
Grid Infrastructure Architecture: a modular approach from
CoreGRID

Augusto Ciuffoletti+

augusto@di.unipi.it
Antonio Congiusta∗∗

acongiusta@deis.unical.it
Gracjan Jankowski∗, Michal Jankowski∗, Norbert Meyer∗

{gracjan,jankowsk,meyer}@man.poznan.pl
Ondrej Krajičeko

krajicek@ics.muni.cz
—

+ INFN/CNAF, Bologna, Italy
∗∗ DEIS, Universit̀a della Calabria, Italy

∗ Poznan Supercomputing and Networking Center, Poznan, Hungary
o Masaryk University, Czech Republic, Brno

CoreGRID Technical Report
Number TR-0089
August 22, 2007

Institute on Grid Information, Resource and Workflow
Management Services

CoreGRID - Network of Excellence
URL: http://www.coregrid.net

CoreGRID is a Network of Excellence funded by the European Commission under the Sixth Framework Programme

Project no. FP6-004265



Grid Infrastructure Architecture: a modular approach from
CoreGRID

Augusto Ciuffoletti+

augusto@di.unipi.it
Antonio Congiusta∗∗

acongiusta@deis.unical.it
Gracjan Jankowski∗, Michal Jankowski∗, Norbert Meyer∗

{gracjan,jankowsk,meyer}@man.poznan.pl
Ondrej Krajičeko

krajicek@ics.muni.cz
—

+ INFN/CNAF, Bologna, Italy
∗∗ DEIS, Università della Calabria, Italy

∗ Poznan Supercomputing and Networking Center, Poznan, Hungary
o Masaryk University, Czech Republic, Brno

CoreGRID TR-0089

August 22, 2007

1 Introduction

According to (Foster et al., 2002), a Grid is a complex architecture consisting of a collection of resources, which are
made available at user level through a number of services. Such definition opens the way to a number offunctional
components, whose definition is of paramount importance for the design of a Grid: their semantics anticipate the capa-
bility of a Grid to make an efficient use of the resources it contains, to offer differentiated levels of quality of service,
and, in essence, to meet user needs. Given the complexity andimportance of such infrastructure, its design should
address modularity as a primary feature: services providedby the Grid infrastructure should be precisely defined as
for their interface and semantics, and form an integrated architecture which is a framework for their implementation.
Modularity makes viable the independent evolution of each component, and allows the customization of the overall
infrastructure.

In order to guarantee interoperability among components,standardinterfaces are not sufficient. In fact, the ca-
pabilities of a certain functional component should be wellunderstood, and agreed in the community that develops
other interoperating services: typical requirements address resource access, workflow management, and security. Such
semantics should be compatible with the expected needs of the user, be it a human or a Grid-aware application.

In addition, past experiences (Laure et al., 2006) prove that there is a tradeoff between portability and reuse of
legacy tools: when functionalities that were not designed for integration are included into an existing project, the
whole project tends to inherit all portability problems of the legacy parts. Aplugin orientedapproach does not solve
the problem, but tends to complicate the design, and may evenrestrict portability.

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).

1



Taking into account such problems, we indicate awrapper orientedapproach: legacy tools are not directly included
in the design, but accessible through interfaces that comply with portability requirements of the hosting environment.
The agent that implements such functionality (the “wrapper”) is in charge of publishing portability issues that charac-
terize the specific resource.

One key issue in the design of a Grid environment is the technology used to support the Grid Information System
(GIS). It is more and more evident that a unique technology (for instance, a relational database) cannot satisfy all needs,
and may exhibit real scalability limits in case of take off ofthe Grid technology (BerkeleyDB, ). Here we propose
a differentiated strategy for such vital component, splitting its functionality into a directory service, and a streaming
support. The monitoring infrastructure provides input to the GIS: we describe such infrastructure decomposed into
resource and middleware monitoring, workflow monitoring and network monitoring.

Another key aspect of a Grid infrastructure is job submission. According to the GGF guidelines in (Rajic et al.,
2004), we consider a unique component that performs batch submissions, scheduling and local queuing, workload
monitoring and control. However, such component needs support for checkpointing and accounting, two activities
that appear to require capabilities that need to be addressed specifically. We introduce two components that implement
such functionalities.

