
Assessing the Risk of an Information Infrastructure

through Security Dependencies

F.Baiardi+, S.Suin+, C.Telmon+, M.Pioli*

(+)Dipartimento di Informatica, Università di Pisa
(*) Enel Distribuzione, ENEL

{f.baiardi, stefano}@.unipi.it

Abstract. We outline a framework for the risk assessment of information in-
frastructures that generalizes the notion of dependency with respect to at-
tributes such as confidentiality, integrity or availability. Dependencies are used
to model an infrastructure at distinct abstraction levels and to discover attack
strategies as well as risk mitigation plans. A plan is formulated in terms of set of
countermeasures because single countermeasures may be ineffective due to alter-
native threat attack strategies. We do not detail the assessment steps but show
how the proposed framework support their integration to define risk mitigation
plans. Lastly, we consider programming tools to support the assessment.

Keywords: risk assessment, mitigation plan, countermeasure, vulnerability, ranking

1 Introduction

A risk mitigation plan is the output of a risk assessment of an ICT, or information,
infrastructure [1, 3, 5, 6] that defines the countermeasures to be applied to reduce the
risk at an acceptable level for the owner. Risk is formally defined as the product of
the probability that a threat implements a successful attack and the corresponding
impact that is the damage due to the attack. If the vulnerabilities are known, then
each vulnerability V may be paired with the risk it introduces because of the attacks
it enables. The return of the investment to remove V [8, 16] is the difference between
this risk and the cost to remove V. The problem posed by this approach is that the
involved probabilities can be determined only if historical data about the infrastructure
is available. For most information infrastructures this is seldom the case. Furthermore,
to mitigate risk, several countermeasures have to be applied simultaneously because of
alternative attack strategies that compose simple attacks into more complex ones [2, 10,
14, 15]. Hence, the return of removing a single vulnerability cannot be easily estimated
and approximated strategies are adopted that return a ranking of vulnerabilities that
defines the order to remove them, i.e. to apply attack countermeasures [?].

We present an approximated risk assessment strategy for information infrastruc-
tures that ranks countermeasures to define risk mitigation plans. To define cost ef-
fective plans, the strategy ranks sets of countermeasures rather than single ones. The
framework describes an infrastructure as a set of interdependent components, each
defining a set of operations that read and update an internal state and that may be



invoked by a user subset. Three attributes for each component are introduced, namely
confidentiality, integrity and availability. Each attribute is controlled by invoking some
of the component operations. The relations among components are described through
dependencies [3, 9], each involving a set of source components, a destination one and a
security attribute for each component. The meaning is that the control of the attributes
of the source components implies that of the attribute of the destination one. The in-
frastructure is represented as a labeled hypergraph with a node for each component
and a hyperarc for each dependency.

Sect.2 of the paper defines the representations of the infrastructure, of attacks and
threats. Sect.3 considers countermeasures and it introduces minimal set of counter-
measures. Sect.4 defines the ranking of countermeasures and mitigation plans. Sect.5
introduces the notion of risk and Sect.6 discusses the development of programming
tool to assist the assessment. Important analyses such as the vulnerability or the im-
pact ones will not be described, as they require methodologies fully orthogonal to our
framework that only aims to integrate their results into a risk mitigation plan.

2 Modelling Infrastructures, Attacks and Threats

This section introduces the description of an infrastructure, of the attacks and the
threats that implement these attacks.

2.1 Component Dependencies and Infrastructure Hypergraph

The framework describes the infrastructure as a set of interdependent components, each
consisting of some internal state and operations it implements. For each component,
three security attributes are considered:

1. confidentiality. Its control implies the ability of reading the component state ;
2. integrity. Its control implies the ability of updating the state;
3. availability. Its control implies the ability of managing the component, i.e. of de-

termining the users that can invoke its operations.

The framework does not describe the state or the operations and represents user rights
as a set of pairs 〈component, attribute〉, where attribute ∈ {c, i, a}. A user controls an
attribute because of either the component operations it can invoke or dependencies
from other components. Each dependency is characterized by the source components
from where it originates, by a destination one and by an attribute for each compo-
nent, Distinct dependencies correspond to alternative ways of controlling an attribute.
Dependencies are inspired to cascade failures and domino effect models [3, 12].

