that for <s1,s2, a, c> ∈ Tr then rcs(s1)⊆rcs(s2).

Tr is different from S × S ×Al×Co because an attack may be ineffective in some

state. Initial and final states of the automata are disjoint because in an initial state a

threat cannot control the resources it is interested in. Alternative distinct initial states
support the modelling of attacks of distinct threats. Consider, as an example, an attack
of a user of the target system, i.e. to increase the available privileges, vs the attack of
someone that does not have an account on the target system. The two attacks begin in
distinct states of the target system. In the following, we denote the I-th element of
AA(TS) by AA(TS)/i , i∈ 1..7.

An important property of attack automata is that they are acyclic, i.e. a sequence of

transition cannot visit the same state twice or a sequence of attacks cannot lead to one
of the states that has already been visited. If we consider that each automaton state
corresponds to a set of resources controlled by the attacker, any cycle includes at least
one useless attack that cannot increase the resources the threat already controls.

As already recalled, AA(TS) describes all the attacks against TS, independently of

the existence of a threat that can implement them. The next section describes how to
simplify the automaton when considering the resources available to threats.

2.2. Constrained Attack Automata

 This section introduces a two steps procedure to build the automaton that
describes all the attacks of a given set of threats against the target system. The first step
builds, for each threat, an automaton describing all the attacks the threat can
implement. Then, the second step merges all these automata into a single one.

2.2.1. Automaton associated with a Threat

CAA(TS, T), the constrained attack automaton associated with TS and with a

threat T, is an attack automaton that describes the attacks T can implement against TS
only. CAA(TS,T) is a subset of AA(TS) because it has the same number of elements of
AA(TS,T) and each element of CAA(TS,T) is included in the corresponding one of
AA(TS, T). The transformation of AA(TS) into CAA(TS, T) removes
1. the states T cannot reach or is not interested in reaching
2. the transitions that cannot occur because T cannot implement the corresponding

attacks due to resource constrains.

Let us consider, at first, the states removed from AA(TS). They are removed in a

forward step and in a backward one. The forward step removes from AA(TS) all the
initial states that T cannot use to begin an attack and all those that can be reached from
a previously removed state only. Then, the backward step removes all the final states
that do not correspond to any goal of T and all the states that leads to these states only.

To formally define this, we introduce two sets, Ri and Rf, that include, respectively, the
initial states of AA(TS) that T cannot use and the final states that T is not interested in
reaching. Then, we remove
1. the states in Ri ∪Rf from the states in AA(TS)/1,
2. the states in Ri from those in AA(TS)/2,
3. the states in Rf from those in AA(TS)/3.

We recursively remove now any state that either cannot longer be reached from the
states in AA(TS)/2-Ri or that does no lead to a final state.

We now remove from AA(TS) the transitions corresponding to attacks requiring

resources not available to T. T can implement any attack corresponding to the
transition <s1, s2, la, c> only if any element of resreq(la) is not larger than the
corresponding element of resav(T). Any transaction violating this condition
corresponds to an attack not feasible for T that should removed from AA(TS) together
with all the states that cannot be reached from the initial states and those that do no
leads to a final state. Any remaining state can be reached because T can

• starts any of its attacks in any initial state
• implement any attack corresponding to a transaction of CAA(TS,T).

Furthermore, each state that is not final leads to at least one final state.

In a more formal setting, the constrains on the resources available to, and the risk

aversion of, T define a subset of attack labels to be removed from AA(TS)/4 and of
transactions with such labels to be removed from AA(TS)/7. Then, any state that either
is unreachable or does not lead to a final state is removed from AA(TS)/1 and
AA(TS)/3.

If CAA(TS,T) does not include at least one final state of AA(TS), i.e. all the final

states of AA(TS) have been removed or CAA(TS,T)/3 is empty, then any attack of T
will be unsuccessful because it does not allow T to reach the final states it is interested
in. Notice that this does not imply that T will not attempt to attack TS but rather that
these attacks do not allow T to reach its goals. Hence, the assessment may neglect T.
Obviously, the assessment terminates if no threat can implement a successful attack
against TS.

