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Abstract The paper introduces an efficient feature se-

lection approach for multivariate time-series of heteroge-

neous sensor data within a pervasive computing scenario.

An iterative filtering procedure is devised to reduce infor-

mation redundancy measured in terms of time-series cross-

correlation. The algorithm is capable of identifying

nonredundant sensor sources in an unsupervised fashion

even in presence of a large proportion of noisy features. In

particular, the proposed feature selection process does not

require expert intervention to determine the number of

selected features, which is a key advancement with respect

to time-series filters in the literature. The characteristic of

the prosed algorithm allows enriching learning systems, in

pervasive computing applications, with a fully automatized

feature selection mechanism which can be triggered and

performed at run time during system operation. A com-

parative experimental analysis on real-world data from

three pervasive computing applications is provided,

showing that the algorithm addresses major limitations of

unsupervised filters in the literature when dealing with

sensor time-series. Specifically, it is presented an assess-

ment both in terms of reduction of time-series redundancy

and in terms of preservation of informative features with

respect to associated supervised learning tasks.

Keywords Feature selection � Multivariate time-series �
Pervasive computing � Echo state networks � Wireless

sensor networks

1 Introduction

Pervasive computing puts forward a vision of an environ-

ment enriched by a distributed network of devices with

heterogeneous sensing and computational capabilities,

which are used to realize customized services supporting

everyday activities. Pervasive computing systems deploy

sensors that continuously collect data concerning the user

and/or the environmental status. These data come under the

form of streams, i.e., time-series, of sensor information

with a considerably heterogeneous nature (e.g., tem-

perature, presence, motion). This results in consistent

amounts of information that need to be transferred and

processed, typically in real time, to implement the system

services that are often realized by computational learning

models (e.g., for predicting user activities based on sensed

data) [18]. In this context, the availability of effective

feature selection techniques for multivariate time-series

(MTS) becomes fundamental. Feature selection entails the

identification of a subset of the original input sequences

from a given dataset, targeted at removing irrelevant and/or

redundant information sources. In a pervasive computing

application, this serves, on the one hand, to reduce the

computational and communication overhead of transferring

and processing large amounts of sensor information. On the

other hand, it suppresses redundant/irrelevant information

which might negatively affect the predictive performance

of the learning models.

The key difference between feature selection and feature

extraction is that the former approach identifies a subset of

the original input features, preserving the original seman-

tics of the data, while the latter approach seeks a trans-

formation (more or less complex) of the original data to

generate a more compact representation of the information

[8]. This is particularly relevant in a pervasive system
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where, at run time, the original data are sensor information

distributed across the network. In this context, the com-

putation of a feature extraction transform would typically

require to transfer all sensor data to a single device where

the transformation is computed. Additionally, the run-time

application of a feature extraction transformation requires

higher computational efforts with respect to a simple se-

lection rule on a predetermined subset of features. The

former, in fact, requires at least to compute a linear com-

bination of the original features [e.g., such as in principal

component analysis (PCA)] to generate the transformed

data representation (i.e., with a cost that is at least linear

with respect to the size of original data), whereas the latter

can be performed with a constant time operation. Such

computational aspects are a key factor to be taken into

consideration if the application runs on low-power devices.

This work has been developed in the context of the

RUBICON project [1], which proposes a vision of a

wireless sensor and actuator network where data analysis

and learning capabilities are spread in all components of

the systems, depending on the capabilities of the hosting

devices. To this end, it defines a pervasive learning sys-

tem that consists of a network of learning modules dis-

tributed on devices characterized by limited

computational and communication capabilities. Each such

device hosts a learning component which is trained to

perform real-time short-term predictions based on the

temporal history of the input signals, gathered by the

sensors onboard the mote or received from another node

through its radio interface. The learning components are

realized using Echo State Networks (ESNs) [11] that are

recurrent neural networks from the reservoir computing

paradigm [13], which are characterized by a good trade-

off between computational efficiency and ability to deal

with dynamic systems and noisy data. By this means, it is

possible to deploy a learning component even on devices

with very low computational and power capabilities, such

as wireless sensor motes [2]. This allows a pervasive

embedding of intelligence within the ambient where the

learned knowledge is deployed, close to where the related

input information is generated, e.g., the sensors. RUBI-

CON realizes a general-purpose learning system capable

of addressing a large variety of tasks concerning the on-

line processing of sensor-data streams; it also provides

mechanisms that allow to continuously adapt the learned

knowledge by incrementally adding new learning tasks,

e.g., allowing the system to accommodate changes in the

monitored environment.

We are interested in designing an efficient feature se-

lection scheme for such a pervasive learning system. The

optimization of the number of sensor streams feeding the

learning modules is, in fact, a key issue in such a resource-

constrained environment, requiring effective feature se-

lection techniques for MTS. Further, the fact that the

RUBICON learning system allows to incrementally deploy

new predictive tasks during system’s operation poses ad-

ditional requirements on the feature selection model. The

first is computational efficiency, as the selection process

has to be performed during system operation whenever a

request for a new predictive task is posted. The second is

the automatization of the feature selection process, as this

has to be performed automatically by the learning system

without any form of human/expert intervention (e.g., to

determine the number of selected features from a ranking).

In the literature, there are few feature selection ap-

proaches specifically tailored to MTS. Most take a wrapper

approach where feature subset selection optimizes the

performance of a specific learning model [9], typically by

training multiple model instances with different con-

figurations of the inputs. Filter approaches, instead, select

features through an external optimization criterion: Their

use is typically limited to supervised classification prob-

lems, where the class labels can be exploited to identify

those features that do not contribute substantially to class

separability. The CleVer approach [19], which will be

further discussed in the next section, is among the unique

unsupervised filter techniques developed primarily for

MTS. Previous works have noted how such sophisticated

state-of-the-art feature selection techniques, which show

excellent performances on multivariate time-series bench-

marks, do not provide significant results in the context of

open-ended discovery in real-world scenarios comprising a

sensor-rich environment [6]. Motivated by this, we propose

a simple, yet effective, feature selection technique based on

a cross-correlation analysis of multivariate sensor time-

series, that is specifically tailored to the identification and

removal of redundant sensor streams in an autonomous

fashion. The proposed approach is based on an iterative

filter heuristics that incrementally remove/select time-ser-

ies based on redundancy information. The algorithm is

characterized by limited computational requirements and

by the ability to cope with the heterogeneous information

sources that characterize a pervasive sensor system. Fur-

ther, the feature selection process does not require expert

intervention to determine the number of selected features

and can therefore be fully automatized in the distributed

learning system.

The remainder of the paper is organized as follows:

Sect. 2 summarizes the background on feature selection

techniques for MTS; Sect. 3 presents the proposed incre-

mental feature selection algorithm, whose performance is

assessed on real-world benchmarks from indoor pervasive

computing scenarios in Sect. 4. Finally, Sect. 5 concludes

the paper.

