Measuring one-way metrics without a GPS

Augusto Ciuffoletti (augusto@di.unipi.it)
Dipartimento di Informatica - Universita di Pisa

Abstract— The forthcoming Internet will support applica-
tions that are able to tune their operation using data about
the availability of network resources. A key issue in this per-
spective consists in the identification of significant metrics
that can be measured without using specialized hardware
and with low overhead. We define two such metrics, and
we introduce a prototype implementation of a measurement
tool.

The forthcoming Internet will support applications that
are able to tune their operation using data about the avail-
ability of network resources. Applications that demand
the availability of important resources, like large storage,
high bandwidth, or computing speed, will move resource
consuming activities to sites where required resources are
available.

The quality of the communication infrastructure is one
of the most relevant resources, and one of the most diffi-
cult to monitor. We distinguish two classes of tools used
for monitoring the communication infrastructure: passive
tools, that process local application log-files in order to as-
sess the quality of the communication infrastructure, and
active tools, that probe the Internet using a benchmark traf-
fic pattern.

Passive tools have the advantage of a minimal overhead
on the monitored resource, but are not able to inform about
resource availability: they evaluate current resource utiliza-
tion, but cannot say whether a resource can be exploited
further. An instance of such tool is the Unix command
netstat, and its various user interfaces.

Active tools are more intrusive, since they present the
Internet a certain traffic pattern, and observe how it is
treated. Probing may entail a coordination among the sites
that perform the measure, and the use of a common proto-
col. One of the most common tools in this class is the ping
command, that relies on the existence of a ping server on
the other end of the probed path, and uses the iCMP pro-
tocol [6].

As a general rule, the more intrusive the probe, the more
accurate the information it provides: in the case of the
ping command, the intrusion is extremely low, but the
information returned by the probe is limited to the round-
trip time of a special packet. More intrusive tools, like
pathchar [2], suggest to saturate the measured resource
for a very short time, in order to determine the saturation
point, and therefore the available resources at a certain
time.

Another important dichotomy of the measures provided
by a monitoring tool divides two-way measures from one-
way measures. The former are easier to obtain, but the
image of the communication infrastructure returned by the
latter have a finer resolution, and in many cases this is
helpful: although many protocols use the full duplex mode

offered by TCP, there are classes of protocols (e.g., data
transfer protocols, like FTP) that use the two directions
unevenly. The performance of the network in the two di-
rections can be in fact different, due to the path selected
in each direction, to the resource allocation policy of the
administrations along each path, and to the relative per-
formance of the server and of the client.

A common sense argument says that an accurate syn-
chronization of the clocks on the two units is mandatory in
order to obtain one-way measures. This conclusion is mo-
tivated by the fact that most one-way measures rely on the
measurement of a one-way communication delay [1], and
this operation relies on clock synchronization: as a gen-
eral rule, to measure a one-way communication delay we
need a clock accuracy which is one order better than the
observed communication delay. For instance, an expected
delay of 500 usecs (that may be observed in an Ethernet
network) would need a clock accuracy of 50 usecs. Using
simple arithmetics it is possible to prove that the probed
links cannot be used to reach the required accuracy using a
clock synchronization protocol (like NTP), and therefore the
use of specialized hardware, like a GPS receiver, is needed.

Since the synchronization of the system clock to an ex-
ternal time reference is a complex and expensive function-
ality, the above common sense statement has the effect of
associating a high cost to one-way measures.

The literature about the measurement of network re-
sources is therefore split into two approaches: to pro-
vide one-way measures requiring accurate clock syn-
chronization, or to provide two-way measures with-
out requiring clock synchronization. I did not found
any published paper in the land between the two ex-
tremes, although some experimental work is in progress,
like the UDPmon prototype (see the home page at
http://www.hep.man.ac.uk/~rich/net/).

This work tries to fill this gap, investigating two one-way
metrics that can be measured by an active tool, without as-
suming clock synchronization and with a limited overhead:
namely, one-way bandwidth and jitter asymmetry. We fur-
ther introduce a prototype, that we call netprobe, that
implements the results of the theoretical investigation.