A first dependency is the one between a password and the resources it controls.
Anyone that controls the password confidentiality, i.e. can read it, can access the re-
sources that the password protects. If distinct operations requires distinct passwords,
then each one enables a limited control on the component, i.e. to control all the com-
ponents attributes, the confidentiality of several passwords has to be controlled. If,
instead, just one password is introduced, the control of its confidentiality implies that
of any component attribute. A second example concerns a web server connected to



a network through components that route and deliver requests to the server. Anyone
that controls the availability of these components can deny the access to any user and
fully control the server availability. Consider now a firewall that protects a computer
network. The control of the availability of the communication infrastructure between
the network and the outside world depends upon the integrity of the firewall rules.

The infrastructure hypergraph IH is a labeled directed hypergraph that represents
components and dependencies. IH includes a node N(C) for each component C and an
hyperarc from {n(C1),..., n(Ck)} to n(C) for a dependency from {C1,..., Ck} to C. As
shown in Fig. 1, there is one label for each tail of the hyperarc, to denote the attribute
to be controlled, and one for the head, to denote the controlled attribute.

Starting from the set S of the rights of a user U and the dependencies in IH,
we determine all the attributes U control by taking into account paths of IH and by
computing TC(S,IH), the transitive closure of S. At first, we consider an element 〈C, w〉
of S and mark any tail leaving from N(C) and labeled by w. After examining all the
elements in S, we consider an hyperarc h such that all its tails have been marked.
Assume that the head of h is labelled by g and that the destination node is d. We mark
d and any tail leaving from d that is labeled by g. Furthermore, if g = a, U manages the
component C represented by d. Hence, we also mark any tail leaving d because U can
assign to itself any rights on C and so it can control any attribute of C. The procedure
is iterated till no node can be marked. The components corresponding to the marked
nodes, together with the labels of the hyperarcs used to reach each node, define the
transitive closure of S. The reasons why we assume a user grants rights only to itself
are detailed in the following. As an example, in the hypergraph in Fig.1, a user that
controls the confidentiality of c7 and the integrity of c8 controls the availability of c5,
the confidentiality of c6 and the integrity of c4 as well.

2.2 Modeling Threats and Attacks

This section describes the modeling of threats and of elementary attacks. We will
consider only intelligent threat that try to achieve some of their goals. To handle
uniformly insiders and external threats, we model each of such threats as a further
user that owns some rights on some component.

In the following, a user U is anyone interested in attacking the infrastructure and it
is paired with information about its goals, the resources it can accesses and its initial
rights. SGoal(U) is the set of the goals of U, each goal g in SGoal(U) is a set of rights.
U achieves g when it owns any right in g. R(U) describes the resources U can exploit
in its attacks. We assume that elements of R(U) are tuples of elements where each
element describes a distinct resource kind such as computational resources, know how,
knowledge about the infrastructure and so on. We do not detail alternative definitions
of R(U) because we are only interested in a partial order for each kind of resources. This
orders supports the definition of a partial order / among the tuples of R(U) based upon
a pair wise comparison of the tuples. The last information paired with U is Init(U), the
initial rights of U. This set models the capabilities of U before any attack and initially
it is equal to the legal set of rights of U.

Consider, as an example, a web server that receives its data from a database sys-
tem. This infrastructure may be modeled as two components, the web server and the



database. The integrity of web server data depends upon the integrity of those in the
database. Here, three classes of users can be introduced that initially have, respectively,
some rights on the web server, on the database or no rights at all. The first two classes
model users that can access or update information in the components, the last one
the users that cannot access any information. The goal of a user that aims to deface
the web server is to control web server integrity. Instead, that of a user interested in
manipulating the data is to control the database integrity. Because of dependencies,
any user that controls the database integrity also controls that of the web server.

We describe now the modeling of elementary attacks that are composed into attack
strategies against the infrastructure [11, 15, 18–21]. Even if the definition of elementary
attack depends upon the component abstraction level, we define an attack A to be
elementary if it consists of a sequence of predefined actions against one infrastructure
component denoted by T(A). These actions may be successful if each vulnerability in
a set of component vulnerabilities V(A) exists. Distinct sets of vulnerabilities corre-
sponds to distinct attacks that may exploit the same mechanism, i.e. a buffer or a stack
overflow. The precondition pre(A) of A is the set of rights a user U needs to execute
A. If A is successful, U achieves a set of rights post(A), the postcondition or the effect

of A, disjoint from pre(A). Owning the rights in pre(A) is a necessary but not suffi-
cient condition to execute A, because this also requires that U can access R(A), the
resources to implement A. This is possible if R(A)/ R(U). If A is successful, U owns
a set of rights equal to TC(U(BA)∪ post(A), IH), the transitive closure of the union
of the rights U(BA),that U owns before A, with those acquired through A. IH is the
infrastructure hypergraph.

