
Short Paper: Policy Driven Virtual Machine Monitor for Protected Grids

Fabrizio Baiardi, Laura Ricci
Dipartimento di Informatica

Università di Pisa
largo Pontecorvo, 3 - 56127 Pisa

{baiardi, ricci}@di.unipi.it

Paolo Mori, Anna Vaccarelli
Istituto di Informatica e Telematica
Consiglio Nazionale delle Ricerche

via Moruzzi, 1 - 56124 Pisa
{paolo.mori, anna.vaccarelli}@iit.cnr.it

Abstract

This paper advocates virtualization technology as a
methodology to solve the security problems that an orga-
nization has to face when contributes with its resources to a
grid. In particular, this technology makes it possible to in-
crease the overall security of any system by inserting a set
of controls into the code that implements one virtual ma-
chine. In this way, a secure cooperation among virtual ma-
chine can be implemented. This generalizes the current ap-
proach that exploits virtualization only for the confinement
of alternative programming environments resulting from the
partitioning of a physical machine into a set of non cooper-
ating virtual machines. The ability to support cooperation
among virtual machines may be used to define networks of
cooperating virtual machines to execute distributed appli-
cations. The paper describes a general purpose approach
to security based upon virtual networks of cooperating vir-
tual machines and applies it to one of the most challenging
problems: that of securing a grid environment.

1. Introduction

Grid environments support the dynamic sharing of com-
puting resources among a large set of entities such as com-
panies, universities, research centers, and so on [1], [2],
[5]. These entities belong to distinct administrative do-
mains, and no a priori trust relationships may exist among
them. A security support for a grid environment has to face
a large number of problems ranging from the middleware
of a grid node that attacks the application executed on be-
half of a grid user, to malware hidden in the application
received from a grid user that attacks resources belonging
to the node but outside the grid. We believe that the most
appropriate strategy to solve these problems is the one that
exploits virtualization, a well known technology to imple-
ment abstract resources on top of physical ones that is cur-
rently exploited to partition a powerful physical machine

into a set of virtual machines (VMs) each supporting a dis-
tinct user environment. The sharing does not reduce the
overall security, because virtulization confines faults within
one VM. Furthermore, it is very simple to detect an attempt
of a VM to interact with another one. To fully exploit its
advantages with respect to the secure sharing of a set of re-
sources, virtualization should be generalized to virtual net-
works, i.e. to networks of interconnected and cooperating
VMs hosted by distinct physical nodes of a computer net-
work. In this way, several distributed applications can be
executed in a secure and confined way on top of a set of net-
work nodes by creating and configuring a set of VMs that
are then interconnected into distinct virtual networks, one
for each application. Obviously, this poses the problem of
a proper compromise between the performance losses due
to virtualization with respect to the security advantages in
terms of confidentiality, integrity and availability of infor-
mation and resources. Since we are interested in virtualiza-
tion as a general-purpose methodology to security issues,
we are interested not only in confinement but also in the
sharing of resources among VMs of a virtual network. This
is important anytime an application is defined by compos-
ing modules and service with different security levels, as
always happens in grid applications.

Virtualization is a well known technology that has been
exploited for a long time. Currently, several tools based
upon virtualization are available, among them Xen [3],
VMWare [12] and Denali [14]. An attempt to exploit the
VM architecture in grid computing is described in [4] and
[8] but it is focused on the definition of an architecture that
simplify the exploiting of the grid environment by the final
user. Instead, this paper is focused on the security aspects
of virtual networks of VMs.

This paper is organized as follows. Section 2 describes
the VM concepts and how to embed a security support in a
VM, Sect. 3 introduces the security requirements of a Grid
environment and Sect. 4 shows a first application of these
concepts by defining an extension of Xen to support virtual
networks of Xen VMs.



lv

lp

VM (Rv)

f

guest OS

resource (Rp)

imp(f)

Figure 1. Virtual Machines

2. Security Enhanced VM and VM Monitor

A VM is a set of components to map a program inter-
face Iv, i.e. a programming language, into another inter-
face Ip, to support the execution of programs written using
Iv. To this purpose, the VM translates each invocation to
a function f of Iv into a sequence imp(f) of invocations
to functions of Ip. In the most general case, and the most
complex one from a performance prospective, all the trans-
lation occurs at run time. Since any interface Ia may be
described as a set of resources, Ra, and a set of operations,
Oa, on resources in Ra, a VM implements < Rv, Ov > in
terms of < Rp, Op >. The constrains on Ip to simplify the
implementation of Iv have been presented and discussed in
[6]. In the case of interest, Iv defines the machine language
of a processor, while Ip is the machine language either of
the same processor, i.e. Ip and Iv are equal, or of a dis-
tinct one. This is shown in figure 1. In the following, the
resources in Rv and in Rp will be denoted as, respectively,
virtual and physical resources.