Neural Comput & Applic

123

Author's personal copy



2 Feature selection for multivariate time-series

The literature on feature selection provides a wide choice

of algorithms developed for flat vectorial data, while very

few approaches have been designed to deal specifically

with multivariate time-series. Feature selection, in this

context, amounts to the identification of relevant/nonre-

dundant attributes of a multivariate sample that represents

the evolution of information in time. Let us define an

univariate time-series xn as a the sequence of observations

xnð1Þ; . . .; xnðtÞ; . . .; xnðTnÞ;

where xnðtÞ is the observation at time t of the n-th sample

time-series, and Tn is the sequence length. A D-dimen-

sional MTS xn is a collection of D univariate time-series

xni ¼ xni ð1Þ; . . .; xni ðTnÞ s:t: i ¼ 1; . . .;D;

where xni ðtÞ is the observation at time t of the i-th com-

ponent of the n-th sample MTS. The term xni denotes the

i-th univariate time-series in xn. In the following, we use

the terms feature and variable to refer to a component of

the MTS: Each feature i is then associated with a set of

univariate time-series, one for each sample n. In this con-

text, feature selection can be interpreted as the problem of

identifying a subset of D0 relevant/informative univariate

time-series fxi1 ; . . .; xiD0 g out of the original D time-series

composing the MTS x (where we have dropped the n-th

superscript to identify a generic variable, rather than the

specific sample).

Approaches in the literature can be differentiated, as for

the flat case, in wrapper and filter methods. Wrappers are

the prominent approach to feature selection for MTS in the

literature: Here, the feature subset is selected to optimize

the predictive and generalization abilities of a specific

computational learning model. For instance, recursive

feature elimination (RFE) [9] iteratively trains a support

vector machine (SVM) classifier and ranks the input fea-

tures with respect to a SVM performance criterion, re-

moving the attributes with the lowest rank at each iteration.

RFE has been originally proposed for vectorial data only,

but it has later been applied to MTS information, e.g., in

[12]. Corona (correlation as features) [17] is another

wrapper method that transforms each MTS into the corre-

sponding correlation matrix, whose coefficients are fed to a

SVM that is then used to apply the RFE method. The

central issues of the wrapper approach are its considerable

computational requirements, induced by the multiple re-

training of the underlying learning model, and the fact that

the selected attributes tend to be extremely specific for the

given learning module and for the target learning task.

Differently from wrappers, filter approaches use an ex-

ternal optimization criterion with respect to the learning

model that will be using the selected data. The optimization

criterion can be either supervised, typically targeting the

preservation of most task-discriminative features, or un-

supervised, which usually seeks to remove redundancy

between the attributes to yield to a compact set of good

quality features for subsequent learning tasks. Most of the

filter techniques for time-series data in the literature are

limited to supervised approaches for classification tasks,

such as the work in [10], where the selected time-series are

those that best separate multivariate samples from different

classes. The Relief method, originally proposed for vec-

torial data, uses entropy as a measure of the ability of a

feature to discriminate classes and has been extended to

time-series data by [7]. The maximum-relevance mini-

mum-redundancy (MRMR) [16] method is among the most

popular filter techniques for vectorial data whose objective

is the identification of a feature subset such that selected

attributes are mutually as dissimilar as possible, while they

are as similar as possible to the target class variable.

Similarity and dissimilarity are measured by means on

pairwise mutual information, and the MRMR algorithm is

derived from the maximization of a joint function of the

feature dissimilarity and similarity. Despite its widespread

diffusion in vectorial feature selection, the MRMR algo-

rithm has not yet found application to time-series data: This

might be the result of the difficulty in estimating mutual

information on time-series. Such problems are already

manifest when estimating mutual information for con-

tinuous vectorial observations [16]: These are, typically,

discretized to a number of categorical values on which

mutual information is ultimately estimated. The MRMR

technique appears to be poorly suited to feature selection in

our pervasive computing scenario, for a number of reasons:

First, it is a supervised technique developed specifically for

classification tasks, whereas in our pervasive computing

scenario we seek an unsupervised method which identifies

features that can be employed in a number of different

supervised tasks, of both classification and regression

types. Second, it is difficult to define accurate and robust

estimators of mutual information for heterogeneous time-

series data (e.g., of mixed categorical and continuous na-

ture) which typically require either strong approximations,

such as the discretization of continuous variables, or

computationally intensive routines [15]. Finally, the

MRMR method provides a ranking of the features but re-

quires the user to determine the number of ultimately se-

lected features, whereas we seek a completely data-driven

process that can automatically determine such number.

The CleVer method [19] is one of the few unsupervised

filter approaches specifically tailored to MTS. It exploits

the properties of the principal components common to all

the time-series to provide a ranking of the more informa-

tive features. Based on the assumption that there exists a
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common subspace across all multivariate data items, it first

performs a PCA considering each univariate time-series in

isolation, i.e., using the set of observations for the given

univariate time-series as the PCA dataset. Then, it com-

putes the principal components common to the univariate

time-series, by bisecting the angles between their principal

components, and calculates a loading matrix providing

information on the contribution of each of the original D

features to the common principal components. Such a

loading matrix provides only a ranking of the original

features; hence, a selection criterion is required to extract

the relevant feature subset. Three approaches are proposed

by [19] for subset selection from the ranking

– a classical top-k method selecting the k features whose

loading vector has the largest L2-norm;

– a clustering-based method using k-means to identify

attributes with similar patterns of loading values, which

selects the k features closest to each of the k cluster

prototypes;

– an hybrid approach applying, first, k-means clustering

and, then, ranking the attributes with respect to their

contribution to the clusters.

Clearly, all the approaches described above require expert

intervention (by the user) to determine the number of se-

lected features, i.e., the top-k elements for the ranking-

based method and the number of clusters k for the k-means-

based approach. On the positive side, the CleVer method is

characterized by low computational requirements coupled

with a competitive performance on MTS feature selection

benchmarks [19]. Its excellent performance, together with

the fact that it represents the sole example of unsupervised

feature filter for MTS in the literature, motivates to con-

sider it as the reference baseline for the experimental

comparison with the algorithm introduced in this paper.

The characterizing contribution of the proposed algo-

rithm with respect to the state of the art discussed above is

twofold. On the one hand, it puts forward an approach that

formulates feature selections as a completely unsupervised

process, devoid of any need for human expert intervention,

and that does not require to associate the feature selection

process to a specific supervised learning task and/or to a

specific learning model. As discussed above, the majority

of MTS feature selection approaches in the literature are,

instead, based on supervised techniques; the very few of

them taking an unsupervised approach, i.e., those related to

the CleVer method require expert intervention to determine

the number of selected features from a ranking. On the

other hand, the proposed algorithm is (to the extent of the

author knowledge) the first specifically tailored to the

identification and removal of redundant sensor MTS. Pre-

vious works [6] have observed that state-of-the-art feature

selection techniques with competitive performances on

MTS benchmarks are poorly suited to deal with the char-

acteristics of multivariate sensor streams. This paper pro-

vides an experimental grounding of such intuition by

thoroughly assessing the performance of the proposed

model and of the state-of-the-art CleVer method on real-

world data from pervasive sensor networks.