The resulting Grid infrastructure should address both the need of e-science applications, mostly oriented to storage
and computation intensive applications with moderate scalability, and emerging industrial applications, where the
demand is variegated and includes the management of a large number of small jobs: in this perspective, flexibility is
mandatory to allow customization.

Since we want to follow a clean design strategy, we address interoperation and integration issues since the early
steps, using the GIS as a backbone. As a consequence, the adoption of a programming style and tools that support
polymorphism is mandatory: the ”wrapper oriented” approach indicated above helps on this way.

In Section 2 we indentify the functional components, and in section 3 we consider a GIS which provides an
integration backbone. In figure 1 we depict a schematic view of our proposal.

2 Functional components of a framework architecture

The focus of a Grid infrastructure is on resource management: the goal is to compose the operation of basic services
into higher level tasks. To this purpose, the Grid infrastructure accepts and processes task descriptions that articulate
a stepwise composition of computing activities. The use of appropriate basic services, whose availability is constantly
monitored by aResource Monitoringcomponent, is scheduled after unfolding the dependencies between atomic com-
putational tasks. Resource scheduling extends not only in the name space, to determine which resource is to be used,
but also in time, describing when a certain resource will be busy on a certain task.

The operation of assembling resources in order to perform a complex task is associated to theWorkflow Analyzer
component, whose role is to accept the operational description of a complex task, to manage, and to monitor its
unfolding. The unfolding of a workflow must be sufficiently flexible, in order to cope with unanticipated events that
may affect resources, either improving or degrading their performance. The appropriate way to cope with such events
is the logistic re-organization of workflow execution, which usually entails the displacement of stateful computations,
by re-instantiating services whose state corresponds to anintermediate computational step.

Two basic functionalities are offered: the registration ofa snapshot of an intermediate state of a service, and the
re-instantiation of the same service with the given intermediate state. All resources in a workflow participate to such
reorganization, and the resulting workflow execution must be consistent with the expected semantics. TheCheckpoint
Managercomponent is in charge of supporting the logistic re-organization of a workflow, preserving the relevant
state information of a component services in preparation for the reconfiguration of the supporting low level services.
Specific checkpointing indications are inserted in the operational description provided to the Workflow Analyzer.

Since resources are similar to goods, their sharing must be controlled accordingly, taking into account property and
commercial value. In that sense, the Grid infrastructure provides identities to Grid users, and defines service semantics
according to the identity of the user, thus enforcing individual property. Using the same tools, the usage of a certain
service is quantified, and a commercial value associated with it. TheUser and Account Managementcomponent is
appointed with such aspects.

CoreGRID TR-0089 2



Functional components Descriptors GISStreams

− Job descr.

− Workflow descr.
− Session descr.

U
se

r In
te

rfa
ce

− Environment descr.

− Session descr.

− Session descr.

− Session descr.

− Resource descr.

− User descr.

− Job descr.

− Session descr.
− Workflow descr.

− Ckpt provider descr.
− Ckpt image descr.

− Job descr.

− Ckpt provider descr.
− Ckpt image desc.

− Job descr.

G
rid

 In
fo

rm
a

tio
n

 S
e

rvice

Analyzer
Workflow

Checkpoint
Manager

User/Account
Management

Resource
Monitoring

Figure 1: Integration between the functional components ofour framework. Eachcomponentis a distributed entity
that contributes to resource management exchangingdescriptorswith other components. Persistent information flows
are encapsulated intostreams, represented bysessiondescriptors)

The whole Grid infrastructure hinges upon theGrid Information System(GIS), which supports the integration
between the parts of this distributed entity. From an abstract point of view, the content of the Grid Information System
represents the state of the Grid, and is therefore dynamic. However, while some data remains constant for long periods
of time, other are updated frequently, for instance when such information represents the residual (or preemptable)
share of a resource.