From our point of view, the most interesting feature of
virtualization technology is that imp(f) may include con-
sistency and security checks on the operations on the re-
sources in Rp. Hence, Iv may be equal to Ip because the
VM may have been introduced not only to define a distinct
language, but even a more secure implementation of the
same one. A case where Iv is equal to Ip arises if we are in-
terested in the secure sharing of a set of resources Rp among
a set of user. Here, each user has exclusive access to a dis-
tinct VM and Iv is equal to Ip, but each sequence imp(f)
should access just a subset of the resources in Rp. Hence,
to guarantee the confinement among the VMs, the sequence
should includes some checks to prevent a VM from access-
ing physical resources outside the ones assigned to the user
of the corresponding VM. In this way, a VM user can be-
have as when accessing a dedicated machine, even if other
VMs are sharing the same physical resources.

Virtualization requires that the guest OS, i.e. the OS

that runs on top of the VM, is transformed to run in non-
privileged mode, i.e. user mode. Alternative strategies
have been devised to implement this transformation. For
instance, some operating system modules may be rewritten
so that the VM intercepts their calls, or the VM can dynami-
cally replace the privileged instructions of the guest OS with
invocation to its own functions. The latter case exploits an
exception handling mechanism where the execution of an
instruction of Iv raises an exception handled by the VM by
invoking the proper sequence of instructions of Ip. Obvi-
ously, the complexity of a VM depends on the architecture
of the underlying architecture because some processors pro-
vide a powerful support for virtualization, while others, like
the IA32 one, offer little or no support at all and a complex
software layer has to be developed. However, a powerful
support is offered by an increasing number of processors.

From the architecture point of view, to enhance the se-
curity of the physical resource, a security component could
be integrated in each VM to control the operations that the
guest OS invokes on the resource. For instance, a VM
can prevent an untrusted application running on the guest
OS from transmitting confidential information by control-
ling the resulting information flow through sockets. In gen-
eral, distinct VMs can implement alternative security poli-
cies and distinct controls for the same policies according
to the trust in a user and/or in the application. It should
be stressed that some checks to discover attacks against an
OS can be executed only through the adoption of virtual-
ization. Consider, as an example, a check on the memory
used by the guest OS to discover the signature of some virus
or worms that has successfully attacked the OS itself. The
check can be simply implemented at the VM level, because
the VM can check whether the code of the guest OS is cor-
rupted, while it is rather complex to be implemented at the
guest OS level, where the first problem to be solved is the
integrity of the OS code that implement the checks.

To increase the overall robustness, a further security
layer may be introduced in the architecture. This layer is
implemented by a virtual machine monitor, VMMon, that
mediates all the accesses of the VMs to the resources, so
that a VM can access a resource only if the VMMon has
checked the requested operation. In this way, the VMMon
multiplexes the physical resources while achieving the logi-
cal isolation among distinct VMs. Furthermore, to increase
availability and prevent dos attacks, the VMMon should
schedule the various requests to guarantee a fair allocation
of resources among the VMs. We are interested in the solu-
tion where the VMMon runs directly on the hardware, i.e.
it is the only component that accesses physical resources.

Besides the VMMon, a supervised mechanism to sup-
ports interactions among the VMs on a set of shared re-
sources can be useful even if the VMs do not cooperate to
support the same application. In particular, to support grids,



we are interested in file sharing. Consider a computational
service with a very large read-only database. The users of
this service execute their applications on this resource to
exploit this database but, to complete isolate the applica-
tions of distinct users, the database should be replicated in
each VM, with a great waste of resources. A more efficient
solution shares the database among distinct VMs, but this
sharing cannot be managed by the VMMon, because it can-
not offer the functionalities of an OS as it runs directly on
the hardware, Instead, these controls may be delegated to a
further VM, FSVM, that runs in user space and physically
owns the shared file systems. The security policy of the
database as implemented by FSVM specifies the files each
VM can access and the operations it can execute on them.

Summarizing, the proposed approach exploits virtualiza-
tion to define four levels of controls, implemented by: i) the
guest OS on its users; ii) the VM on operations issued by
the guest OSs; iii) the VMMon on the VMs; iv) the VM that
owns a shared resource R on the VMs sharing R.