3 Unsupervised sensor time-series selection
by cross-correlation

The section introduces a filter algorithm for the unsuper-

vised open-ended discovery of nonredundant feature sub-

sets from sensor data. The algorithm has been designed to

take into account the key requirements posed by the

specific pervasive computing application, which are

– the ability to deal specifically with MTS (MTS) data;

– the use of unsupervised information only, such that its

result is independent of a specific predictive task;

– the automatization of the feature selection process, so

that it can be performed online with respect to system

operation, with no human intervention;

– computational efficiency.

To this end, we introduce the incremental cross-correlation

filter (ICF) algorithm for unsupervised feature subset se-

lection on MTS of sensor data. The ICF algorithm targets

the reduction of feature redundancy, measured in terms of

their pairwise cross-correlation. The cross-correlation of

two discrete time-series x1 and x2 is a measure of their

similarity as a function of a time lag (offset) s, calculated
through the sliding dot product

/x1x2ðsÞ ¼
XminfðT1�1þsÞ;ðT2�1Þg

t¼maxf0;sg
x1ðt � sÞ � x2ðtÞ; ð1Þ

where s 2 ½�ðT1 � 1Þ; . . .; 0; . . .; ðT2 � 1Þ� and T1; T2 are

the time-series lengths. Intuitively, the lag where the

maximum of the cross-correlation is computed provides

information about the displacement between the first time-

series and the second.

The cross-correlation in (1) tends to return large num-

bers for signals whose amplitude is larger: This would

prevent from comparing time-series from different sensor

modalities due to the considerably different scales of the

sensor readings. To this end, we introduce the normalized

cross-correlation

/x1x2ðsÞ ¼
/x1x2ðsÞ

/x1x1ð0Þ � /x2x2ð0Þ
; ð2Þ

where /xxð0Þ denotes the zero-lag autocorrelation, i.e., the

correlation of a time-series x with itself. The normalized

function /x1x2ðsÞ takes values in ½�1;þ1�, where a value of
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/x1x2ðsÞ ¼ 1 denotes that the two time-series have the exact

same shape if aligned at time s. Similarly, a value of

/x1x2ðsÞ ¼ �1 indicates that the time-series have the same

shape but opposite signs, while /x1x2ðsÞ ¼ 0 denotes

complete signal uncorrelation. From our point of view,

both negative and positive extremes denote a certain re-

dundancy in the information captured by the two time-

series. Therefore, the correlation value at the point in time

where the signals of the two time-series are best aligned is

/
�
x1x2 ¼ max

s
j/x1x2ðsÞj: ð3Þ

The ICF algorithm implements a forward selection–

elimination procedure that filters out redundant features,

where redundancy is measured by the normalized cross-

correlation in (2). ICF is based on the iterative application

of a set of four selection/elimination rules, with no back-

tracking on the inclusion/exclusion of a feature in the final

subset, which allows to maintain the computational com-

plexity of the iterative process linear with respect to the

feature number. The four selection/elimination rules are

backed up by the following intuitions

– A variable that is not correlated with any of the other

features should be selected.

– A variable that is correlated with all the variables that

have already been selected is a good candidate for

elimination.

– If the selection/elimination rules result in a working set

of mutually correlated variables, act conservatively and

maintain all those features that are less correlated with

the selected ones.

The ICF algorithm is articulated in three phases:

1. The first computes a score of pairwise feature redun-

dancy using (3);

2. The second phase performs a preliminary denoising to

get rid of uninformative features;

3. The last phase iteratively applies the selection rules

until all features are assigned to either the selected or

the deleted status.

The first ICF phase builds a matrix of feature redundancy

R 2 f0; 1gD�D
, such that Rij ¼ 1 if features i and j are

pairwise redundant and Rij ¼ 0 otherwise. Given a MTS

dataset, the redundancy matrix is computed as follows

1. For each sample xn, use (3) to compute the maximum

cross-correlation between all univariate sequences xni ,

xnj in xn. If /
�
xn
i
xn
j
� 1 for the pair i; j, assume features i

and j to be correlated on the n-th sample, and

increment the partial correlation counts in the frequen-

cy matrix (assuming Sij ¼ 0 initially)

Sij ¼ Sij þ 1:

2. Compute the percentage of samples in which each pair

i; j is correlated, i.e., Sij ¼ Sij=N.

3. Set Rij ¼ 1, if the corresponding feature pair i; j, with

i 6¼ j, is correlated on more than hP% samples, i.e.,

Sij [ hP%.

4. Set the diagonal of R to zero, i.e., Rii ¼ 0 for all

features i, to discount trivial correlations.

The redundancy matrix R provides a unified picture of

which variables are mutually correlated on a sufficiently

large share of input samples S. Experimentally, we have

determined that a value of hP% ¼ 20% is already sufficient

to detect redundancies in a variety of experimental sce-

narios (nevertheless, the value can also be determined on a

per-task basis through cross-validation). Note that nu-

merical issues discourage from using the exact /
�
xn
i
xn
j
¼ 1

match in item 2 above: Here, we suggest to consider a pair

i; j to be correlated if /
�
xn
i
xn
j
[ 0:99.

The second phase preprocesses the initial feature set to

delete those features comprising mostly noise. To this end,

it uses feature autocorrelation, which is the cross-correla-

tion of a univariate time-series to itself. In particular, au-

tocorrelation is computed using the un-normalized sliding

dot product in (1): This measure is characterized by the fact

that a time-series constituted primarily by noise has a peak

value at lag s ¼ 0 and a mean autocorrelation ap-

proximately equal to 0 off time 0 (i.e., for all other lags).

More formally, given a feature i, we compute the average

off time 0 absolute autocorrelation as

w�
i ¼

PN
n¼1

1
Tn�1

P
s 6¼0 j/xn

i
xn
i
ðsÞj

N
ð4Þ

where /xn
i
xn
i
ðsÞ is defined in (1) and Tn is the length of the

n-th time-series. The i-th feature is deleted if its average

absolute autocorrelation approaches 0: The w�
i value will

not be exactly 0, in general, so the deletion test is softened

by pruning those features i having w�
i\0:1. Deletion of a

feature, in this phase, resizes the redundancy matrix R by

removing the row Ri� and column R�i associated with the

feature.