I. ONE-WAY BANDWIDTH

One of the key parameters that characterize a communi-
cation infrastructure between two sites, that we call probe
and target, is bandwidth. Let t,..,(n) indicate the wire-time
(see [5] for a definition of wire-time) when the n-th octet of
a stream is received by the target, the one-way bandwidth
observed from octet ¢ to octet j is:

j—i

trcv (.7) - trcv (i)

Note that one-way bandwidth does not correspond to
one-way throughput. Throughput is bound to the time
elapsing from the beginning of the send operation to the
termination of the receive operation: if we indicate with
§ the one-way communication delay of the first octet, the
one-way throughput for a message of n octets is’.

Bw(i,j) = (octets/sec) (1)

Tp= — (octets/sec) (2)

n + Balom

Since measuring the throughput entails the measure of a
one-way delay, one-way throughput depends on clock syn-
chronization. Instead, one-way bandwidth does not require
clock synchronization, since it is computed as the difference
between two local clock values.

One-way bandwidth provides a useful insight of the per-
formance of the network between two sites, especially when
large amounts of data are being transferred, and indicates
how much information crosses the network during a time
unit. This directly reflects the performance of each node
along the path.

Although simple in principle, the measurement of one-
way bandwidth exhibits some sources of inaccuracy, when
implemented in practice. We list some of them, and evalu-
ate their impact:

e clock skew - the system clock does not measure the real
time, but a time that gradually drifts from real time, or
that can be abruptly adjusted. The first fact induces er-
rors of the order of a few parts per hundredth, and can be
disregarded. Adjustments that occur during the measure-
ment and induce a significant drift, or even a clock warp,
make the measurement not adherent with reality.

o process time vs. wire time - a user process cannot read
exactly the lapse between the beginning and the end of the
communication: the operating system interface schedules
visible events whose timing is related, but not identical, to
the events for which we would like to measure the occur-
rence time.

As for the first point we can do nothing but recommend
that the system clock is either left alone with its drift, or
reasonably compensated.

The second problem can be addressed trying to minimize
the interference of the operating system. The interference
of the TCP protocol in this respect is hard to control, since
communication is stream oriented, and buffer flushes can
occur asynchronously with respect to send operations. A
clever design of the measurement protocol could overcome
this problem, but other features of the TCP protocol, like
congestion control mechanisms, interfere with the measure-
ment of a raw figure. Instead, the UDP protocol offers un-

1T am grateful to Petr Holub, Institute of Compt. Science of the
Masaryk University, for having indicated me a mistake in the formula
published in the PAM2002 paper. The problem has been corrected
in this revision, and its scope is limited to the one way bandwidth
formula

buffered communication, and this makes easier to measure
relevant wire events.

II. JITTER ASYMMETRY

Jitter is a measure of the variation in communications
delays: we compute jitter as the difference between a mea-
sured delay and an expected value, computed as a weighted
average of past values.

Definition 1: Let 6(n) be the delay experienced by the
n-th message of a series of messages, and §(n — 1) the ex-
pected delay computed using the delays of the previous
n — 1 messages. The value of the jitter of the n — th mes-
sage is:

jitter(n) = d(n) — &6(n — 1) (3)

This definition is slightly different from the one used in
RTP [7], and is more similar to other definitions, as in [3].
The use of this metric is traditionally related to playback
applications, where the jitter is used for buffer configura-
tion [4]. However, jitter can be used as a symptom of over-
loading, since it rapidly increases while the traffic tends
to saturate the capacity of the network. This can be ex-
plained with the heavy use of buffers, and with the frequent
route changes that occur when the network is overloaded,
although not yet saturated.

Therefore, we claim that a communication infrastructure
that exhibits frequent peaks of the communication delay is
probably near to saturation. The information about jitter
is therefore useful to monitor the performance of the net-
work between two sites, but relies on the measurement of
a one-way communication delay, which depends on clock
synchronization.