The activity of a component is pervasive, and many distinct agents contribute to its implementation: for instance,
each site can provide a Workflow Analyzer agent in charge of accepting user requests. Such approach fits naturally
with security requirements, which are based on mutual identification among agents.

Here we give a summary of the functionalities each componentoffers, and we outline their internal structures: we
use as a reference the work of the partners of the CoreGRID Institute on Grid Information, Resource and Workflow
Monitoring.

2.1 Workflow Analyzer

The Workflow Analyzer cares about workflows management underseveral aspects such as mapping, scheduling, and
orchestration of workflow tasks against the available, dynamic Grid resources. To such purpose, it has close interaction

CoreGRID TR-0089 3



with the Grid Information System in order to discover and allocate appropriate resources. But, at the same time, it is
also a source of information coming from the monitoring of the workflows being executed: most of such information
is reused by the Workflow Analyzer itself for adjusting the ongoing executions.

A Grid workflow can be specified at different levels of abstraction: in (Deelman et al., 2003)abstract workflows
andconcrete workflowsare distinguished, the difference being whether resourcesare specified through logical files
and logical component names or through specific executablesand fully qualified resources or services. According to
this approach the workflow definition is decoupled from the underlying Grid configuration.

For this reason, the mapping phase (also referred to as matchmaking) is particularly important for selecting the
most suitable resources that better satisfy the constraints and requirements specified in the abstract workflow, also
with regard to quality of service and workload. The mapping process produces a concrete workflow that is suitable
to be executed by a workflow engine, providing for schedulingand execution management capabilities. It is worth
observing that, in case of dynamic scheduling, it is possible to re-invoke the mapping process at runtime, in order to
modify the concrete workflow instance as a result of relevantevents modifying the status of candidate resources.

However, it is important to instrument job descriptions before actual execution, in order to ensure that the work-
flow execution is suitably checkpointed: succinct requirements about workflow recoverability are in the Workflow
description provided by the user.

When the workflow enters the running state, the Workflow Analyzer monitors its advancement, and takes appro-
priate actions in response to relevant events. During the workflow execution, monitoring is essentially related to the
observation of the workflow status. In particular, information about the execution of each single job included in the
overall workflow is reported by the monitoring system. Typical information is constituted by services execution status,
failures, progress, performance metrics, etc.

In case of failure, the workflow execution service itself tries to recover the execution, for example by reassigning
the work to a different host in case of host failure. To implement fault tolerance on a more refined extent, it is
necessary whenever possible to trigger checkpoint recording, and drive the restart of one or more jobs from the last
available checkpoint. The decision whether to checkpoint or restart a workflow is made on the basis of information
from Resource monitoring.

2.2 Checkpointing

The Checkpointing component is built around the idea of GridCheckpointing Architecture (Jankowski et al., 2006;
Jankowski et al., 2005), a novel concept that defines Grid embedded agents and associated design patters that allows
the integration of a variety of existing and future low-level checkpointing packages.

The emphasis has been put to make the GCA able to be integratedwith other components and especially with
the upper layer management services, for instance the Grid Broker or the Workflow Analizer. The main idea of the
GCA boils down to provide a number of Checkpoint TranslationServices (CTS) which are treated as drivers to the
individual low-level checkpointing packages. The CTSes provide a uniform front-end to the upper layers of the GCA,
and are customized to the underlying low-level checkpointers.

When the CTS is deployed on a Computing Resource, the GCA has to be informed about its existence. To fulfill
this requirement each CTS is registered at component named Grid Checkpointing Service (GCS), and the GCS further
exports the information about the available CTSes and related properties to the GIS, so that the GIS becomes the
mechanism that connects the GCA with the external Grid environment. Additionally, from the point of view of the
Workflow Analyzer, the GCS is the gateway to which a checkpoint request has to be sent. When the GCS receives the
request of taking the checkpoint of a given job, it forwards the request to the appropriate CTS. The GCS is able to find
the adequate CTS using the information that the execute-job-wrapper registers when a checkpointable job is started.