 <a3,d>

 <a2,d>

 <a2, f>

 <a1, c>

 <a4,f>
 <a5, q>

Figure 2. A subset of an attack automaton

Consider, as an example, the poset in Fig. 1b) and a threat T that can access a

know how corresponding to element (OS deep, PL low) of the poset. Furthermore, let
AA(TS) include the states represented in Fig. 2 that also shows all and only the
transactions among the considered states. C, E and G are the final states that enable,
respectively, the control of R1, R2 and R3. If T is not interested in controlling R2,
then both E and D do not belong to CAA(TS,T) because T is not interested in the

A B

C

D E

F G

resources in Rcs(E) while D leads to E only. Furthermore, these states do not belongs
to CAA(TS,T) also if T cannot access the resources to implement the attack a1 paired
with the transaction from B to D. As an example, this happens if the attack requires an
amount of resource corresponding to the maximum of the poset in Fig. 1.b. If T cannot
implement a2, paired with the transaction from A to B, then all the states in Fig. 2 are
eliminated when transforming AA(TS) into CAA(TS, T).

2.2.2. Automaton Associated with the Target System

CAA(TS), the constrained attack automaton associated with TS, is produced by
merging the constrained automata CAA(TS, T) for any threat T. This implies that a
state st of AA(TS) belongs to CAA(TS) iff there is at least one threat T such that st
belongs to CAA(TS,T). In the same way, a transaction tr of AA(TS) belongs to
CAA(TS) only if it belongs to CAA(TS,T) for some T.

Consider again the automaton described in Fig. 2 and assume that T1 can

implement the attacks a2 and a3 from A to C, while T2 can implement these attacks as
well as a1 and a2 from A to E. Lastly, no threat can implement the attack a5 from F to
G. Fig. 3 shows CAA(TS, T1), CAA(TS, T2) and CAA(TS).

CAA(TS) describes the attacks that can be successfully implemented taking into

account the threats, the elementary attacks, the risk aversion of each threat, the
resources each attack requires and those available to a threat. This is the minimal attack
automaton to be considered by the assessment because no transition or no state may
removed from the automaton without losing information on attacks that may occur.

3. Risk Mitigation

 This step introduces a set of countermeasure for the attacks modeled by CAA(TS).
We do not detail what a countermeasure is, in general, it is any security mechanism or
policy that can prevent the successful implementation of an attack. It may consist in

• a new component that replaces one where a vulnerability has been detected,
• a set of checks to discover an attack and prevent it successful execution,
• a new component that prevents the threat from exploiting the vulnerability.

Countermeasures introduce a further constraint on the attacks paired by the same

label because they are modelled as instances of the same attack, namely the existence
of at least one countermeasure that prevents all the attacks and that can applied to any
component affected by the vulnerability. If such a countermeasure does not exist, then
the attacks are not instances of the same one and the analysis should be repeated after

• splitting the attacks paired with the same label into disjoint subsets and
• pairing each subset with a distinct label.

As any other component, a countermeasure may be unsuccessful because of static or
dynamic faults. To take suh a failure into account, redundancy can be introduced to
further increase system robustness. In the following, we consider independent
countermeasures only, i.e. we assume that a failure in one countermeasure does not
influence any other countermeasure.

 <a3,d>

 <a2,d>

a) CAA(TS, T1)

 <a2,d> <a3,d>

 <a1, c> <a2, f>

b) CAA(TS, T2)

 <a2,d> <a3,d>

 <a1, c> <a2, f>

c) CAA(TS)

Figure 3. Constrained attack automata for distinct threats and the resulting automaton

3.1. Constrained Attack Automata and Countermeasures

To model risk mitigation, that is the application of countermeasures, or defensive
actions [12, 23, 24], we remove from a constrained attack automata the transitions
paired with attacks prevented by the countermeasures. This section is focused on static
countermeasures, defined as those that remove a vulnerability before attacks occur and
that stop any attack occurring after the risk mitigation step. As defined in the next
section, a dynamic countermeasures can be applied as the attack is going on only.