A jitter asymmetry measurement session consists of a
sequence of rounds, each measuring a two-way communi-
cation delay, also called round-trip time. Each round is
identified by its index in the session, and is composed of
two messages: a forward message, and a backward message.
Let:

e fwd(n) and bwd(n) be the forward and backward mes-
sages in round n:

o tsna(m) and t..,(m) the wire times, referenced to the
clock on the unit where the event takes place, of the write
of the first octet and of the read of the last octet of message
m As we show in section IV, the application can measure
an approximation (a timestamp) for these wire times;

We introduce two derived measurable quantities, in order
to make the following equations more readable.

Definition 2:

dlﬁ(m) = trew (m) — tsnd (m) (4)
Os(n) = diff(bwd(n)) — diff(fwd(n)))

The diff is the difference between the wire time, mea-
sured on the receiving unit, corresponding to the read of
the last octet, and the wire time, measured on the sending
unit, corresponding to the write of the first octet: it does
not correspond to a communication delay, unless the clocks
are perfectly synchronized. Os is a function of local wire
times, it can be computed using measurable wire times: it

is a measurable approximation of the offset between the
clocks of the measuring sites, as we show in appendix A.

Using the above quantities, the jitter asymmetry is com-
puted as follows:

diff(fwd(n)) + Os(n — 1)
diff(bwd(n)) — Os(n — 1)

Ja(n) = 10 Log (6)

where Os(n — 1) indicates an expected value for the metric
Os, based on the n — 1 previous measurements.
The fundamental property of this metric is stated by the

following lemma:
Lemma 1:

(Ja(n) > 0) & (jitter puwa(n) > jitterywa(n))

The relation stated by the lemma now binds quantities
that are not observable: in fact, the jitter depends on one-
way communication delays (see definition 1).

To understand the use of jitter asymmetry, we need to
introduce an assumption supported by all experiments re-
ported in the literature:
communication delays exhibit an average value that is near
to the minimum, and exceptionally jump to values that are
significantly higher than the average
Since we focus on significant variations, we conclude that
they correspond to significant increments of the communi-
cation delay. Therefore the practical meaning of lemma 1
can be summarized as follows:

e Ja > 0 indicates an exceptionally long delay of the for-
ward message;

¢ Ja < 0indicates an exceptionally long delay of the back-
ward message;

¢ Ja = 0 indicates stability or an infrequent balanced in-
crease of the delay in both directions.

III. COMPUTING EXPECTED VALUES

In order to compute jitter asymmetry we need to be able
to compute an expected value for Os. There are a number
of techniques to solve this problem: [8] lists some of them.

We have opted for a filter that combines two well known
techniques:

e a low-pass filter, that smoothes minor variations in the
measured parameter;

o a peak clipper, that filters out measures that are appar-
ently affected by exceptional events.

The two filters are embedded in a simple function that com-
putes the next expected value knowing the new measure,
and has an internal state consisting of two reals.

The low-pass filter consists of a recursive prediction:

z(0)
Tp—1%(k—1)+xn
k

ifn=20
otherwise

Yn > 0,%, = { (7

The value of k is called the gain of the filter.

We compute the recursive prediction of the input, and of
the difference between the input and the predicted value.
In summary we obtain each time a prediction for the mea-
sure, and for the variation of the measure. The gain of the

two filters can be configured separately

k2

TP

Fig. 1. Block diagram of the predictive filter

The peak clipper filter is implemented using the result of
the application of the low-pass filter to the variation of the
measure. The rate between the measured variation, and
the predicted value is computed. The result is compared
with a threshold parameter: when the variation rate ex-
ceeds the threshold, the input data will be used to feed
the low-pass filter of the variation only; the expected value
will not be affected by measures that exceed the expected
variation, since they are considered a consequence of an
exceptional event.

In figure 1 we show a diagram of the filter:

¢ D blocks perform a difference between the input values.
o I blocks implement the low-pass filter with the shown
gain k; the feedback line is also shown.

¢ F blocks compute the rate between the two inputs.

e Ck blocks transfer the input value to the output only if
the control input (on one side) is below the shown threshold
k.

The overall behavior is controlled by the gain of the two
filters (k1 and k2 in figure 1) and by the threshold (k3 in
figure 1): their values do not appear to be critical, and are
a matter of optimization.