The third phase applies the feature selection/elimination

rules exploiting the information in the redundancy matrix R

generated by the previous two steps. It defines a set of

unassigned features F , which initially contains all the

variables that have not been deleted by the second phase.

The rules are applied iteratively to F following a priority

order, until all features are assigned to either the set of

selected variables SF or to the set of the deleted ones DF .

The details of the ICF rules and their priority pattern are

described by the following procedure
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1. RULE 1— If a row Ri� is completely uncorrelated with

the others in R (i.e., Ri� contains only zeros).

(a) Add i to the selected subset: SF ¼ SF [ fig;
(b) Remove i from F and remove the corresponding

entries in R;

(c) If an uncorrelated feature j is generated as a

result of the previous step, move j from F to

DF and remove the corresponding entries in R.

2. RULE 2—If a row Ri� is correlated with all the others

and there is at least 1 noncompletely correlated feature

(i.e., R does not contain only one off-diagonal).

(a) Add i to the deleted subset: DF ¼ DF [ fig;
(b) Remove i from F and remove the corresponding

entries in R.

3. RULE 3—If all features in F are mutually correlated

with each other, i.e., R contains only one off-diagonal,

(a) Select the feature i that is less correlated with

those currently in SF ;

(b) Add i to the selected subset: SF ¼ SF [ fig;
(c) Remove i from F ;

(d) Move the remaining features F to the deleted

subset (DF ¼ DF [ F ) and terminate.

4. RULE 4—If neither RULE 2 nor RULE 3 apply,

(a) Extract feature i 2 F that is correlated with the

minimum number of features still in F ;

(b) Define SðiÞ � F as the subset of features

correlated with i and select j 2 SðiÞ as the

maximally correlated feature with those current-

ly in SF ;

(c) Add i to SF and j to DF ;

(d) Remove i; j from F and remove the correspond-

ing entries in R.

The elimination–selection rules are tested sequentially, in

the order in which they are presented above, and their test

conditions are such that at least one of them fires at each

iteration of the algorithm; hence, the cost of computing the

third phase is at most linear in the number of the original

features.

The rationale of step 1(c) above is that a feature j

encoding the same information of already selected

variables has to be deleted to avoid to be selected by

future steps (otherwise, RULE 1 is likely to be applied

to j at the following iteration). Note that, in step 3(a),

we determine the feature i that is minimally correlated

with those in SF by measuring the pairwise cross-cor-

relation between i and all j 2 SF , averaged across all

samples, i.e.,

lij ¼
XN

n¼1

/
�
xn
i
xn
j

N
; ð5Þ

where N is the number of MTS in the dataset. The value of

lij is then used to determine the minimally correlated

feature i (in average) as

i ¼ argmin
i02F

P
j2SF li0j
jSFj

� �
; ð6Þ

where jSFj is the cardinality of SF . Step 4(a) uses a

similar strategy to determine which feature j, from the set

of i-correlated features SðiÞ, has to be deleted, i.e.,

j ¼ arg max
j02SðiÞ

P
k2SF lj0k
jSFj

� �
: ð7Þ

The use of cross-correlation to assess the pairwise infor-

mation redundancy among time-series is not novel. The key

contribution of ICF is to use such a measure within a novel

forward selection/elimination scheme based on the intu-

itions discussed early in this section. By this means, ICF

allows to perform a multivariate feature selection process

using only pairwise dependency information, thus main-

taining a limited computational complexity (as discussed in

the forthcoming paragraph). Such an approach resembles

the characteristics of constraint-based algorithm for Baye-

sian Network structure search [4]: Here, such intuition is

used, for the first time, in the context of multivariate time-

series. Despite the ICF algorithm being defined in terms of

cross-correlation, this is general enough to be seamlessly

extended to work with any pairwise or multivariate measure

of time-series redundancy/dependency.

A pseudo-algorithmic description of the complete ICF

procedure is provided in Algorithm 1. The computational

complexity of this algorithm is, in general, dominated by

the computation of the redundancy matrix in the first phase

which mainly depends on the cost of computing the pair-

wise cross-correlation on the sample MTS. The asymptotic

complexity of redundancy matrix computation is

OðN � ðD2 � TmaxÞÞ;

where N is the dataset length and the second term results

from the computation of pairwise cross-correlations between

D univariate time-series with a maximum length Tmax.

Computation of the autocorrelation parameter for noisy

suppression in the second ICF can be embedded in the re-

dundancy matrix calculation loop at no additional costs, as

shown in Algorithm 1. The third ICF phase is very efficient,

i.e., linear in the number of features D, as the forward se-

lection scheme processes each variable, at most, once with

constant time operations. Therefore, the final complexity of

the ICF algorithm isOðN � ðD2 � TmaxÞ þ DÞ. The asymptotic
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complexity of the CleVer method cannot be straightfor-

wardly derived as it depends on the number of iterations

required by the k-means algorithm to identify the feature

clusters. Nevertheless, it can be approximated from below as

XðN � ðD2 � TmaxÞ þ N2 � pÞ;

where the first summation term depends on the singular

value decomposition performed on the N time-series, while

the second term is due to the identification of the p com-

mon principal components among the time-series [19].

Hence, the ICF asymptotic complexity can be considered

not worse that of the CleVer method.

Algorithm 1 Incremental Cross-correlation Filter
Require: A dataset of N multivariate time-series xn composed of D features.

// Redundancy matrix computation (phase 1)
for n = 1 to N do

for i, j = 1 to D do
if i == j then

ψi = ψi + (
∑

τ �=0 |φxn
i xn

i
(τ)|)/(T n − 1)

else if φ
∗

xn
i xn

j
> 0.99 then

Sij = Sij + 1
end if

end for
end for
for i = 1 to D do

for j = 1 to D do
if Sij/N > 0.2 and i �= j then

Rij = 1
end if

end for
// Noise reduction (phase 2)

if (ψi/N) < 0.1 then
DF = DF ∪ i

end if
end for
Remove i-th rows and columns from R for all i ∈ DF
// Forward Selection/Elimination (phase 3)

Set F = {1, . . . , D} \ DF , SF = {}
while F ! = {} do

// Rule 1
if ∃i ∈ F s.t. (Rij == 0) ∀j ∈ F \ i then

F = F \ i, SF = SF ∪ i
Remove i-th rows and columns from R
if ∃k ∈ F s.t. (Rkj == 0) ∀j ∈ F \ k then

F = F \ k, DF = DF ∪ k
Remove k-th rows and columns from R

end if
end if
// Rule 2

if ∃i ∈ F s.t. (Rij == 1) ∀j ∈ F \ i and R contains at least one 0 off-diagonal then
F = F \ i, DF = DF ∪ i
Remove i-th rows and columns from R

else if R is a matrix of all 1’s off-diagonal then
// Rule 3

Select feature i using (6) and set F = F \ i, SF = SF ∪ i
DF = DF ∪ F , F = {}

else
// Rule 4

Find i = arg mini′∈F
∑

j∈F Ri′k
Find j ∈ S(i) using (7)
F = F \ {i, j}, SF = SF ∪ i, DF = DF ∪ j
Remove i-th and j-th rows and columns from R

end if
end while
return SF ,DF
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4 Experimental evaluation

4.1 Experimental setup and scenario

The experimental evaluation is intended to assess the ca-

pability of the ICF algorithm in detecting and removing

redundant MTS features in indoor pervasive computing

scenarios. In particular, we compare the performance of

ICF with respect to the CleVer method, a state-of-the-art

unsupervised feature filter for time-series, for a varying

proportion of irrelevant features in the original MTS.1 To

this end, we have employed real-world data collected in

two experimental deployments, one associated to mobile

robot navigation and one related to human activity recog-

nition (HAR).