Consider an attack a1 associated with a transition of CAA(TS), if can apply a

countermeasure for a1., no threat can successfully execute a1 against c, hence < s1, s2,
a1, c> for any s1 and s2, cannot belong to CAA(TS). Let Acm(CAA(TS)) be the set of
pairs < a1,c> such that the countermeasure for a1 has been applied to c. We are
interested in a complete set of countermeasures Cocm(CAA(TS)), or in the critical set of
attacks [12, 23, 24, 34], that is in a set of pairs such that after removing the
corresponding transactions, CAA(TS) cannot reach any final state. A set of
countermeasure is minimal if it is complete and none of its subset is complete.
In the following we denote by Cocm(TS) a complete set of countermeasure and neglect
it depends upon CAA(TS). To characterize Cocm(TS), we consider AG(TS), the
labelled directed graph that describes the automaton of CAA(TS). AG(TS) includes a
distinct node n(s) for each state s of AG(TS). If s is an initial (final) state, then n(s) is
an initial (final) node of the graph. Furthermore, AG(TS) includes a arc from n(s1) to

A B

C

A B

C

D E

A B

C

D E

n(s2) labeled by <a, c> if < s1, s2, a, c> belongs to CAA(TS). AG(TS) is acyclic
because CAA(TS) is acyclic and it includes at least one path from an initial node to a
final one because if no such path exists, then no countermeasure is required.

We recall that a set of arc CS(G) of a graph G is a cut set of G if, by removing all the
arcs in S, no final node can be reached. A cut set is minimal if none of its subsets is a
cut set. Since any set of countermeasures Cocm(TS) removes from AG(TS) all the arcs
in A(Cocm(TS)) labeled by elements in Cocm(TS). We have that

• Cocm(TS) is complete iff A(Cocm(TS)) is a cut set of AG(TS)
• Cocm(TS) is minimal iff A(Cocm(TS)) is a minimal cut set of AG(TS).

 In the graph in Fig.4, where A and H are the initial states and C, E and G the final

ones, the set of countermeasures for <a1, c1> and <a1, c2> is a complete one because
by removing the corresponding arcs, no final state can be reached. It is not minimal
because the property holds even if we do not remove the arc <a1,c2>. Another
complete, but not minimal, set includes the countermeasures for <a2,c3>,<a3,c4>,
<a1,c2>. The set of countermeasures for <a1,c2>, <a3,c4>, <a3,c3> defines a minimal
and complete set for the graph in Fig.5, because none of its subset is a cut set. A
further complete and minimal set includes the countermeasures for <a3,c3> and <a1,c1>.

 Figure 4. A CAA(TS)

Figure 5. Complete and minimal sets of countermeasures.

A complete set of countermeasure prevents the successful execution of any attack
because no final state can be reached after removing the elementary attacks prevented
by the countermeasures. A set of countermeasures is minimal if one final state can be
reached if any of its countermeasures is not applied. Notice that a minimal set of

<a1, c1>

<a1, c2>

<a1, c1>

<a1, c2>

<a2, c>2 <a3, c4>

<a3, c3>

B

C

D E

A

F G
H

<a1, c1>

<a1, c4>

<a4, c1>

<a1, c2>

<a2, c2>

<a3, c3>

B

C

D E

F G
H

A
<a3, c4>

countermeasure does not define, in general, a minimal cut set of the attack graph
because any time we introduce a countermeasure for an attack labeled by la and apply
it to a component c, this removes all the arcs labeled <la,c>. Only if the set of
countermeasure is optimal, the cut set is a minimal one.

In terms of the automaton, we have that a set of countermeasures is complete if for

final state and any path, the set include at least one transition on the path.

Another important notion is that of redundant set of countermeasures. Such set

may include several countermeasures to take into account that some of them could fail
because of errors or fault in the implementation of the countermeasure. A set of
countermeasure is k-redundant if can prevent any successful attack even if at most k of
its countermeasures fail. As an example, a set of countermeasures is 2-redundant if it
prevents any successful attack even if no more of two countermeasures fail. The set of
countermeasure previously considered is a 0-redundant set. Since the failure of a
countermeasure may be described as an arc that has not been removed from AG(TS), a
k-redundant set of countermeasure can be defined as the union of k pairwise disjoint
cut sets of AG(TS) so that if one arc is not removed because of the failure of a
countermeasure, other countermeasures can stop the threat.