In figure 2 we show the results of an experiment with a
value of 10 for the two gains, and a threshold of 2 dB. The
input value Os, exhibits a jump of nearly 5 msecs, due to
a periodic clock adjustment. The filtered value, shown as
a dotted line, amortizes but follows the change.

During the interval between 96 and 98 seconds from the
beginning of the session the expected variation (not shown
in figure) is about 0.01 msec. After time 98 the input value
changes, and the variation exceeds the threshold: the new
input affects only the predicted variation, and the output
value is left unaltered. After time 99, the filter “learns”
an incremented variability of the input values, and finally
follows the new stabilized value. The expected variation at
time 100 is more than 3 msec. We conclude the case study
observing that although the filter parameters are not ap-
propriate (the threshold should be increased, and the gain
of both low-pass filters should be reduced) the behavior of
the filter is still acceptable.

We use the filter to predict the value of Os, the measured
clock offset, whose filtered output is used to feed the com-
putation of jitter asymmetry. We assume that clocks are
characterized by small periodic adjustments, whose result,
in the value of jitter asymmetry, is shown in figure 3. When
the observed variation exceeds the threshold, the round is
considered anomalous, and its timing is not considered in
the prediction of Os.

Filter input/output during a clock warp
1269.716 T T

Imeasured O's +
filtered Os (interpolated) -------

+

1269.715 | R

1269.714 E
N
e s R A
-7 H

1269.713 | .

1269.712 |- .

Os (secs)

1269.711 | i R

1269.710 | H R

1269.709 |- ' +

IR R b + +
&

1269.708 L L L L
96 98 100 102 104 106

secs

Fig. 2. Performance of the predictive filter during an experiment

IV. TIMESTAMPING WIRE EVENTS

Defining a metric in terms of wire times is not sufficient
to ensure that it can be measured in practice: we further
have to explain how, and under which conditions, relevant
wire times can be measured using a given time reference.
When this is possible, we say that the wire time can be
timestamped. In principle, timestamping is possible when
the wire time is associated to a wire event that in its turn
is related to an event that is observable from the applica-
tion that wants to timestamp the wire event. Since this
statement never holds in practice, we also have to bind the
errors that affect a certain timestamp.

In a one-way message transfer we can identify four rele-
vant wire times corresponding to the write and the read of
the first and of the last octet of the message. We briefly
discuss how they can be timestamped using the observable
events related to the sendto and recvfrom system calls.

A timestamp taken immediately before a sendto call in-
dicates a time reasonably near, and necessarily preceding,
the time when the first octet is written to the network in-
terface. Errors are due to the time needed to move the
message to the internal buffers, and by a time-slicing in-
troduced by time shared operating systems. The former
can be regarded as negligible if the measuring unit is not
overloaded with network traffic, while the latter should not
occur inside the sendto primitive (while interrupts are nor-
mally disabled) and unfrequently occurs during the times-

Effect of a clock warp on Ja

4 —
T T
-+ measured Ja +
N
N
3 - .
N
N
N
N
2 b R .
.
.
N +
"
"
1F + 4
+
+
~ g
3 p
< g
[l + +++++
R
O fyrerb e b+
+ +
+
1k i
2k N i
+
3 ! ! ! !
96 98 100 102 104 106

secs

Fig. 3. Jitter asymmetry computed using predicted Os in figure 2

tamping operation. Thus a timestamp taken immediately
before a sendto operation is a good indication of the write
wire-time of the first octet.

A timestamp taken immediately after a sendto call can-
not be associated to a wire event: if the user process that
issues the call is immediately re-scheduled, this timestamp
might be taken even before the write wire-time of the first
octet!

A timestamp taken immediately before a recvfrom call
can be associated to the read wire-time of the first octet if
that octet is already in the receive buffer when the call is
issued: otherwise it simply marks the beginning of a wait
that will terminate when the first octet is ready in the input
buffer.

A timestamp taken immediately after a recvfrom call
is a good indicator of the read wire-time of the last octet.
As in the case of the timestamp taken immediately before
a sendto, errors are due to the internal buffering imple-
mented by the operating system, and to infrequent time
slicing preemptions occurring during timestamping.