The former scenario comprises two different regression

tasks involving the prediction of robot navigation prefer-

ences in a sensorized home environment. The idea under-

lying these tasks is to learn to predict which navigation

system is best to use to perform a certain trajectory based

on environment characteristics and on user preferences.

The preference weight to be learned is a value in ½0; 1�,
where 1 is interpreted as maximum confidence on the

navigation system and 0 denotes the lowest preference (i.e.,

the navigation system should not be used). The resulting

computational learning task is, basically, a regression

problem between the multivariate input time-series and the

corresponding univariate sequence of preference weights.

The second scenario comprises the classification of which

activity is being performed by a user based on sensor

readings from wireless devices deployed in the environ-

ment as well as worn by the user. Note that, for the purpose

of feature selection, we only consider the input information

(i.e., the sensor readings and the robot trajectory

information), but we discard the target data (i.e., the pref-

erence weight and the activity classification) as we are

interested in assessing unsupervised selection methods. An

in-depth analysis of the supervised learning tasks associ-

ated to the mobile robot experiment is provided by [5].

The mobile robot scenario has been designed and put

into operation in the Ängen senior residence facilities in

Örebro Universitet. The scenario, depicted in Fig. 1,

comprises a real-world flat sensorized by an RFID floor, a

mobile robot with range-finder localization and a wireless

sensor network (WSN) with six mote-class devices, where

the term Mi is used to denote the i-th mote. Each device is

equipped with light (L), temperature (T), humidity (H) and

passive infrared (P) presence sensors. The input informa-

tion sources include all sensors from the six motes, plus

robot trajectory information under the form of its ðx; yÞ
position and orientation h, for a total of 24 features.

As shown in Fig. 1, the experimental assessment in-

volves two tasks. The Entrance task is intended to predict a

weight evaluating the performance of the localization sys-

tem on two different trajectory types, represented as dashed

and continuous lines in Fig. 1. Performance on the dashed

trajectory is expected to be low due to the effect of mirror

disturbances which, conversely, should not affect trajecto-

ries on the continuous line. For the purpose of feature se-

lection, the only relevant information is robot position and

orientation (x; y and h) as well as the P sensors onboard

motes M3 and M6 (referred to as P3 and P6, respectively),

which are the only present sensors triggered by robot mo-

tion. The remainder of the sensors collects data that are

poorly informative as it does not undergo significant

changes across the time span of data collection. The Kitchen

task concerns a single trajectory type (dash-dotted arrows in

Fig. 1) heading to the kitchen, where a user might be present

or not. Since the robot range-finder localization is based on

camera, the user is willing to switch it off every time he/she

is in the room with the robot (the corresponding example

Fig. 1 Experimental scenario

for the Entrance and Kitchen

tasks in the Ängen facilities: Mi

denotes the i-th WSN mote

(Telosb platform running

TinyOS). The two photos on the

right show snapshots of the

kitchen (top) and entrance-

living (bottom) areas of the flat

1 MATLAB code for ICF and CleVer available at www.di.unipi.it/

*bacciu/icf.
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trajectories are then marked with minimal preference, i.e.,

0). The target of this task is to learn this user preference

based on robot trajectory information and on the user

presence pattern captured by the P sensors. The relevant

information for this task is robot x-position (orientation and

y coordinates do not change for this trajectory type) as well

as the P sensors onboard motes M1 to M5 (i.e., P1 to P5),

which are the only present sensors that are triggered by

robot or human motion. A total of 87 and 104 sequences

have been collected for the two tasks sampling at 2Hz with

an average length of 127 and 197 elements.

The HAR scenario involves a WSN comprising four

stationary devices, called anchors, that are deployed on the

walls of a bedroom as depicted in Fig 2. These anchors

exchange radio packets with three sensor motes that mea-

sure the signal strength of the received radio packets and

are also equipped with temperature sensors (T) and 2D

accelerometers on the x (Ax) and y (Ay) axes. Two of such

motes, i.e., M1 and M2, are worn by the user as shown in

Fig. 3; the latter mote, i.e., M3, is deployed on a small table

as shown in Fig. 2. The received signal strength (RSS)

measured from the packets received by the motes provides

some very noisy form of distance information from the

anchors on the walls, allowing to localize the motes in the

2D space (e.g., and also the user wearing them, see, for

instance, the application in [2]). Therefore, the input in-

formation sources in this scenario include the 3 sensors

from the 3 motes, plus the 4 RSS measurements from each

anchor to each mote, for a total of 21 features.

The HAR experimental campaign comprised the col-

lection of 90 sequences corresponding to 3 classes (of 30

sequences each) of user activities that are exercising, re-

laxing and cleaning. The sequences have been collected

with the user performing the three activities as naturally as

possible, and the collected sequences have been hand-la-

beled with the corresponding activity class. The exercising

activity involves a number of push-ups, squats and sit-ups,

and it is performed in the middle of the room; relaxation

involves laying still on the sofa, while cleaning is associ-

ated to dusting furniture located in different positions of the

room. Due to the nature of the task, it is hard to define

ground-truth knowledge on which information source is

significative and nonredundant: For instance, we expect the

RSS sources to be relevant (due to the positioning infor-

mation they convey) but also redundant (it is likely that 2

or 3 anchors provide sufficient information given the

relatively small room size). Nevertheless, we can identify

with reasonable certainty which sensors are gathering

poorly informative measurements that are all the tem-

perature sensors, as well as the accelerometers on mote M3

and its associated RSS (given that is permanently located

on a table).