The execute-job wrapper is a special program provided together with an associated CTS. The component that is in
charge of submitting the user’s job to the given Execution Manager replaces the actual job with the adequate execute-
job wrapper and passes to the second the original job and the global identifier assigned to this job. Which execute-job
wrapper is to be used depends on which CTS has been matched to the job’s requirements, according with GIS records.
When the execute-job wrapper is started it appropriately configures the GCA environment and finally with help of
exec() syscall replaces itself into the original job.

When the Workflow Analyzer decides that a given job is to be recovered, then the job has to be resubmitted in

CoreGRID TR-0089 4



an adequate way: one relevant issue is that the job can be resubmitted only to a Computing Element associated with
a CTS of the same type that was used to checkpoint the job. Whena proper Computing Element is found the job
is resubmitted to it, but instead of resubmitting the original job itself the recovery-job-wrapper is resubmitted. The
original job, as well as the identifier of the checkpoint thatis to be used in the recovery process, are passed to the
recovery-job-wrapper as the arguments.

The recovery-job wrapper is the counterpart of the execute-job wrapper used for the recovery activity. The
recovery-job wrapper starts fetching the image, and the subsequent actions are similar to those performed by the
execute-job wrapper. As a last step, the recovery-job wrapper calls the appropriate low-level checkpointing package
to recover the job using the image indicated by the calling Workflow Analyzer.

The GCA shares the motivations of the Grid Checkpoint and Recovery working group of the GGF (Stone et al.,
2005), which is to include the checkpointing technology into the Grid environment. However, the GCA focuses mainly
on legacy checkpointing packages and, notably those that are not Grid-aware, while the GridCPR ”is defining a user-
level API and associated layer of services that will permit checkpointed jobs to be recovered and continued on the
same or on remote Grid resources”. Therefore, while GridCPRworks on a specification that future Grid applications
will have to adhere to in order to make them checkpointable, our effort is towards the integration of existing products
into a complex framework.

2.3 User and Account Management

The User and Account Management component (Denemark et al.,2005) offers a controlled, secure access to grid
resources, complemented with the possibility of gatheringdata from resource providers in order to log user activity
for accounting and auditing purposes. These objectives arerealized introducing authorization, ensuring an appropriate
level of job isolation and processing logging data. Avirtual environmentencapsulates jobs of a given user and grants
a limited set of privileges. Job activity is bound to a user identity, which is qualified as a member of an organization.

The User and Account Management component is a pluggable framework, that allows combining different autho-
rization methods (e.g. gridmap file, banned user list, VO membership based authorization) and different implemen-
tations of environments (virtual accounts, virtual machines, and sandboxes). The configuration of the framework is
quite flexible and depends on detailed requirements which may vary between the resources, so the administrators may
tune local authorization policy to the real needs and abilities.

The internal architecture of an agent consists of 3 modules:an authorization module, a virtual environment mod-
ule and a virtual workspace database. The authorization module performs authentication first (based on existing
software, such as Globus GSI). The authorization is done by querying a configurable set of authorization plugins.
The virtual environment module is responsible for creation, deletion and communication with virtual environments
modeled as Stateful Resources. The module is also pluggable, so it is possible to use different implementations of
VE. The database records operations on the virtual environments (time of creation and destruction, users mapped to
the environment, etc.). These records together with the standard system logs and accounting data, provides complete
information on user actions and resource usage.

2.4 Resource Monitoring

The information on resources and accompanying middleware is provided by the Resource Monitor. Resource Monitor
component collects data from various monitoring tools available on the grid. We do not presume any particular
monitoring approach, since the current state of the art provides quite wide range of monitoring toolkits and approaches.
It is however a difficult task to integrate and process monitoring information from various monitoring tools. Moreover,
we cannot assume any scale of the resulting infrastructure thus scalability of the proposed solution, both in terms of
amount of monitored resources and required processing throughput for monitoring data, must be emphasized.

To achieve the desired level of scalability, with security and flexibility in mind, we propose the design of a Resource
Monitor based on the C-GMA (Krajicek et al., 2006) monitoring architecture. C-GMA is a direct extension of the
GMA (Tierney et al., 2002) specification supported by the Open Grid Forum.