The last information paired with A is comp(A), a relative evaluation of the com-
plexity of A. The lowest complexity corresponds to an attack that can be implemented
by a programming tool, because it can be executed by any user. The opposite extreme
of the range is an attack that cannot be automatized and that require a deep techni-
cal know how and detailed knowledge on the infrastructure. The number of discrete
intervals within the range depends upon the accuracy of the assessment.

2.3 Infrastructure Evolutions

We consider now how a user U can achieve a goal in SGoal(U) by composing elemen-
tary attacks into strategies. Since a user continues to execute elementary attacks till
achieving one of its goals, we can characterize the state of the infrastructure in terms
of the users that are considered and by the transitive closure of the rights of each user.
Transitions from a state to another one are fired by successful elementary attacks.
Hence, we model an infrastructure state S as a tuple. 〈〈U1, S1〉 , ..., 〈Un, Sn〉〉 where
U1, .., Un are the users and Si is the set of rights of Ui. ER(Ui,S) denotes the rights
of Ui in the state S. Since ER(Ui,S) is computed through a transitive closure, in any
state ER(Ui,S)= TC(ER(Ui,S),IH) holds for 1 ≤ i ≤ n. For each infrastructure state
S, an attack A is feasible for Ui if pre(A) ⊆ ER(Ui, S) and R(A)/ R(Ui).

At first, we consider attack strategies of a single user and then generalize to a set
of users. An evolution due to Ui is a non empty sequence of infrastructure states
St1, ..., Stfin where:



1. St1 is the initial infrastructure state,
2. in any intermediate state Stj the attack Aj is feasible for Ui,
3. after the execution of Aj in Stj, U owns the transitive closure of rights in the union

of post(A) with ER(Ui,Stj),
4. in the final state, and only in this state, Ui achieves g, a goal in SGoal(Ui),
5. by executing Aj, Ui achieves at least one rights er such that:

(a) Ui does not own er in the state Stj before executing Aj,
(b) er belongs either to g or to the preconditions of an attack executed after Aj.

The last condition implies that each evolution attack allows Ui to owns at least one
right that belongs either to g or to the precondition of one of the following attacks.
Empty sequences are neglected because each user has to execute at least one attack
to achieve any goal. The number of attacks bounds the length of evolutions due to a
single user because a user executes each attack at most once.

Each evolution due to Ui describes a strategy of Ui to compose elementary attacks
to achieve the corresponding goal. Hence, if there is not an evolution where Ui achieves
g, one of its goals, no sequence of attacks enables Ui to achieve g. If all the evolutions
due to Ui are known, we can represent the corresponding infrastructure states and
state transitions as a finite state automaton. The automaton has a single initial state,
the initial infrastructure state, and a final state for each goal in SGoal(Ui) that Ui can
achieve. The attack graph of Ui represents states and transitions of the automaton as
graph nodes and arcs. An attack path starts in the initial node of the graph, corre-
sponding to the initial state of the automaton, and ends in a success node, a state where
Ui achieves one of its goals. Distinct goals corresponds to distinct states. Each arc is
paired with an attack [18, 1, 8]. Consider, as an example an user Ui that can achieve
one of its goals by executing an attack A, but this requires some privileged account on
a computer node. Hence, at first Ui should control the confidentiality of a password
of an account and then increase its level of privilege through a second attack before
executing A. Besides the initial states and the final one, the automaton has at least
two further states where Ui controls, respectively, the confidentiality of a password of
a non privileged account and a privileged account,

Two distinct evolutions are equivalent if they enable a user to achieve the same
goal. Such evolutions correspond to distinct paths of the attack graph leading to the
same final node. Two disjoint equivalent evolutions exploit distinct elementary attacks.
Consider, as an example, a processing node N and the set S of nodes of the infrastructure
that N trusts. A user that controls any node in S, control N as well. If the goal of U
is the control of N, all the evolutions that result in the control distinct nodes in S are
equivalent because they enable U to achieve its goal. They are disjoint because their
elementary attacks have distinct targets. Consider now the evolutions resulting in the
control of the same node in S. If they compose in a different way the same elementary
attacks, then they are equivalent but not disjoint.