4.2 Experimental results and discussion

The performance of the CleVer and ICF algorithms can be

evaluated in terms of what information sources are selected

for varying input configurations comprising different initial

sets of features and characterized by increasing proportions

of redundant features. Among the three CleVer subset se-

lection approaches discussed in Sect. 2, we have imple-

mented the k-means selection approach as it has shown the

best experimental performance in the original CleVer paper

[19]. Table 1 shows the features selected by CleVer and

ICF on the Entrance and Kitchen tasks of the mobile robot

scenario, where the selected relevant features are high-

lighted in bold. In Table 1, we use the term Mi to indicate

that the input configuration includes all the transducers in

the i-th mote, while x; y and h denote the robot position and

orientation. Since the CleVer algorithm requires the user to

determine the number of selected features, we provide two

sets of results: one (CleVer-OPT) using the (known) opti-

mal number of relevant features; the second (CleVer-ID)

M3

Fig. 2 Room layout for the HAR scenario: Anchor devices are

located at an height of 1:80m from the floor, and their position is

represented by the red circles enclosing their identifier number. Mote

M3 is located on a small table (dark rounded rectangle on the right-

hand side). The relaxation activity is performed on the sofa (depicted

in light gray at the bottom of the picture), and exercising is carried on

in the center of the room, while cleaning involves moving around the

room. The black rectangles on the left-side denote generic room

furniture (not relevant for the task) (color figure online)

Fig. 3 Motes worn by the user are located on the right wrist, i.e.,

mote M1, and on the right ankle, i.e., mote M2
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using the number of features found by ICF on the same

configuration.

The prevalence of bold-highlighted terms in Table 1

shows that the ICF algorithm always manages to identify a

larger number of significative features, with respect to both

CleVer algorithm versions. In particular, the ICF is capable

of consistently reducing the number of input features by

maintaining the majority (if not all, as in the Kitchen task)

of the relevant features even when a large number of un-

informative features is included. Conversely, the perfor-

mance of both the CleVer methods deteriorates

consistently as the proportion of redundant features in-

creases. Additionally, the results on last four configurations

of the Entrance task in Table 1 highlight a key critical point

of the CleVer algorithm, which yields different feature

subsets for different repetitions of the feature selection

process (note that the number of selected features in Cle-

Ver-OPT and CleVer-ID is the same for these configura-

tions). This behavior originates from the well-known

sensitivity to initialization of the k-means algorithm inte-

grated in the CleVer selection process. ICF, on the other

hand, has a stable behavior yielding to the selection of the

same feature subset for multiple algorithm repetitions. A

stable behavior is fundamental for operating feature se-

lection in our pervasive computing scenario, as we are

seeking a reliable and compact set of features which will

serve as inputs of a learning module that will be auto-

matically trained and deployed during system operation,

with no expert intervention to counteract randomizing ef-

fect of the feature selection process.

A quantitative evaluation of the performance of ICF and

CleVer methods can be provided in terms of precision and

recall analysis of the selected features. In this context,

precision is the proportion of selected features that are truly

significative (i.e., the true positives) with respect to the

total size of the feature subset, which therefore includes

both true positives (TP) and false positives (FP). Recall, on

the other hand, provides information of whether the algo-

rithms are identifying most of the relevant features for the

task, i.e., the proportion of TP with respect to the total

number of significative features. In other words, precision

and recall are

prec ¼ TP

TPþ FP
and rec ¼ TP

TPþ FN
;

where FN are the false negatives, i.e., the relevant features

not included in the final feature subset.

Figure 4 provides the precision and recall plots corre-

sponding to the configurations in Table 1, as a function of

the initial number of features. The behavior of the preci-

sion–recall curves for ICF confirms the intuition that the

number of FP and FN does not grow with the size of the

search space (and the number of potentially irrelevant

features). In particular, ICF shows a markedly higher recall

than the CleVer methods, exhibiting a conservative re-

dundancy reduction process which prevents from discard-

ing consistent shares of features that will become relevant

for the successive training of the supervised learning tasks.

Conversely, both CleVer methods experience a marked

precision and recall deterioration when the number of ini-

tial features and the proportion of irrelevant ones grows,

which is due to an increase in both FP and FN in the

identified features subsets.

To further assess the performance of the filter methods

with respect to noisy inputs, we have modified the original

Entrance and Kitchen data by introducing 10 artificial

features whose observations have been generated by ran-

dom sampling from a uniform distribution in ½0; 1� and

from a mean-zero unit-variance Gaussian. Table 2 shows

the features identified by the 3 methods: The original input

configuration includes all the sensor and trajectory infor-

mation (i.e., correspond to the last lines of the Entrance and

Kitchen tasks in Table 1); the 10-Unif and 10-Gauss denote

the noise-injected datasets corresponding to uniform and

Table 1 Feature selection

result on the Entrance and

Kitchen data for varying input

configurations: Mi denotes all

the transducers in the i-th mote,

while x; y and h are the robot

position and orientation

Configuration CleVer-OPT CleVer-IT ICF

Entrance task

(M3; x; y; h) L3;P3;T3; y L3;P3; y P3; x; y

(M3;M6; x; y; h) L3;P3;P6;T6; h L3;P6; x; h P6;P3; x; y

(M4–M6; x; y; h) L4;P4;L6;T6; h P4;L6;T6; h L4;P4;P6; y

(M3–M6; x; y; h) L3;T3;P4;P6; h L3;P3;T5; h P3;P6; x; y

(M1–M6; x; y; h) P2;L3;P4;L5; h L1;P2;T2;L3;L6; h P1;P2;P3;P6; x; y

Kitchen task

(M3; x; y; h) x; y L3; x; y L3;P3; x

(M1;M3; x; y; h) L3; x; y L3;T3; y L1;P3; x

(M1–M3; x; y; h) L1;L2;H2; x L1;L2;H2; x P1;P2;P3; x

(M1–M5; x; y; h) L1;P2;L3;T3;L4;H5 L1;L2;H2; L3; T3;L4 P1;P2;P3;P4;P5; x

(M1–M6; x; y; h) T1;L2;H2; L3;P4;P6 T1;L2;P2;H2;L3;P4 P1;P2;P3;P4;P5; x

The relevant features (based on expert knowledge) are in bold
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Gaussian sampling, respectively. ICF results are clearly not

influenced by the presence of noisy components, yielding

to the identification of the same feature subsets found on

the original data, on both tasks. Such noise robustness is

due to the autocorrelation filtering, as the 10 noisy features

are removed completely at second phase of ICF and never

enter the forward selection–elimination part of the algo-

rithm. Conversely, the CleVer method seems to be con-

siderably affected by both types of noisy features. In

particular, the presence of noisy features confuses the

Clever selection process to the point that it cannot identify

any significant feature in the majority of the cases listed in

Table 2.