In a more formal setting, a k-redundant set of countermeasures is the union of

CM1, … CMk, where for any 1≤i, j≤k
• Cmi is a complete set of countermeasures
• CMi∩CMj=∅.

To prove this consider that in the most general, and severe, graph all the arcs are

labeled by a distinct pair <a, c> and no arcs on distinct paths from an initial state to a
final one have the same label. A complete, and minimal, set of countermeasure CS can
be defined by considering an arc <a,c> for each path and by including in CS a
countermeasure for <a,c>. If an arc belongs to two sets of countermeasure, a final
state can be reached if the corresponding countermeasure fails, hence the two sets do
not define a k-redundant set for any k≠0. Hence, in general, an intersection between
two sets of countermeasures reduces by one the degree of redundancy. As a
consequence, a k-redundant set can be defined only if each path from an initial state to
a final one includes at least k arcs with distinct labels. Shorter path prevents the
definition of a k-redundant set because all the countermeasures for the attacks
corresponding to the labels on the path may fail.

3.2. Dynamic Countermeasures

We consider now dynamic countermeasures, that is countermeasures that do not
remove the vulnerability but try to prevent the evolution of the target system TS into a
state where the threat achieve it goals. These countermeasures can be modeled as a set
of actions to be executed to defend TS upon discovering that it has entered a given
state. We assume the actions are executed by a defender that is by the system owner to
prevent an attacker to control TS. As a consequence, the overall situation can be
modeled by an automaton where some transitions occur because of an elementary
attack, while other transitions are due to the defender actions. Obviously, the goal of

threat is a sequence of transitions ending in a final state of the automaton, that of the
defender is a sequence of transitions that returns TS to an initial state or at least that
prevents TS from reaching a final state. Notice that some state can be paired with no
action of the defender. This models the case where the defender has no visibility of the
state, i.e. the defenders cannot know that TS has entered into the corresponding state.
Notice that a state can be paired with a defender action provided that it is not a final
one because final states model the success of the attack.

An interactive automaton describes the results of the actions of the attacker, i.e. of

the threat, and of those of the defender. To define the automaton, we have to specify
the sequence of elementary attacks to be executed starting from an initial state, the
equivalence relation among states and the defender actions for the various classes. At
each step, we consider the current state of the automata cs and the next elementary
attack, ea, the first action of the attacker sequence of actions still to be considered. The
actions of the attacker or of the defender are defined a priori, independently of the those
of the opponent. The following rule is applied:

• if cs is not paired with an action of the defender, then ea is applied. This
consumes the action, i.e. the action following ea in the sequence is considered

• if cs is paired with an action ad of the defender, then the automaton chooses in
a nondeterministic way whether to execute ad or ea. If it chooses ea, then it
enters a state where a distinct defender action will be considered. If, instead, it
chooses ad, then ea is not consumed and it may be executed in the next state.

A further case is the one where the action of the attacker depends upon the

considered state of the automaton. Now, the attacker actions are not known in advance
because the i-th action depends upon the i-th state of the automaton. In this case:

• the attacker actions are a function of the state that has been reached by the
automaton, an empty action is possible

• the defender actions may be specified for each state. An empty action is paired
with a state that is no visible to the defender and with other states as well.

• in each state that specifies both an attacker action and a defender, a
nondeterministic choice occurs

• for each initial state there is at least one sequence of attacker actions that leads
the automaton in a final state

• in any initial or final state no action of the defender is possible.

Because of nondeterminism, the execution of the automaton may terminate in a set

of states. The following cases may occur:
a) any state is a final one: this denotes a complete success of the attacker,
b) any state is an initial one: this denotes a complete success of the defender,
c) at least one state is final: this will be considered as a success of the attacker,
d) no set is final and at least one is initial: this will be considered as a partial

success of the defender.