When considering evolutions due to a set of users, three cases are of interest:

– concurrent evolution: each user autonomously achieves one of its goals because
any user will grant only to itself a right on a component it manages. Since this
evolution results from the interleaving of one evolution for each user, the assessment
can consider any user in isolation,



– collusion evolution: two users, U1 and U2, cooperate because U1 grants to U2 at
least one right on a component U1 manages,

– competition: U1 revokes at least one right of U2 to stop an attack. This models
either a denial of service attack or a defense against an attacker.

Both concurrent and collusion evolutions are monotonic because a user never loses
a right. A worst case for collusion evolutions can be deduced by introducing virtual
users, each owning the rights of the users that cooperate. Even if the framework can
describe any evolution, this work is focused on concurrent evolutions. Since concurrent
evolutions can be described through automata as well, we can build both an automaton
and a graph that describe any sequence of attacks of any user against the infrastructure.

The notion of evolution is an important difference between our framework and those
focused on reliability because it is strongly related to both and-or attack trees [7] and
goal oriented planning [17] as it defines user attack plan against the infrastructure. In
planning terminology, an infrastructure state corresponds to the current state of the
world, while attacks are the operators that update this state till a goal is achieved.
Hence, the computation of evolution can exploit most planning algorithms and the
corresponding heuristics. Monotonic evolutions simplify the planning because a user
never loses a right. However, while planning algorithms are usually focused on one
optimum or optimal plan, we are interested in discovering all evolutions.

3 Countermeasures

After defining enabling set of an evolution and attack countermeasures, we introduce
minimal sets of countermeasures, the basic building blocks of risk mitigation plans.
En(ev),the enabling set of the evolution ev, includes all the elementary attacks exe-
cuted in the steps of ev. This notion generalises that of evolution because it neglects
the details of an attack strategy and focuses on the attacks. Distinct ways of composing
the same attacks are neglected, because stopping just one attack stops all the corre-
sponding evolutions. This implies that if E enables at least one evolutions, we are not
interested in enabling sets that includes E, because all the corresponding evolutions
are stopped if we stop those enabled by E. An enabling set E is minimal if no proper
subset of E is an enabling set as well, we can stop all the evolutions if we know all
minimal enabling sets. An enabling set is not minimal anytime an intermediate state of
the corresponding evolutions is a final state for a distinct evolution. A countermeasure
C(A) for an attack A exploits any combination of the followings:

– remove one of the vulnerabilities in A(V),
– update dependencies among components to prevent users that execute A from

achieving all the rights in post(A),
– update the rights of some users,
– increase the resources that A requires so that some user cannot implement it.

The application of C(A) stops A because either A fails or the user that executes A
cannot own the rights in post(A). We say that a countermeasure stops an evolution
anytime it stops at least one of the evolution attacks. In terms of attack graphs, C(A)



cuts, i.e. removes, the arcs associated with A. Static countermeasures are applied
before an attack occurs, dynamic ones are applied as the attack goes on to remove
some user rights. Hence, they are strongly related to competition evolutions and will
not be considered in the following. We assume that for each attack there is at least
one static countermeasure. There is no loss of generality here because we can always
update the infrastructure to remove some component vulnerabilities. Notice that the
same countermeasure can stop several attacks.

A complete set S of countermeasures stops any concurrent evolutions or, equiva-
lently, it stops at least one attacks in each enabling set. This implies that some users
can acquire some rights because some elementary attacks may be successful, but no
user will achieve any of its goals. From another point of view, only intermediate states
of the attack automaton can be reached but no final one. In term of the attack graph,
a complete set defines a cut set that partitions the graph so that no subgraph includes
both an initial node and a success one. A complete set is minimal if none of its proper
subsets is complete. A minimal set defines a smallest set of countermeasures because it
stops at least one attack for each minimal enabling set. The computation of a minimal
set is an NP-hard problem and several Montecarlo or approximated strategies may be
applied. These strategies can be updated to compute any minimal set. As discussed in
the next section, distinct minimal sets correspond to alternative risk mitigation plans.

Assume now that, for each attack A, V(A) includes just one vulnerability and that
any countermeasure removes just one vulnerability so that countermeasures can be
mapped into vulnerabilities and the other way around. In this case, we can evaluate the
role of V in the evolutions through an index Cr(V) defined as the percentage of minimal
sets that remove V, i.e. that stop the attack A where V(A)=V. As Cr(V) approaches
one, it becomes more and more important to remove V to stop the evolutions. Cr(V)
may be useful if V is a newly discovered vulnerability or if its introduction is planned
because of cost efficiency reason.