Representation entropy [14] provides an additional

means to quantitatively assess the effectiveness of the

algorithms in terms of amount of redundancy present in the

selected feature subsets. Let X be the K � K covariance

matrix of the K selected features and ki be the eigenvalue

of X associated to the i-th feature, we define the normalized

eigenvalue

ki ¼ ki=
XK

j¼1

kj:

Then, the representation entropy can be written as

ER ¼ �
XK

i¼1

ki log ki; ð8Þ

and it is such that ER attains its minimum when all the

information is concentrated along a single feature, making
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Fig. 4 Quantitative feature

selection performance, where

Clever algorithms are identified

as C-OPT and C-IT: a, b Show

the precision of the selected

features as a function of the

original input space size for the

Entrance and Kitchen tasks,

respectively. c, d Show the

associated recall: Note that the

C-OPT recall curve is

completely overlapping with

that by C-ID in (c)

Table 2 Effect of noise addition on feature selection performance:

original denotes the configuration using all inputs from mote M1 to

M6 and trajectory information; 10-Unif and 10-Gauss denote the

original configuration extended with additional 10 input features

generated by uniform noise in ½0; 1� and zero-mean/unary-variance

Gaussian noise, respectively

Configuration CleVer-OPT CleVer-IT ICF

Entrance task

Original P2;L3;P4;L5; h L1;P2; T2;L3;L6; h P1;P2;P3;P6; x; y

10-Unif T2;H2; x;N2;N4 L2;H2;T5;N2;N3;N4 P1;P2;P3;P6; x; y

10-Gauss T5; x;N1;N5;N6 H2;T5;N1;N4;N6;N9 P1;P2;P3;P6; x; y

Kitchen task

Original T1; L2;H2;L3;P4;P6 T1;L2;P2;H2;L3;P4 P1;P2;P3;P4;P5; x

10-Unif L6; T6;N2;N3;N5;N6 H2;L5;N6;N7;N8;N10 P1;P2;P3;P4;P5; x

10-Gauss P2;L6;N1;N4;N5;N9 H2;L5;N2;N3;N7;N8 P1;P2;P3;P4;P5; x

The relevant features (based on expert knowledge) are in bold

Neural Comput & Applic

123

Author's personal copy



the rest redundant, while it is maximum when the infor-

mation is equally distributed among all the features. In

other words, the representation entropy of the selected

subset provides a measure of how much redundant is the

final set of features. Figure 5a, b shows the ER value for the

Entropy and Kitchen tasks as a function of the input con-

figuration. Overall, ICF confirms its ability to identify and

filter-out redundant information, by selecting features that

encode different information, yielding to consistently better

performances with respect to CleVer when the proportion

of redundant features is higher. Coherently with the pre-

cision–recall analysis, the advantages of ICF over CleVer

are particularly marked on the Kitchen task. The repre-

sentation entropy on the Entrance task in Fig. 5a has a less

neat behavior: ICF has the best entropy performance when

the proportion of redundant features is higher, though one

can observe a drop in the representation entropy corre-

sponding to the third configuration in Table 1. This is

consistent with the drop in precision that can be observed

in Fig. 4a for the same configuration. The low represen-

tation entropy for ICF in this particular configuration might

be due to the presence of the P4 and P6 sensors, which are

both selected only in this case, and that might encode

partially redundant information.

Representation entropy does not provide information on

how significant is the portion of information left out of the

final subset, nor it provides an indication on how adequate

are the identified features for the final supervised learning

task. To understand whether the redundancy reduction

process implemented by ICF has an impact on such final

learning tasks, we have considered a simple supervised

learning scenario, comprising training of an ESN on the

Kitchen task, using different numbers of reservoir neurons

from the set ½10; 50; 100; 300; 500� (see [11] for further

details on the model and [5] for a detailed account on model

selection and on the supervised learning task). Training has

been performed using a cross-validation setting to identify

the model hyperparameters, and performance has been

measured in terms of the mean absolute error (MAE) on a

test set comprising holdout sequences not seen in training

and validation. Figure 6 shows the performance when using

all the WSN inputs without feature filtering, when using

oracular ground-truth knowledge on the relevant features

and when using the CleVer-OPT, CleVer-IT and ICF fil-

tered inputs reported in the last row of Table 1. Clearly,

there is no difference between the performance when using

oracular knowledge and the ICF-selected configuration,

confirming that the ICF algorithm is capable of identifying a

compact set of nonredundant features, without discarding

task-significant features that may affect the final supervised

learning performance. Conversely, the features identified by

both CleVer methods do not provide sufficient discrimina-

tive information yielding to considerably poorer supervised

learning performances. Note how the presence of redundant

features in both CleVer-selected and nonfeature-selected

configurations negatively impacts the performance as the

size of the ESN increases, due to the fact that the noise

introduced by the redundant features tends to be incorpo-

rated in the larger parameter space.

Table 3 shows the feature selection results on the HAR

task comprising sensor data related to user exercising,
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(a) (b)Fig. 5 Effect of feature

selection on redundancy

reduction, in terms of

representation entropy of the

ICF and CleVer methods on the

Entrance (a) and Kitchen
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Fig. 6 Mean-squared error of the supervised learning model on the

Kitchen task using different input configurations resulting from the

use of ICF and CleVer feature selection (ICF, C-IT and C-OPT),

ground-truth oracular knowledge and when using all available inputs

(no feature selection)
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relaxing and cleaning activities. Due to the nature of the

task, it is difficult to determine a priori which features are

truly significant and nonredundant; hence, in Table 3, we

measure feature selection performance in terms of the

purely unsupervised representation entropy score in (8).

Nevertheless, as noted in Sect. 4.1, there are certain sensor

sources that are certainly capturing little information, given

the user activity setup. This is the case of all temperature

sensors Ti as well as of the RSS information associated to

mote M3, i.e., R
j
3 for the RSS received from the j-th anchor.

The ICF algorithm always selects a very compact set of

features, all involving RSS information; nevertheless, none

of them involves the nonsignificant table mote M3. Con-

versely, both versions of the CleVer algorithm select at

least one RSS value in mote M3 whenever this is provided

in the input configuration. Additionally, CleVer has also

the tendency to select the nonsignificant temperature sen-

sors from motes T1 and T2. This is particularly true for the

CleVer-OPT version, due to the larger number of features

selected (in this case, due to the lack of ground truth, we

have approximated the optimal number of features to all

those features that were not clearly nonsignificant). The

values of the representation entropy confirm the ability of

ICF in isolating a compact number of nonredundant fea-

tures, yielding to the highest entropy on almost all input

configurations. The CleVer-IT method, despite using the

same number of features as ICF, yields considerably poorer

results, with as little as 2% of the representation entropy

for the same input configuration.

To evaluate the impact of feature selection on the final

HAR tasks, we have performed an analysis of the super-

vised learning performance of ESN models trained on the

three classification tasks that are the recognition of the

Exercising, Relaxing and Cleaning activities. We have

considered the same model selection and cross-validation

setup discussed for the Kitchen task in Fig. 6, while

varying the number of reservoir neurons in

½10; 50; 100; 300�; the performance has again been

measured in terms of mean absolute error on holdout test

sequences (amounting to roughly 30% of the total se-

quences). Figure 7 shows the performance when using all

inputs without feature filtering as well as when using the

features selected by the three methods (ICF, Clever-IT and

Clever-OPT) corresponding to the last row of Table 3.