V. PROTOCOL DEFINITION — THE MAIN LOOP

The scheme in figure 4 illustrates a round of a protocol
that measures one-way bandwidth and jitter asymmetry us-
ing the timestamps marked as Ti: the unit on the left is
the probe, and the other is the target, and we want to char-
acterize the unidirectional communication from the former

probe target

T0

T1t0 open

y

T3
t
\ -

ack
T2 |

Fig. 4. Datagrams exchange during a round

to the latter.

A round is composed of three UDP datagrams sent
through the same socket pair:
« ashort open datagram informs the target that the round
is started;
¢ a following benchmark datagram shapes the one-way
bandwidth measurement, since the measure of this metric
changes with the size of the benchmark;
o a final ack datagram is used to measure, in conjunction
with the open datagram, the round-trip delay needed to
the jitter asymmetry measurement, and to conclude the
round.

Each of the three datagrams carries a 16 octets (128 bits)
header:
¢ atwo octets field (unsigned short int) for the type of
the datagram:
0 = OPEN, 1 = BENCHMARK, 2 = ACK;
e a two octets field (unsigned short int) for the size n
of the benchmark datagram in octets. This information
is included also in the open and ack datagrams;
o two four octets fields (struct timeval) for the times-
tamp of the round: one field is for the seconds, and one for
the fractions of a second. This value is taken as the iden-
tifier of the round, and has no relevance in the measure. It
is reported in each of the three datagrams.

The three datagrams are built as follows:
» the open datagram contains only the header;
o the benchmark datagram contains the header, followed
by a sequence of randomly generated octets, up to the de-
sired size;
« the ack datagram contains the header, followed by the
timestamps T3 and T;. The timestamps are represented as
double precision floats, and are marshalled (packed in perl’s

terminology) by the target, and unmarshalled (unpacked)
by the probe.

The units take a number of timestamps. The probe
reads the local clock immediately before the sendto of
the open message (Tp), immediately before the sendto of
the benchmark message (T7) and immediately after the
recvirom of the ack message (T3). The target reads the
local clock immediately after the recvfrom of the open
message (T3), and immediately after the recvfrom of the
benchmark message (T}).

The timestamps are used to estimate the delay between
the read of the first octet and the read of the last octet of
the benchmark packet, and the round-trip delay. A problem
arises for the measurement of wire time t,.,(benchmark),
which is needed to compute the one-way bandwidth. The
solution we propose is based on the claim that an appropri-
ate design, that we discuss in the next section, may ensure
that the timestamp T3 as an approximation of ¢g: to ensure
this, the protocol should enforce the following properties of
the timing of wire events:

(no shuffling) datagrams are received in the same order
they are sent, and

(target ready) Ts approximates the wire time of the read of
the first octet of the second datagram in the current round.

The timestamps collected during a round are used to
compute the observed clock offset, the one-way bandwidth
and jitter asymmetry:

Ty —To — (Ty — T3)

Os = T3—Ty— 5 (secs) (8)
n
Bw = m (kbyteS/SeC) (9)
(Ty —Ty) — 05
a 0910 (Ty —T4) + Os (dB) (10)

where n stands for the size of the benchmark packet, Os is
the predicted value of the offset, and T's are the timestamps
shown in figure 4.

In figures 5 and 6 we show the state chart of the main
loop of the two processes: each box represents a state, and
transition between the states is regulated by the occurrence
of an event, and entails the execution of an action, repre-
sented as follows:

controlling event

action

When an event or an action is timestamped, the name of
the timestamp is indicated between parentheses (for in-
stance, send open(TO0) records the timestamp TO before
the sendto call, and receive open(T3) records the times-
tamp T3 after the recvfrom call).

A round terminates when the probe receives the ack, or
the timeout of the receive ack() expires.

The next round can be executed immediately, or rounds
can be scheduled periodically . In the former case, the
behavior is extremely intrusive, and similar to an ftp ses-
sion: the effect is to saturate the available bandwidth for

INIT
send open(TO)

Open Sent

X
send benchmark(T1)

Benchmark Sent

receive ack(T2)
send open(T0)

receive ack(T2) and last rounc
EXIT

Fig. 5. The probe process state chart

a certain time, and to measure one-way bandwidth and jit-
ter asymmetry under such conditions. In the latter case
the measurement is far less intrusive, and is adequate as a
routine probe. In either case each round produces a value
for one-way bandwidth and for the jitter asymmetry. This
differentiates our tool from pathchar and udpmeon, that
are based on a burst of UDP packets.