The key feature supplied by the C-GMA is the introduction of several metadata layers associated with services,
resources and monitoring data. The metadata may specify thedata definition language used by the services, the
non-functional properties and requirements imposed by theservices and resources (such as security and QoS-related

CoreGRID TR-0089 5



requirements) and others. The metadata are used in thematchmakingprocess implemented by the C-GMA architec-
ture, which is essentially a reasoning on provided metadataabout the compatibility of the services and data described
by them. When the examined parties are considered compatible, the “proposal” is sent to them to initiate a potential
communication. In this way, and with the introduction of various translation components, the C-GMA architecture
enables the exchange of monitoring data between various monitoring services.

The Resource Monitor service leverages this functionalityby connecting to the C-GMA monitoring architecture
and using translation services for various monitoring toolkits it collects the monitoring data and supplies them to the
Grid Information System.

Special attention is paid to Network Monitoring, since scalability issues appear as challenging. We have identified
one basic agent, the Network Monitoring Element, which is responsible of implementing the Network Monitoring
Service (Ciuffoletti and Polychronakis, 2006). Network Monitoring Elements (NMEs) cooperate in order to implement
the Network Monitoring component, using mainly lightweight passive monitoring techniques. The basic semantic
object is Network Monitoring Session, which consists in themeasurement of certain traffic characteristics between the
Domains whose NMEs participate in the session.

To improve the scalability of the Network Monitoring Service, the NMEs apply an overlay Domain partition to
the network, thus decoupling the intra-domain network infrastructure (under control of the peripheral administration),
from the inter-domain infrastructure (meant to be out of control of the peripheral administration). According to the
overlay domain partitioning network, monitoring sessionsare associated to Resources denoted as Network Elements
(NE), corresponding to inter-domain traffic classes.

The overlay domain partition is maintained in an internal distributed database, which allows the coordination
among Network Monitoring Elements. The management of network monitoring sessions includes the control of
periodic sessions, as configured by network administrators, and of on-demand sessions dynamically configured by
applications, and uses a scalable peer to peer mechanism to diffuse updates.

3 Integration between functional components

The central idea of the proposed architecture is to convey all the data through the Grid Information Service in order to
have a standard interface across the different administrative sites and services (see (Aiftimiei et al., 2006; Andreozzi
et al., 2005) for a similar approach).

One relevant feature of a data repository, and of the Grid Information System, is the volatility of its content. At
one end we find “write once” data, that are not subject to update operations and have a relatively low volatility. At the
other hand we find data that are frequently updated. The functionality associated to the Grid Information System is a
mix of both: while certain data, like a Workflow description,fall in the “write-once” category, other kind of data, like
resource usage statistics, fall into the category of data that are frequently updated: a solution that devises a common
treatment for both kinds of data suffers of a number of inefficiencies, first the lack of scalability.

Therefore our first step is to recognize the need of distinct solutions for persistent and for volatile data. One criteria
to distinguish the two kinds of data is the length of the time interval during which the information remains unchanged,
under normal conditions. Here we assume that a significant threshold is given by the typical job execution time: we
consider as persistent those pieces of information that, under normal conditions, remain valid during the execution
of a job. We call such informationsdescriptors: starting from the specifications of the components that compose
our framework given in previous sections, we now classify the descriptors that are exchanged among them, and that
collectively represent the persistent content of the Grid Information System.

Workflow descriptor It is acquired from a user interface by the Workflow Analizer component. It has the function
of indicating the stepwise organization of a Grid computation. It contains high level indications about the
processing requested at each step, as well as dependencies among individual steps. It should be designed in
order to hide all unnecessary details, for instance packagenames or versions, and focus on the functionality
(for instance, “fast fourier transform”, or “MPEG4 compression”). During workflow execution, such structure
is used by the Workflow Analizer component in order to monitorworkflow execution.

Job descriptor It is produced by the Workflow Analizer component, and fed to various other components: it is used
by the Checkpointing component in order to prepare the execution environment with checkpointing facilities,

CoreGRID TR-0089 6



and by the User and Account Management component in order to associate an appropriate environment to its
execution. The Job description is used by the Workflow Analizer component in order to instruct resources about
their activity, and during workflow execution, to monitor workflow advancement.