In case a), the actions of the defenders are ineffective because only final states are
reached. The reverse is true in case b) because the target system is restored into a
correct state. Case c) is the most interesting one where either a success or a failure of
the attacks is possible according to the timing of the action. The last case is the most

ambiguous one because the target system is left in a state that is not correct and where
new attacks can be more effective.

Consider now an automaton where the execution ends in a set of states including at

least one final state fs. We say that a state s is critical if an execution reaches fs because
of a choice done in s. A state s belongs to cs(fs), the critical set of a final state fs, if it is
critical for at least one attack sequence. The critical set points out the states where the
choice of the action to be executed influences the final results.

In order to automatize such analysis, we plan to model it as a module checking
problem and apply the formal techniques for checking the behavior of systems in
presence of several uncertain environments as specified in [12]. Ideally, we could
model each environment (attacker) that induces an outcome of its interactions on the
system (defender). With such techniques we can check all the possible outcomes
(attacks vs countermeasures).

4. Conclusion

This work has presented some tools to support a formal approach to risk
assessment. In particular, we have considered attack automata that support the
modelling of complex attacks as alternative sequences of elementary attacks against a
system component. To determine the attacks that can be actually be executed, posets
are defined to evaluate the resources a threat can access and to compare these resources
against those required to implement the attack. In this way, the automata that describe
the attack against the considered target system can be simplified by removing those
attacks that no threat can execute.

The adoption of static countermeasures can be formally described in terms of a cut
set of a graph that describes the attack automaton. Dynamic countermeasures can be
described as further state transitions besides those modeling elementary attacks.

The main problem still to be considered is the probability that an attack occurs and

the corresponding risk. A correct evaluation of this probability requires the availability
of information about the history of the system and not only formal tools for the
assessment.

 References

[1] P. Ammann , D. Wijesekera , S. Kaushik, Scalable, Graph-based Network Vulnerability Analysis, 9th

ACM Conf. on Computer and Communications security, Nov. 18-22, 2002, Washington, DC, USA
[2] W. A. Arbaugh, W. L. Fithen, J. McHugh , Windows of Vulnerabilits: a Case Study Analysis, IEEE

Computer, December 2002, p.52 - 59.
[3] R. Baldwin, H.Kuang, Rule Based Security Checking, Technical Report, MIT Lab for Computer

Science, May 1994.
[4] M.Bishop, Computer Security, Addison Wesley, 2003.
[5] CC-project, Evaluation Methodology, Common Criteria for IT Security Evaluation”, CEM-99/045

Aug.1999.
[6] CC-project, User Guide. Common Criteria for IT Security Evaluation, Oct. 1999.
[7] F.Cuppens, A. Miège, Alert Correlation in a Cooperative Intrusion Detection Framework, 2002 IEEE

Symposium on Security and Privacy, p.202, May 12-15, 2002
[8] M.Dacier, Towards Quantitative Evaluation of Computer Security, Ph.D Thesis, Institute National

Polytechnique de Tolouse, Dec 1994

[9] J. Dawkins, C. Campbell, J. Hale, Modeling Network Attacks: Extending the Attack Tree Paradigm,
Workshop on Statistical and Machine Learning Techniques in Computer Intrusion Detection, Johns
Hopkins University, June 2002.

[10] C. W. Geib and R. P. Goldman, Plan Recognition in Intrusion Detection System, DARPA Information
Survivability Conference and Exposition (DISCEX II), June 2001.

[11] R. P. Goldman, W. Heimerdinger, and S. A. Harp. Information Modeling for Intrusion Report
Aggregation, DARPA Information Survivability Conference and Exposition (DISCEXII), June 2001.

[12] Orna Kupferman and Moshe Y. Vardi, Module Checking, 8th Int. Conference on Computer Aided
Verification, LNCS 1102, p. 75-86, 1997.

[13] S. Jajodia, S. Noel, B. O'Berry, Topological Analysis of Network Attack Vulnerability, Managing
Cyber Threats: Issues, Approaches and Challenges, Kluwer Academic Publisher, 2003.