VI. PROTOCOL DEFINITION — EXCEPTIONS HANDLING

To ensure the no shuffling requirement, we tag each mes-
sage with a progressive identifier: when the target detects
a shuffling, it aborts the round sending a negative acknowl-
edgement.

To ensure the target ready requirement, the probe sends
the open and the benchmark datagrams consecutively, and
checks that the two timestamps Ty and 77 are sufficiently
close. In case a relevant interval between the timestamps
is detected, the measure is considered not valid. If the net-
work carries together the two messages, we can assume that
when the target leaves the recvfrom of the open datagram,
the first octets of the benchmark datagram are already
in the receive buffer.

The protocol recovers the measurement session after ab-
normal events like the loss of a datagram. This is obtained
with timeouts and emergency exits.

The most frequent case is the loss of the benchmark
datagram. To cope with this event, the probe sets a timer
after sending the benchmark (default = 0.5 secs). If
the timer expires before the ack datagram is received, the

INIT
open socket

Listen

receive open(T3)
X

Open Received

receive benchmark
send ack(T4)

Ack Sent

receive open(T3)
X

last round
X

Fig. 6. The target process state chart

benchmark is re-sent a fixed number of times (default =
10 times), resetting the 7) timestamp. If no ack is re-
ceived, the next open is sent.

At the target, a timer is set, after the receive of a open
to the timeout of the probe, times the number of retries,
augmented by 10% (default 5.5 secs). When the timeout
expires, the target re-enters the wait for the next open.
Duplicate benchmark datagrams are discarded by the tar-
get, since they are received while the target is waiting for a
open, or since the timestamp recorded in the header does
not match the timestamp of the last open.

When the probe times out the first attempt, the measure
is altered, and the probe should consider the message as
lost. The successive round is also altered, since the round-
trip measure will encompass also the waiting time at the
target.

In figures 7 and 8 we show the state charts of the probe
and target processes limited to the handling of abnormal
events. We omit from the state chart of the probe that:

o the probe terminates when it finds the target socket
closed, and

« under certain conditions the timing of the round is con-
sidered unsuitable for measuring the one-way bandwidth
and the jitter asymmetry.

Open Sent

timeout(D) and not (k+1)-th retry
send benchmark(T1)

-

L |Benchmark Sent

timeout(D) and (k+1)-th retr

send open(T0)

Fig. 7. The probe process state chart (exceptions handling)

Listen

J,ﬁ

Al

)

Open Received

receive open(T
X

receive benchmark and Id is Qk

Jx

timeout(1.1*D*k)
X

Ack Sent

receive benchmark and Id is not
close socket

k

X
open socket

Wait shutdown

Fig. 8. The target process state chart (exceptions handling)

VII. PROTOTYPE IMPLEMENTATION AND
EXPERIMENTAL RESULTS

The above protocol has been implemented in Perl as a
tool for the Debian/Linux platform, that we call netprobe.
The tool consists of two programs: probe.pl running on
the probe host, and probed.pl running on the target host.
The latter program is configured as a daemon.

The main purpose for this experimental step is to prove
that the metrics and the protocol illustrated in theory can
be effectively implemented. Here we do not want to in-
troduce a production network monitoring tool, but simply
prove that the ideas illustrated in this paper can be used
in practice. However, we believe that, with a few mod-
ifications and under not too restrictive assumptions, the
prototype can be usefully applied to network monitoring.

The experimental results that we present here as not
meant to demonstrate the application of the tool in a work-
ing environment: instead we use a simple benchmark sys-
tem in order to check if the measures returned by our tool
are consistent with a theoretical expectation. In addition,
we opted to produce a tightly packed sequence of rounds,
in order to check the internal timing of the protocol under
stress. As we say at page 5, this results in an extremely
intrusive behavior of the tool, and it is not an appropriate
option for a routine monitoring in a working environment.