These results suggest that the three HAR tasks are char-

acterized by fewer irrelevant features with respect to the

Kitchen task and which do not seem to have a negative

impact on the predictive performance when using all

available inputs. This, in turn, results in the fact that the

CleVer-OPT configuration has generally the second best

performance, as it is the feature-selected configuration

using the largest set of original inputs, i.e., 57% of the all

input features. The ICF configuration, on the other hand,

uses only three features yielding predictive performances

that are comparable to the CleVer-OPT and nonfeature-

selected cases in the Exercising task. On the Relaxing and

Cleaning tasks, ICF performance is closer to CleVer-OPT,

which uses thrice the number of input features, than to

CleVer-IT, which uses the same number of features: For

instance, on the Relaxing task, ICF yields to test errors 2%

higher than CleVer-OPT, whereas CleVer-IT makes 10%
more errors. This confirms ICF ability in identifying

compact subsets of nonredundant features that encode

relevant information for the supervised learning tasks, in a

completely unsupervised manner. CleVer, on the other

hand, requires expert supervision to determine the number

of selected features and the relative quality of its features

with respect to supervised performance seems to be lower

than that of ICF. The trade-off between reducing the

number of input features and achieving good supervised

performances is central for our pervasive computing ap-

plication, where the supervised ESN models are intended to

be deployed on computationally constrained devices. Here,

reducing the number of ESNs inputs preserves memory and

computational resources (by reducing the number of

learning model parameters) and may prolong battery

Table 3 Feature selection

result on the HAR data for

varying input configurations: Mi

denotes all the transducers in the

i-th mote, Axi and Ayi are the 2D

accelerometers of the i-th mote

and R
j
i denotes the RSS value of

the i-th mote with respect to the

j-th anchor

Conf CleVer-OPT CleVer-IT ICF

Selected ER Selected ER Selected ER

(M1) Ax1;Ay1;R
1
1;R

2
1;R

3
1;R

4
1

0:624 Ax1;R
1
1;R

3
1

0:022 R2
1;R

3
1;R

4
1

1:063

(M2) T2;Ay2;R
1
2;R

2
2;R

3
2;R

4
2

0:058 Ay2;R
4
2

0:016 R1
2;R

3
2

0:665

(M1;M3) Ax1;R
1
1 R2

1 R4
1;R

2
3;R

4
3

0:043 Ax1;R
3
1;R

4
3

0:019 R2
1;R

3
1;R

4
1

1:063

(M2;M3) T2;R
1
2;R

2
2;R

3
2;R

4
2;R

2
3

1:517 R3
2;R

1
3

0:465 R1
2;R

3
2

0:665

(M1;M2) Ax1;Ay1;R
1
1 R2

1 R3
1;R

4
1, 0:851 Ax1;R

1
1 R3

2
0:785 R2

1 R3
1;R

4
1

1:063

T2;Ay2;R
1
2;R

2
2;R

3
2;R

4
2

(M1�M3) T1;R
1
1 R2

1 R3
1;R

4
1;R

1
2;R

2
2, 0:097 T1;R

1
1 R2

1
0:020 R2

1 R3
1;R

4
1

1:063

R3
2;R

4
2;Ax3;R

3
3;R

4
3

The best representation entropy ER for each configuration is highlighted in bold
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duration in WSN devices (due to the lower transmission

costs associated with fewer inputs). In this sense, the ICF

results in Fig. 7 seem promising as they show a good trade-

off between predictive accuracy and the number of input

features needed to achieve it.

5 Conclusion

Multivariate sensor time-series comprise large shares of

noisy, highly redundant information which can hamper the

deployment of effective predictive models in pervasive

computing applications. As noted in [6] and experimentally

confirmed in this paper, state-of-the-art feature filtering

algorithms with competitive performances on MTS

benchmarks are poorly suited to deal with the character-

istics of such noisy, slowly changing, yet heterogeneous in

nature, sensor streams. To address this fundamental

limitation, we have introduced an efficient feature filter

algorithm tailored to real-time pervasive computing

applications.

The ICF algorithm has been shown to be capable of

identifying nonredundant sensor information in a com-

pletely unsupervised fashion and to outperform the state-

of-the-art CleVer filter method on different pervasive

computing scenarios. Differently from CleVer, ICF does

not require expert intervention to determine the number of

selected features and provides stable feature subsets that do

not change with algorithm initialization. ICF effectiveness

is not obtained at the cost of its computational efficiency,

with an asymptotic complexity that is at most quadratic

with respect to the feature set size, resulting in running

times that are comparable with that of the efficient CleVer

algorithm. For instance, the average time required to

complete feature selection for the most complex con-

figuration of the Entrance task (i.e., the fifth in Table 1) is

of 2153ms, obtained by Java code running in an Eclipse

box on an Intel I5 Quad-core at 2:7GHz CPU equipped

with 4GB of RAM. Note that the majority of the running

time is spent on redundancy mask computation, while

feature filtering effort is negligible, i.e., 1ms. When con-

sidering much more resource-constrained environments,

such time to complete is expected to remain acceptable for

nonreal-time applications. For instance, the same Entrance

task can be expected to complete in roughly 914 s time

estimated based on floating-point benchmarks execution

costs) on a ARM Cortex M3 CPU, which is a widely

adopted architecture on smart watch systems.

The robustness and limited computational complexity of

ICF make it an excellent candidate to implement an au-

tomatized feature selection mechanism within an au-

tonomous learning system, such as that developed as part

of the RUBICON project [2]. In particular, we are planning

to exploit ICF as a preliminary filtering step to reduce the

complexity of a relevance-guided supervised wrapper

specifically targeted at optimizing the predictive perfor-

mance of the ESNs implementing the distributed learning

system [3]. In this sense, the fact that ICF is limited to the
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Fig. 7 Mean test error achieved

by the supervised learning

model on the three HAR

classification task, comprising

recognition of exercising (a),
relaxing (b) and cleaning

(c) activities. Results have been

obtained for different input

configurations resulting from

the use of CleVer (C-OPT and

C-IT) and ICF feature selection,

as well as when using all

available inputs (no feature

selection)
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detection of linear time-series correlation assumes less

relevance, as we expect the supervised wrapper algorithm

to identify possible nonlinear dependencies, e.g., through

the nonlinearity of the ESN reservoir neurons, and to de-

termine whether the associated features can be deleted with

significative advantages for the predictive performance of

the supervised task. Nevertheless, we would like to study

whether the ICF iterative policy can be successfully ap-

plied also to nonlinear time-series correlation measures to

extend the range of its applications.
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