Checkpoint Image Descriptor It is produced by the Checkpointing component (in case of theGCA, this descriptor is
produced by the CTS) upon recording a new checkpoint. The descriptor contains the bookkeeping data regarding
the newly created image. The data can be used by the Workflow Analizer in order to find the identifier of the
image that is to be used in order to perform recovery and migration. The GCA itself, basing on the descriptor,
is able to fetch the image to the node on which the given job is to be recovered.

Checkpoint Provider Descriptor It is produced by the Checkpointing component. The descriptor advertises the
location of service that provides access and unified interface to a particular low-level checkpointing package.
The Workflow Analizer uses such descriptior to find the node that provides the desired checkpointing package,
as specified in job descriptor. Upon recovery, the descriptor allows finding the nodes offering the same package
used for checkpointing.

Session descriptorIt is produced by a generic component, and supports the exchange of volatile data, as described
below.

User descriptor It is produced and used by the User and Account Management component. It contains a description
of a user, like its name, institution, reachability, role, as well as security related data, like public keys. The
Workflow Analysis component uses such data to enforce accessrestrictions when scheduling a Workflow.

Environment descriptor It is produced and used by the User and Account Management component. It contains
references to he descriptions of the resources associated to a given processing environment, as well as the access
modes for such resources. This may correspond, for instance, to what is needed to run a specific kind of job,
and to the identities of the users that are allowed to operatewithin such environment. The Workflow Analysis
component uses such data in order to process a workflow description.

Resource descriptor It represents usual resource descriptions, including storage, processing, network and network
monitoring elements. The identification of a resource includes its network monitoring domain. The Workload
Analyzer uses such descriptions in order to schedule job execution, and allocate checkpoint storage.

The management ofdescriptorsrelies on a directory-like structure. Such structure cannot be concentrated in
replicated servers, but distributed in the whole system based on local needs. Functional components that need to have
access to such data should address a proxy, which makes available the requested information, or add/delete a descriptor.
An LDAP directory provides a first approximation of such entity: however, descriptors are not organized hierarchically.
A better alternative is an adaptive caching of those descriptors that are considered locally relevant: for instance, the
descriptor of a monitoring session might be cached in a GIS proxy near the monitored resource. Descriptors are
diffused in the system using a low footprint, low performance broadcast protocol, and cached wherever needed.

The volatile data is represented by data that change during the execution of a job: a typical example is the workload
of a computing element. Such data are produced by one of the components described in the previous section, and
made available to a restricted number of other components. The storage into a globally accessible facility, included
a distributed relational database, seems inappropriate since the information is usually transferred from a source to a
limited number of destinations. The concept that is usuallyapplied to solve such kind of problems is the multicast.

A multicast facility appropriate for diffusing volatile data of a Grid Information System has many points in com-
mon with a Voice over IP infrastructure: the container of thecommunication is similar to a Session (as defined in the
SIP protocol). In contrast with a typical VoIP application,the data trasfer within a session in mainly uni-directional
and requires a low bandwidth with moderate real time requirements: we callstreamsthe information flows associated
to the trasport of volatile data within a Grid Information System.

All of the components outlined in section 2 are able to initiate or accept a session with another component: security
issues are coped with using the descriptors associated withthe agents. E.g., a Resource will accept a call only from a
Workflow analyzer that submitted a job. Here we outline some of the relevant streams:

CoreGRID TR-0089 7



Resource usage streamIt is originated by a resource, like a Storage Element, and summarizes the performance of
the resource, as well as the available share of it. Typical callers are the Workflow Analyzer, either during the
resource selection or the execution phase.

Workflow advancement stream It is originated by a Workflow Analyzer component, and reports the caller about the
workflow advancement. Typical callers are user oriented interfaces.

One characteristic of a session, that makes it not interchangeable with a directory service, is that the establishment
of a session has a relevant cost, which is amortized only if the session persists for a significant time interval. For this
reason we include sessions in the number of entities that have a descriptor recorded in the Grid Information Service.