4 Countermeasure Ranking

To rank countermeasure, first of all we notice that cost effective risk mitigation plans
should consider minimal sets only and that distinct minimal sets result in alternative
plans. Our approach define a risk mitigation plan through two steps:

1. single ranking to define a partial order with reference to one minimal set,

2. global ranking that merges single rankings.

A partial order is adopted to rank sets of countermeasures rather than single ones. In
this way, we consider disjoint evolutions or, from another perspective, distinct success
paths of an attack graph that lead to the same final node. If several disjoint evolutions
enable some users to achieve the same goal, stopping just a subset of these evolutions
does not prevent users from achieving the goal. This shows that countermeasure and
vulnerabilities are correlated so that applying a countermeasure is useless if other vul-
nerabilities enable the user to achieve the same goal through distinct attacks. This
implies that two countermeasures (vulnerabilities) are correlated if they stops attacks



(are exploited by attacks) in disjoint evolutions. Hence, ranking correlated counter-
measures may be inconsistent if the ranking is used to plan their adoption. Notice that
countermeasures for attacks in equivalent but not disjoint evolutions are not correlated
because the evolutions may be stopped by a countermeasure for an attack they share.
The next two subsections show how we take correlation into account.

4.1 Single Ranking

First of all we introduce the notion of non redundant subset. RM is a non redundant
subset of a minimal set of countermeasures M if it stops the evolutions in Se(RM) while
none of its proper subsets stops all these evolutions. Each non redundant subset of M
is the smallest subset of M that has to be applied to stop all the evolutions in Se(M),
those that are stopped by M. Non redundant sets play a critical role to define a risk
mitigation plan because if we apply a redundant set of countermeasures, some of its
countermeasures are useless and a smaller, and hence less expensive, set achieves the
same result. In other words, the application of a redundant set S has the same utility
of the largest non redundant sets included in S.

We consider the partially order set, poset, that orders all the non redundant sets
of M according to set inclusion. The bottom of the poset is φ and the top is M. Any
maximal chain from φ to M of length n defines a n-1 steps risk mitigation plan where
the i-th step applies the countermeasures in the difference set between the i-th set and
the (i+1)-th one. Consider the minimal set {C1, C2, C3, C4} and assume that each of
C1 and C4 stops all the evolutions that result, respectively, in the goals g1 and g4.
Instead, C2 and C3 stop two equivalent and disjoint evolutions resulting in g23. Hence
only by applying both countermeasures simultaneously g23 cannot be achieved. The
non redundant sets are {C1}, {C4}, {C2, C3}, {C1, C2, C3}, {C2, C3, C4}, {C1, C4},
{C1, C2, C3, C4}. As shown in the poset in Fig.2 a), the chain {C4}, {C2, C3, C4},
{C1, C2, C3, C4} defines the plan that applies at first C4, then both C2 and C3 and,
at last, C1.

4.2 Global Ranking

To define a global ranking we merge all the posets into a global one. The bottom of
the global poset is φ, while each minimal set is a maximum. Maximal chains in the
poset define all alternative risk mitigation plans to stop all the evolutions. Any non
redundant set S belongs to a number of maximal chains that depends upon the number
of minimal sets that include S.

The choice of the most appropriate plan depends upon not only the maximal chains
but also financial parameters such as the amount of the resource to be invested in coun-
termeasures, the distribution in time of these resources and the return of delaying an
investment. The framework does not define a strategy to choose one maximal chain and,
consequently, one plan because these financial parameters fully determine the optimal
one. Hence, only the space of possible plans is defined. Suppose, as an example, that the
resources currently available do not support the implementation of all the countermea-
sures in a minimal set and little information is available on future investment. Here,
we can privilege those chains resulting in some degrees of freedom. This corresponds



to the adoption of a least commitment plan corresponding to those chains that cross
all the subsets from where any minimal set can be reached. In this case, the choice of
a chain that leads to one minimal set only may be inappropriate, because it freezes
the set of countermeasures to be implemented even if little information is available on
future investments. Any update to this plan corresponds to the choice of a disjoint
chain but, in turns, this implies that some of the countermeasures previously applied
are redundant, i.e. useless, in the new plan. Instead, if accurate information about fu-
ture investments is available, we can choose the optimal chain for the considered time
distribution of the investment and neglect all the other ones.