3. Security and Grid

Due to its collaborative and distributed nature, a grid en-
vironment requires a complex and powerful support to guar-
antee the security of its transactions. As a matter of fact, any
grid participant shares some resources with any other one,
even if no direct trust relationships exist between them. Se-
curity management is complex due to the large number of
secure relationships among a large number of participants
across distinct administrative domains, each with its distinct
resources, security architecture and local security policy.

The security model defined by OGSA standards for a
grid environment, [9], describes the main security issues
and the mechanisms that should be adopted to address them.
However, it is well known that current implementations of
grid environments do not offer all the mechanisms required
to guarantee a complete protection. As an example, Globus
[5], currently the widely used grid toolkit, provides a coarse
grained control of applications executed on the grid compu-
tational resources on behalf of remote grid users. In fact,
an application is executed only if the grid user has been au-
thenticated and mapped on a proper local user, but no fur-
ther controls are executed on the actions performed by the
application beside the permission enforcement provided by
the OS mechanisms. Some solutions have been proposed to
enhanced Globus security, e.g. see [10], [11], and [13].

To show that the virtualization methodology can increase
the security of a grid environment, we present a strategy to
secure the execution of distributed applications where a job
request that submit a distributed application is handled by
creating a virtual network. A virtual network is a network
of VMs where each process of the application runs in a dis-
tinct VM and distinct VMs communicate through the inter-

connecting virtual network. The VM and VMMon can co-
operate to enforce the adopted security policy because any
operation attempted by an applicative process on a local re-
source is controlled by the VM executing the process, while
the VMMon controls the interactions among the processes
implemented by distinct VMs. This strategy can be easily
implemented provided that proper tools to implement vir-
tual networks are available

4. Network-Xen

Network-Xen extends Xen [3] to define a secure virtual
network, where VMs control the interactions of processes
they run, according to an user defined policy. In the orig-
inal Xen architecture, Xen supports the execution of sev-
eral VMs on the same physical machine providing isolation
among them. An user may dynamically instantiate a new
VM with a guest OS to execute its application. The task
of building the initial guest OS structure for a new VM is
delegated to a particular VM, Domain0. Proper Xen ser-
vices run in the Domain0 of each physical node implement
the communication network among VMs in the same node.
The OSs supported by Xen have been properly modified to
run on top of the VMMon instead than on top of the physi-
cal machine.

Network-Xen, instead, supports user defined virtual net-
works to execute distributed applications. To define these
networks, it creates the VMs of the virtual network by prop-
erly exploiting the Xen services. While the communications
among the VMs running on the same node are supported
by Xen, the communications among VMs running on dis-
tinct nodes are supported by Network-Xen. While, in the
original Xen architecture, VMs running in distinct physical
nodes communicates provided that the VMs and the Do-
main0s of each physical machine are in the same network
or if the IP addresses are public, in Network-Xen two VMs
communicate provided that they are connected in the virtual
network that is created. Moreover, Network-Xen provides
also a security support that monitors the interactions among
VMs.

To show how Network-Xen can be exploited, consider a
physical architecture consisting of a cluster of physical ma-
chines connected by a local network, and assume that the
grid service provider wants to execute several distributed
applications simultaneously and in secure way on this ar-
chitecture. Furthermore, assume that applications should be
isolated from each other and that they can share resources
such as the file system. When adopting Network-Xen,
each physical machine of the cluster runs an instance of
Network-Xen, and these instances cooperate through proper
services run by their Domain0s. One physical machine of
the cluster only, denoted as machine0, is connected to the
external network and, consequently, to the grid. Machine0



runs a VM hosting a server that provides an interface to
the grid framework. As an example, this server could be
Globus, where one of the user defined services creates the
network of VMs. The server receives from the remote grid
users the job requests, each specifying a distributed applica-
tion in terms of the processes that compose the application
and the communication topology among them. For each
request, the server create a proper virtual network by in-
teracting with other Network-Xen servers on the Domain0s
of other physical machines. Some features of the virtual
network, such as the OS and the memory size of each VM
are defined by the request. For instance, the main mem-
ory size of a VM depends upon the amount of memory for
the corresponding application process. The VMs of the vir-
tual network are mapped onto Xen instances on the cluster
physical machines. According to this procedure, a physi-
cal machine can host zero, one or several VMs of the same
virtual network. A virtualization technology simplifies the
dynamic update of this mapping due to performance or re-
liability reasons, because Xen, as most virtualization tools,
supports the migration of a VM to a distinct physical node.
While Xen manages communications between VMs on the
same physical node through a proper routing service run-
ning in Domain0, those between VMs on distinct physical
machines are managed by a Network-Xen routing services
running in the Domain0s too. These services instantiate a
Virtual Private Network among the Domain0s of each cou-
ple of physical machines and communications between two
VMs are forwarded from a Domain0 of a physical machine
to one of another machine only if the two VMs are con-
nected in the virtual network.