Such descriptor advertizes the existence of a given session: it is a task of the callee to create and make available an
appropriateSession descriptor, as outlined above. Sessions can be activated on demand, or be permanently available:
such option depends on the balance between the workload needed to activate a new session on demand, and of keeping
it warm for connection. E.g., Network Monitoring sessions will be mostly activatedon demand, while Storage usage
statistics can be maintained permanently active.

4 Comparison with other works

The architecture we propose takes into account the goals andachievements of a number of scientific, as well as
industrial projects that accepted the challenges proposedby the design of an effective grid infrastructure.

One outstanding project which is being developed to meet therequirements the scientific community is gLite: it is
developed within the European EGEE project, the successor of DATAGRID. Its purpose is to capitalize tools and ex-
perience matured in the course of DATAGRID, in order to assemble a Grid infrastructure usable for high performance
computation, first the LHC experiment on schedule for the next year.

We consider gLite (Laure et al., 2006) as a precious source ofexperience about a real scale Grid environment. We
considered as relevants the inclusion of a number of features that are not considered, or considered at an embrional
level, in gLite. Namely, we introduce a specific component that takes into account job checkpointing, we adopt a
more powerful workflow description language (but gLite is working towards a DRMAA (Rajic et al., 2004) compliant
interface), we take into account the task of workflow monitoring under scalability requirements, also considering
networking resources, we differentiate the functionalityof the GIS into a high latency directory service, and a multicast
real-time streaming service. Overall, with respect to gLite, we considered the need for a wide portability: although
such problem is not overly relevant for the environment for which gLite has been developed, we considered it relevant
in a broader scope. To improve portability we suggest the realization of an integrated framework for the whole
infrastructure, hosting legacy components encapsulated in specific wrappers.

With respect to implementations based on the DRMAA proposedstandard (Rajic et al., 2004) we consider the
interactions between Resource Management and Checkpointing, since we observe that the resource management is
the component in charge of instructing the resource about activities relevant to recovery and relocation of running
jobs. Therefore we describe an interface between a component in charge of managing a transparent management of
checkpoints, and another in charge of interpreting user requests.

The N1GE by Sun (Bulhes et al., 2004) is considered as a relevant representative of the industrial effort towards
the implementation of a Grid infrastructure. Such project recognises the problems arising from the adoption of a
monolythic relational database, and adheres to the DRMAA standards as for job descriptions. In order to overcome
scalability limits imposed by a monolythic databases, it adopts a more flexible commercial database, Berkeley DB
(BerkeleyDB, ). In our proposal we identify the kind of services of interest for our infrastructure, and indicate com-
plementary solutions, that cannot be assimilated to a relational database. This should improve scalability and resource
usage.

The focus of the GPE (Ratering, 2005) prototype by Intel is tobridge users from non-Grid environments, and to
provide an interface that will remain sufficiently stable inthe future, shielding the user from the changes of a still
evolving middleware technology. Therefore the focus is on the provision of a powerful interface that adapts to several
kinds of users. In order to take advantage of legacy tools, like UNICORE (UNICORE, 2003), security issues are
delegated to a specific component, the Security Gateway, that enfoces a secure access to sensitive resources. In our

CoreGRID TR-0089 8



view this is a source of problems, since the presence of a bottleneck limits the performance of a system. Instead, we
indicate a pervasive attention to security issues, in orderto implement appropriate security issues inside each agent.

We pay special attention to a Grid resource that is often overlooked: the network infrastructure. Such resource is
difficult to represent and to monitor since, unlike other resources, its complexity grows with the square of system size.
Yet this resource has a vital role in a distributed system as awhole, since its availability determines its performance,
and directly reflects on jobs performance.

5 Conclusions

CoreGRID is an European project whose primary goal is to foster collaboration among european organizations towards
the definition of an advanced Grid architecture. One of the tasks that contributes to this achievement is targeted at the
description of anIntegrated Framework for Resource and Workflow Monitoring. In order to enforce integration since
the early steps, the research and development activities from several research groups are included in the same container,
with frequent and planned meetings.