Consider again the minimal set {C1, C2, C3, C4} and assume that {C1, C2, C5, C6}
is another minimal set where C5 and C6 are countermeasures that stop the same
evolutions of C3 and C4. The sets {C1}, {C3, C4} and {C5, C6} are some of the non
redundant sets that appear in the global poset shown in Fig.2b). Any strategy that
applies at first either {C5, C6} or {C3, C4} commits itself to one minimal set, instead
those that at first apply either {C1} or {C2} can freely choose any of the two sets.

5 Taking Risk into Account

Till now we have neglected two important risk related issues, namely the impact and the
probability of a successful attack. While the former can be estimated in a fairly accurate
way, approximating the latter is one of the goals of the framework. Some preliminary
considerations about risk have already been introduced when considering the resources
an attack requires. In fact, by exploiting this information, we can consider not any
attack strategy as in unconditionally security but only those that can be implemented
by the considered users. The remaing part of this sections show other ways to introduce
risk into the framework by constraining the evolutions that are considered.

At first, we define further attributes of evolutions to consider the risk they pose.
The first one is the impact of the evolutions, i.e. the loss of the infrastructure owner
if a user achieves a goal. We assume that there is an impact, i.e. a loss, if and only
if a user achieves any of its goals. This is fully general because the owner can pair an
impact with any subset of rights owned by a user. The existence of disjoint evolutions
implies that a user may exploit distinct strategies to achieve the same goal, i.e. the same
impact. The benefit of a set of countermeasures is defined as the sum of the impacts the
set avoids. If several users achieve the same goal, we assume that the corresponding
impact is the maximum of those of each user. If a set of countermeasures does not
stops all the evolutions resulting in the same goal, then the benefit cannot consider the
corresponding impact.

A further attribute evaluates the evolution complexity, a non decreasing function of
n, the numbers of evolution attacks, and of the complexity of each attack. Alternative
definitions are the sum of the complexities, the average complexity multiplied by some
function of n and even the largest complexity of evolution attacks. The framework does
not freeze this definition because distinct ones are appropriate in distinct contexts.
Furthermore, the definition can consider any historical data about attacks.

To take into account the probability that an evolution occurs, we prune evolutions
with a large complexity or a low impact. Hence, we prune any evolution that has



1. an impact lower than ImpT,
2. a complexity larger than OvCompT,
3. an elementary attack with a a complexity larger than CompT,
4. a number of elementary attacks larger than MaxAtT.

The definition of the threshold values may exploit any statistics or historical data
on attacks. After the pruning, we update both minimal sets of countermeasures and
the benefit of countermeasures by neglecting pruned evolutions. The corresponding
minimal sets are denoted as a reduced minimal set, r-minimal set. The ranking of
vulnerabilities and countermeasures does not change because it is independent of the
definition of minimal set. An alternative definition of r-minimal sets considers the cost
of countermeasures so that a set is r-minimal if its countermeasures have the lowest
cost or the best cost-benefit ratio among all minimal sets.

6 Programming Tools

Automatic tools are important not only to reduce the time to implement the assess-
ment, but also to guarantee that no evolution has been neglected. This is fundamental
for infrastructure with a large number of components.

The two most complex steps of an assessment are the computations of all evolutions
and of minimal, or r-minimal, sets of countermeasures. We notice that both compu-
tations may exploit a backtracking mechanism to compute all the evolutions due to
a single user. Instead, evolutions due to distinct users may be computed in parallel.
Another important operator is the transitive closure of rights because it is applied for
each evolution attack.

We believe that the programming framework more appropriate to take all these
features into account is the logic programming one that offers backtracking as a native
feature and can handle graph data structure in a fairly simple way. In this framework,
an evolution corresponds to a deduction in a theory that describes the infrastructure,
the attacks, the initial set of rights and the goals of each user. Also the transitive clo-
sure of a user rights is the deduction, from the set of axioms describing the user rights,
of all the theorems of the theory represented by the hypergraph. This computation can
be implemented in two different ways. One represents each hyperarc as a dstinct clause
of the logic program and applies the program to the initial set of rights. Instead, in the
other version, the program consists of a set of hypergraph independent clauses applied
to both the hypergraph and the user rights. Here, the program implements an inference
engine independent from the infrastructure that is a program input. The main advan-
tage of the first solution is a better execution time but the program has to be updated
anytime the hypergraph changes. Instead, the second version can be directly applied
to the hypergraph without requiring an intermediate translation step. Now the clauses
are more complex, but an hypergraph update has no impact on the program. However,
both solutions can exploit the built in backtracking to explore all the paths in the
hypergraph and deduce all the rights of a user. The computation of evolutions heavily
exploits backtracking as well because it has to consider any combination of elementary
attacks in each infrastructure state. An optimal computation works backward from a
goal to the initial infrastructure state.