The following results have been obtained in a 10 Mbps
Ethernet branch, and the only user of the network was
netprobe. The experiment consisted in a sequence of 1000
tightly packed rounds, with a benchmark packet of 1000
octets. The delay between two successive rounds was ap-
proximately 3 msecs, that were spent in the arithmetic cal-
culations needed to compute and store the values of the
one-way bandwidth and jitter asymmetry, as illustrated in
the previous sections. No special care was paid to optimize
such computation.

The expectations are the following:

e as for the bandwidth, we consider that a benchmark
packet fills partially the Ethernet frame, whose MTU is
1500 octets. Since each 1500 octets frame takes approxi-
mately 1.2 msecs to be transmitted on a 10Mbps line, we
might expect that this is the time needed, in our experi-
ment, to exchange 1000 octets. This justifies an expected
bandwidth of approximately 800 Kbytes/sec. The approx-
imation does not consider the length of the headers and
buffering delays;

« since the hosts and the network are idle, except for the
activity inherent the experiment, we should expect a jitter
asymmetry concentrated around the value of 0 dB.

The experiment lasted approximately 5 seconds, and in
the following figures we analyze an interval of 0.4 seconds
centered around the 4th second, in order to have more read-
able graphs.

The measured clock offset Os (see figure 9) ranges
around the value of 2 hours to simulate unsynchronized
hosts. The clock offset remains constant during all the ex-
periment, thought we may expect that it is periodically
adjusted, and therefore might exhibit the kind of behavior
illustrated in figure 2. It is interesting to note that the clock

10 Mbps Ethernet: Os

-6830.30556 T T T T T T T
measured Os (in secs) +
filtered Os -------

-6830.30556

-6830.30555

-6830.30555

-6830.30554 - + 1

Os (secs)

-6830.30554 - + H

T
+
!

-6830.30553

-6830.30553

-6830.30552 L L L L L L L
38 38 39 395 4 405 41 415 42

secs

Fig. 9. Measured and filtered clock offset

offset accuracy is excellent: the measured values exhibit a
quantum of 1 psec, due to the approximation introduced
by the print statement. This proves that Perl is appro-
priate for measuring short time intervals, when using the
gettimeofday Unix primitive.

As for the measured one-way bandwidth (see figure 10), it
is approximately constant during the experiment, and the
measured value (approximately 740 Kbytes/sec) is in excel-
lent agreement with the expected value of 800 Kbytes/sec.
Other experiments with different benchmark packet sizes
confirm that bandwidth measurements are valid.

Finally, the measured jitter asymmetry (see figure 11) ex-
hibits the expected concentration around the zero, justified
by the absence of load in the system.

Another experiment of 1000 tightly packet rounds was
run using a benchmark packet of 1400 octets, in a lightly
loaded 10Mbps Ethernet. The graphs in figure 12 and 13
show the frequencies of the measures of one-way bandwidth
and jitter asymmetry.

The values of one-way bandwidth are concentrated
around a value of 600 Kbytes/sec, and reflect the fact that,
although the frames are better exploited by a benchmark
length of 1400 octets, the existing load lowers the available
bandwidth.

As for the jitter asymmetry, we observe that positive
and negative branches have different shapes: this is an ev-
idence that the two branches represent distinct aspects of

10 Mbps Ethernet: Bw

750 T T T T L T T
measured Bw (in Kbyte/sec) — +
filtered Bw -------
+ +
745 4 + + ++ B
+ + + + + + + +
++ o+ o + ++
R + A + +
¥ /
A + A + o+t S+ ++ 0+
\ s / \ -
R e [T L IR ava
Y Va > Y
s - 4/ R
@ Ly S
] + -+ - +
& +
_'% 740 -, N 4
< +
=
[i7]
+ +
+
735 i R
+
+
+ +
730 1 1 1 1 1 1 1

4 4.05 4.1 4.15 4.2

secs

3.8 3.85 3.9 3.95

Fig. 10. Measured and filtered bandwidth

the data transfer. We infer that they represent the jitters
experienced by forward and backward messages. The posi-
tive branch, that represents forward jitter, falls steeply and
smoothly. The negative branch, representing backward jit-
ter, presents relevant peaks at 8 dB, corresponding to a
delay 6 times longer than expected.