This paper presents an early result on this way, after two years from the beginning of the project. We have tried to
understand the problems left opened by other similar initiatives, specifically aiming at scalability and security issues,
and identified the actors inside our framework. The researchgroups have produced relevant results for each of them
that are only summarized in this paper; instead, we focus on the integration among such actors, based ondescriptors
advertised in theGrid Information Service.

References

Aiftimiei, C., Andreozzi, S., Cuscela, G., Bortoli, N. D., Donvito, G., Fantinel, S., Fattibene, E., Misurelli, G., Pierro,
A., Rubini, G., and Tortone, G. (2006). GridICE: Requirements, architecture and experience of a monitoring tool
for grid systems. InProceedings of the International Conference on Computing in High Energy and Nuclear
Physics (CHEP2006), Mumbai - India.

Andreozzi, S., De Bortoli, N., Fantinel, S., Ghiselli, A., Rubini, G., Tortone, G., and Vistoli, C. (2005). GridICE: a
monitoring service for Grid systems.Future Generation Computer Systems Journal, 21(4):559–571.

BerkeleyDB. Diverse needs, database choices. Technical report, Sleepycat Software Inc.

Bulhes, P. T., Byun, C., Castrapel, R., and Hassaine, O. (2004). N1 grid engine 6 – features and capabilities. Technical
report, SUPerG.

Ciuffoletti, A. and Polychronakis, M. (2006). Architecture of a network monitoring element. Technical Report TR-
0033, CoreGRID.

Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Blackburn, K., Lazzarini, A., Arbree, A.,
Cavanaugh, R., and Koranda, S. (2003). Mapping abstract complex workflows onto grid environments.Journal
of Grid Computing, 1(1):25–39.

Denemark, J., Jankowski, M., Matyska, L., Meyer, N., Ruda, M., and Wolniewicz, P. (2005). Usermanagement for
virtual organizations. Technical Report TR-0012, CoreGRID.

Foster, I., Kesselman, C., Nick, J., and Tuecke, S. (2002). The physiology of the grid: An open grid services architec-
ture for distributed systems integration.

Jankowski, G., Januszewski, R., Mikolajczak, R., and Kovacs, J. (2006). Grid checkpointing architecture - a revised
proposal. Technical Report TR0036, CoreGRID - Network of Excellence.

Jankowski, G., Kovacs, J., Meyer, N., Januszewski, R., and Mikolajczak, R. (2005). Towards Checkpointing Grid
Architecture. InPPAM2005 proceedings.

CoreGRID TR-0089 9



Krajicek, O., Ceccanti, A., Krenek, A., Matyska, L., and Ruda, M. (2006). Designing a distributed mediator for the
C-GMA monitoring architecture. InIn Proc. of the DAPSYS 2006 Conference, page to appear, Innsbruck.

Laure, E., Fisher, S., Frohner, A., Grandi, C., Kunszt, P., Krenek, A., Mulmo, O., Pacini, F., Prelz, F., White, J.,
Barroso, M., Buncic, P., Hemmer, F., Meglio, A. D., and Edlund, A. (2006). Programming the grid with glite.
Technical Report EGEE-TR-2006-001, EGEE.

Rajic, H., Brobst, R., Chan, W., Ferstl, F., Gardiner, J., Haas, A., Nitzberg, B., and Tollefsrud, J. (2004).
Distributed resource management application API specification. Technical report, Global Grid Forum.
http://www.ggf.org/documents/GWD-R/GFD-R.022.pdf.

Ratering, R. (2005). Grid programming environment (GPE) concepts. Technical report, Intel Corporation.

Stone, N., Simmel, D., and Kielmann, T. (2005). An architecture for grid checkpoint and recovery (gridcpr) services
and a gridcpr application programming interface. Technical report, Global Grid Forum. draft.

Tierney, B., Aydt, R., Gunter, D., Smith, W., Swany, M., Taylor, V., and Wolski, R. (2002). A grid monitoring
architecture. Technical Report GFD 1.7, Global Grid Forum.

UNICORE (2003). UNICORE plus final report. Technical report, BMBF Project UNICORE Plus.

CoreGRID TR-0089 10