7 Conclusion

We have presented a framework to define risk mitigation plan based upon a ranking
of set of countermeasures and that considers alternative attack strategies of a threat.
Any countermeasure that stops just one strategy and neglects the equivalent ones is
not cost effective because it cannot avoid all the impacts. Instead, risk mitigation plans
should be defined as a sequence of sets where each set stops all equivalent strategies.

Future developments concern an extensive experimentation with reference to real
infrastructures and a detailed analysis of collusion and competition evolutions as well
as dependencies related to time or to state values of a component. A further problem
is the application of the framework to interdependent infrastructures.

References

1. C. Alberts, A.Dorofee, Managing Information Security Risks. Addison-Wesley, 2002.
2. P.Ammann, et al. Scalable, Graph-based Network Vulnerability Analysis, 9th ACM Conf.

on Computer and Communications security, Nov. 2002, Washington, DC, USA
3. R.J. Anderson Security Engineering A Guide to Building Dependable Distributed Systems.

John Wiley Sons, 2001.
4. F.Baiardi, et al.Constrained Automata: a Formal Tool for ICT Risk Assessment, NATO

Advanced Research Workshop on Information Security and Assurance, Marocco, June 2005
5. B.Barber, J. Davey, The use of the CCTA risk analysis and management methodology

CRAMM. Proc. MEDINFO92, North Holland, 1589 pp.1593, 1992.
6. CORAS: A platform for risk analysis of security critical systems. IST-2000-25031, 2000.
7. J. Dawkins, C. Campbell, J. Hale, Modeling Network Attacks: Extending the Attack Tree

Paradigm, Statistical and Machine Learning in Computer Intrusion Detection, June 2002.
8. L. Gordon,M. Loeb. The economics of information security investment. ACM Trans. on

Information and System Security 5(4) 2002. pp.438-457.
9. IEC 1025: 1990 Fault tree analysis (FTA).
10. S. Jha, O. Sheyner , J. Wing, Two Formal Analysis of Attack Graphs, 15th IEEE Computer

Security Foundations Workshop , p.49, June 2002.
11. P. Moore, R. J. Ellison, R. C. Linger,Attack modelling for information security and sur-

vivability, CMU/SEI- 2001-TN001.
12. National Infrastructure Advisory Council, The Common Vulnerability Scoring System,

Final Report and Reccomandations, Oct. 2004
13. P. Ning, et al., Constructing attack scenarios through correlation of intrusion alerts, 9th

ACM Conf. on Computer and Communications Security, Nov. 2002, Washington, DC, USA.
14. C. Phillips, L. Painton Swiler, A graph-based system for network-vulnerability analy-

sis,Workshop on New Security Paradigms, p.71-79, Sept.1998.
15. R. Ritchey, et al., Representing TCP/IP Connectivity For Topological Analysis of Network

Security, 18th Annual Computer Security Applications Conf, p.25, Dec. 2002.
16. S.Schechter, M. Smith. 2003. How much security is enough to stop a thief?. Proc. of the

Financial Cryptography Conf, Guadeloupe, Jan. 2003.
17. S.Russell, P.Norving, Artificial Intelligence: a Modern Approach, Prentice Hall, 2003
18. O. Sheyner, et al., Automated Generation and Analysis of Attack Graphs, Proc. of the

2002 IEEE Symposium on Security and Privacy, May 12-15, 2002.
19. O. M. Sheyner, Scenario Graphs and Attack Graphs, CMU-CS-04-122,2004.
20. L.P. Swiler, C. Phillips, D. Ellis, S. Chakerian, Computer-Attack Graph Generation Tool,

Proc. of the DARPA Information Survivability Conf, June 2001.



21. V.Swarup, S.Jajodia, J.Pamula, Rule-Based Topological Vulnerability Analysis, 3rd Int.
Wor. on Math. Methods, Models and Arc. for Network Security, S.Petersburg Sept. 2005.

Fig. 1. An Infrastructure Hypergraph

Fig. 2. Local and Global Ranking