Conclusions

We have illustrated two one-way metrics whose measure-
ment does not need an accurate clock synchronization and
exhibits a low overhead on the communication infrastruc-
ture. Their combination gives an insight of the quantity
and quality of resource availability in the communication
infrastructure between two sites.

REFERENCES

[1] G. Almes, S. Kalidindi, and M. Zekauskas. A one-way delay metric
for IPPM. Technical Report rfc2679, Network Working Group,
1999.

[2] Allen B. Downey. Using pathchar to estimate internet link char-
acteristics. In Measurement and Modeling of Computer Systems,
pages 222-223, 1999.

[3] D. Ferrari. Client requirements for real-time communication
services. Technical Report rfc1193, Network Working Group,
November 1990.

[4] M. Garrett and M. Borden. Interoperation of controlled-load ser-
vice and guaranteed service with ATM. Technical Report rfc2381,
Network Working Group, August 1998. bucket.

[5] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis. Framework
for IP performance metrics. Technical Report rfc2330, Network
Working Group, May 1998.

10 Mbps Ethernet: Ja
0.20 T T T

I measu'red Ja (in dB) T
filtered9a -------

0.10 -]

0.00 |

Ja (dB)

-0.05 [. 4

-0.10 | .

+

_0.25 1 1 1 1 1 1 1
3.8 3.85 3.9 3.95 4 405 41 415 42

secs

Fig. 11. Measured and filtered jitter asymmetry

[6] J. Postel. Internet control message protocol. Request for Com-
ment 792, Network Working Group, September 1981.

[7] H. Shultzrinne, S. Casner, R. Frederick, and V. Jacobson. Rtp:
A transport protocol for real-time applications. Request for
Comment 1889, Audio-Video Transport Working Group, January
1996.

[8] Rich Wolski. Dynamically forecasting network performance us-
ing the network weather service. Technical Report TR-CS96-494,
University of California at San Diego, 1996.

APPENDIX
I. PROOF OF LEMMA 1

We introduce the following non-measurable quantities:
o A = clockpy(t) — clockyy(t) be difference between the lo-
cal clocks of the target and of the probe, that we assume
constant during a session;
o d(m) the delay, referenced to the Universal time, between
the write of the first octet and the read of the last octet of
message m.

The above figures are related by the following equalities:

Lemma 2:

diff(fwd(n)) = 66(fwd(n)) — A
diff(bwd(n)) = d(bwd(n)) + A

that can be proved using the definition of A and equation
4.

We assume that A is not measurable, since its compu-
tation is functionally equivalent to the synchronization of
the clocks of the two sites. As a consequence, the two are
unknown as well.

Ethernet: Bw
80 T T T T T T

IBw fre'quenc'y

70 | E

60 N -

50 | R

40 4

% freq

30 R

20 | E

10 - 1

0 1 1 1 [T 1 1 1 [1 1 1
0 100 200 300 400 500 600 700 800 900 1000 1100
Bw (Kbytes/sec)

Fig. 12. Distribution of one-way bandwidth

We use the equations in lemma, 2 to rewrite the definition
of Os in terms of unobservable delays:

d(bwd(n)) — 6(fwd(n))

A
B +

Os(n) = (11)
Note that, when the forward and backward delays are
identical, Os corresponds to the clock offset; the error of
this measure is bound by the whole round-trip.
Next we use equations 11 and 4 to rewrite the value of
Ja in terms of non measurable quantities, and, using a
property of the logarithms, we obtain:

Ja(n) >0 & §(fwd(n)) - d(fwd(n — 1)) >

d(bwd(n)) — é(bwd(n — 1))
By the definition of jitter, in equation 3:

Ja(n) > 0 & jittergya(n) > jitterpyq(n)

Ethernet: Ja
T T T T T T
Ja frequency ———

60 T

50

% freq
w
o
T

20

10

20

Ja (dB)

Fig. 13. Distribution of jitter asymmetry

10