In this architecture, one physical node runs the VM that
implements FSVM, the shared file system. This machine
can be freely chosen, and its IP address must be known
by each VM that provides the access to one of the shared
file systems. Since the FSVM address does not belong to
the subnet of each virtual network, the previously described
routing services are exploited also to route the requests for
the FSVM address to the proper VM.

The security support of the Network-Xen architecture is
implemented by three components. The first component is
integrated in each VM, and monitors the interactions be-
tween the guest OS and the physical resource. This compo-
nent has been described in [7]. A second security monitor
is integrated in the Xen and Network-Xen routing services
to check that the interactions between the VMs do not vio-
late the virtual network topology defined in the job request.
In practice, the controls on the network topology are the
same ones that a firewall executes when it routes some com-
munication to the hosts it protects. They are currently im-
plemented through the IPQueue library. The third security
component is integrated in the FSVM and guarantees that
accesses of a grid application to files of the shared file sys-

tem satisfy the security policy defined by the cluster owner.

References

[1] M. Baker, R. Buyya, and D. Laforenza. Grids and grid
technologies for wide-area distributed computing. Inter-
national Journal of Software: Practice and Experience,
32(15):1437–1466, 2002.

[2] S. J. Chapin, D. Katramatos, J. Karpovich, and
A. Grimshaw. Resource management in Legion. Fu-
ture Generation Comp. Systems, 15(5–6):583–594, 1999.

[3] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A. Warfield, P. Barham, and R. Neugebauer. Xen and the art
of virtualization. In Proceedings of the ACM Symposium on
Operating Systems Principles, 2003.

[4] R. Figueiredo, P. Dinda, and J. Fortes. A case for grid com-
puting on virtual machines. In In Proceedings of Int. Conf.
on Distributed Computing Systems (ICDCS), 2003.

[5] I. Foster. Globus toolkit version 4: Software for service-
oriented systems. In Proceedings of IFIP International Con-
ference on Network and Parallel Computing, pages 2–13.
Springer-Verlag, LNCS 3779, 2005.

[6] R. Goldberg. Survey of virtual machine research. IEEE
Computer, pages 34–45, 1974.

[7] F. Martinelli, P. Mori, and A. Vaccarelli. Towards continu-
ous usage control on grid computational services. In Pro-
ceedings of Int. Conf. on Autonomic and Autonomous Sys-
tems and Int. Conf. on Networking and Services 2005, IEEE
Computer Society, page 82, 2005.

[8] A. M. Matsunaga, M. O. Tsugawa, M. Zhao, L. Zhu, V. San-
jeepan, S. Adabala, R. J. O. Figueiredo, H.Lam, and J. A. B.
Fortes. On the use of virtualization and service technologies
to enable grid-computing. In Proceedings of the 11th Int.
Euro-Par Conference, LNCS 3648, pages 1–12, 2005.

[9] N. Nagaratnam, P. Janson, J. Dayka, F. Siebenlist, V. Welch,
S. Tuecke, and I. Foster. Security architecture for open grid
service. Global Grid Forum Recommendation Draft, 2004.

[10] L. Pearlman, C. Kesselman, V. Welch, I. Foster, and
S. Tuecke. The community authorization service: Status and
future. Proceedings of Computing in High Energy and Nu-
clear Physics, 2003.

[11] A. J. Stell, R. O. Sinnott, and J. P. Watt. Comparison of ad-
vanced authorisation infrastructures for grid computing. In
Proc. of High Performance Computing System and Applica-
tions 2005, HPCS, pages 195–201, 2005.

[12] J. Sugerman, G. Venkitachalam, and B.-H. Lim. Virtualizing
I/O devices on vmware workstation’s hosted virtual machine
monitor. In Proceedings of the 2001 USENIX Annual Tech-
nical Conference, Boston, Massachusett, 2001.

[13] M. Thompson, A. Essiari, K. Keahey, V. Welch, S. Lang, and
B. Liu. Fine-grained authorization for job and resource man-
agement using akenti and the globus toolkit. In Proceedings
of Computing in High Energy and Nuclear Physics, 2003.

[14] A. Whitaker, M. Shaw, and S. Gribble. Denali: Lightweight
virtual machines for distributed and networked applications.
In Proceedings of the USENIX Annual Technical Confer-
ence, Monterey, CA, 2002.