[14] C. Lala, B. Panda, Evaluating damage from cyber attacks: a model and analysis, IEEE Transactions on
Systems, Man, and Cybernetics - Part A: Systems and Humans, vol 31 (4), July 2001, p.300- 310.

[15] U. Lindqvist, E. Jonsson, How to Systematically Classify Computer Security Intrusions, 1997 IEEE
Symposium on Security and Privacy, May 1997.

[16] K. Lye, J. Wing, Game strategies in network security, Foundations of Computer Security Workshop,
July 2002.

[17] R. A. Martin, Managing vulnerabilities in networked system, IEEE Computer, November 2001. p. 32 -
38.

[18] F. Moberg, Security Analysis of an Information System using an Attack Tree-based Methodology,
Master thesis, Chalmers University of Technology, 2000.

[19] P. Moore, R. J. Ellison, R. C. Linger, Attack Modelling for Information security and Survivability,
Technical note CMU/SEI- 2001-TN001.

[20] P. Ning , P.Cui , D. S. Reeves, “Constructing attack scenarios through correlation of intrusion alerts”,
Proc. of the 9th ACM conference on Computer and communications security, November 2002,
Washington, DC, USA.

[21] P. Ning, D. Xu, C. Healey, R. .St. Amant, Building Attack Scenarios through Integration of
Complementary Alert Correlation Methods, 11th Annual Network and Distributed System Security
Symposium, February, 2004.

[22] P. Ning, D. Xu, Hypothezing and Reasoning about Attacks Missed by IDSs, ACM Trans. On
Information System Security, Vol.7, No.4, Nov. 2004, pp. 591-627

[23] R.W. Ritchey , P. Ammann, Using Model Checking to Analyze Network Vulnerabilities, 2000 IEEE
Symposium on Security and Privacy, p.156, May 14-17, 2000.

[24] S. Jha, O. Sheyner, J. M. Wing. Minimization and Reliability Analyses of Attack Graphs. Technical
Report CMUCS-02-109, Carnegie Mellon University, February 2002.

[25] S. Jha , O. Sheyner , J. Wing, Two Formal Analysis of Attack Graphs, 15th IEEE Computer Security
Foundations Workshop ,p.49, June 24-26, 2002.

[26] C. Phillips, L. Painton Swiler, A graph-based system for network-vulnerability analysis, Workshop on
New Security Paradigms, p.71-79, September 22-26, 1998.

[27] X. Qin, W. Lee, Attack Plan Recognition and Prediction Using Causal Networks, 20th Annual
Computer Security Applications Conference pp. 370-379, 2004

[28] R. Ritchey , B. O'Berry, S. Noel, Representing TCP/IP Connectivity For Topological Analysis of
Network Security, 18th Annual Computer Security Applications Conference, p.25, Dec. 2002.

[29] B.Schneier, Attack Trees: Modeling Security Threats, Dr. Dobb’s Journal, December 1999.
[30] O. Sheyner , J. Haines , S. Jha , R. Lippmann , J. M. Wing, Automated Generation and Analysis of

Attack Graphs, IEEE Symposium on Security and Privacy, p.273, May 12-15, 2002 .
[31] O. M. Sheyner, Scenario Graphs and Attack Graphs, Ph.D. Thesis, CMU-CS-04-122, April 14, 2004.
[32] D. Smith, J. Frank, A.Jonsson, Bridging the Gap Between Planning and Scheduling, Knowledge

Engineering Review, 15(1), 2000.
[33] L.P. Swiler, C. Phillips, D. Ellis, S. Chakerian, Computer-Attack Graph Generation Tool DARPA

Information Survivability Conference & Exposition , June 2001.
[34] F.Swideriski, W.Snyder, Threat Modelling, Microsoft Press, 2003.
[35] S. J. Templeton , K. Levitt, A Requires/Provides Model for Computer Attacks, Workshop on New

security paradigms, p.31-38, September 2000,
[36] S. Tidwell, R. Larson, K. Fitch, J. Hale, Modeling Internet Attacks, IEEE Workshop of Information

Assurance and Security, June 2001.

