European Research Network on Foundations, Software Infrastructures and Applications

Lo ”'_%- for large scale distributed, GRID and Peer-to-Peer Technologies

A Metwork of Excellence funded by the European Commission

Grid Infrastructure Architecture: a modular approach from
CoreGRID

Augusto Ciuffoletti”

augusto@li . unipi.it
Antonio Congiustd*

acongi usta@lei s.unical .it
Gracjan Jankowski, Michal Jankowski, Norbert Meyer*
{gracj an, j ankowsk, meyer }@rman. poznan. pl
Ondrej Krajicek®
krajicek@cs. nuni.cz
T INFN/CNAF, Bologna, Italy
“* DEIS, Universia della Calabria, Italy
* Poznan Supercomputing and Networking Center, Poznan, &tyng
© Masaryk University, Czech Republic, Brno

N CoreGRID Technical Report
(oreGRBD— Number TR-0089
August 22, 2007

—

Institute on Grid Information, Resource and Workflow
Management Services

CoreGRID - Network of Excellence
URL: http://www.coregrid.net

CoreGRID is a Network of Excellence funded by the Europeam@gssion under the Sixth Framework Programme

Project no. FP6-004265

Grid Infrastructure Architecture: a modular approach from
CoreGRID

Augusto Ciuffoletti™

augusto@i . unipi.it
Antonio Congiusta*

acongi ust a@ei s. unical . it
Gracjan JankowskKi, Michal Jankowski, Norbert Meyer*
{gracj an, j ankowsk, meyer }@man. poznan. pl
Ondrej Krajicek®
krajicek@cs. muni.cz

T INFN/CNAF, Bologna, Italy
** DEIS, Universita della Calabria, Italy
* Poznan Supercomputing and Networking Center, Poznan, &tyng
© Masaryk University, Czech Republic, Brno

CoreGRID TR-0089
August 22, 2007

1 Introduction

According to (Foster et al., 2002), a Grid is a complex aggttitre consisting of a collection of resources, which are
made available at user level through a number of servicesh 8efinition opens the way to a numberfofctional
componentsvhose definition is of paramountimportance for the desfgn®rid: their semantics anticipate the capa-
bility of a Grid to make an efficient use of the resources ittaors, to offer differentiated levels of quality of servjce
and, in essence, to meet user needs. Given the complexityrgoodtance of such infrastructure, its design should
address modularity as a primary feature: services provigettie Grid infrastructure should be precisely defined as
for their interface and semantics, and form an integratelitecture which is a framework for their implementation.
Modularity makes viable the independent evolution of eamimgonent, and allows the customization of the overall
infrastructure.

In order to guarantee interoperability among componestégsydardinterfaces are not sufficient. In fact, the ca-
pabilities of a certain functional component should be welllerstood, and agreed in the community that develops
other interoperating services: typical requirementsesisiresource access, workflow management, and security. Suc
semantics should be compatible with the expected needs afsir, be it a human or a Grid-aware application.

In addition, past experiences (Laure et al., 2006) provetttere is a tradeoff between portability and reuse of
legacy tools: when functionalities that were not desigradititegration are included into an existing project, the
whole project tends to inherit all portability problems bétlegacy parts. Alugin orientedapproach does not solve
the problem, but tends to complicate the design, and mayregsrict portability.

This research work is carried out under the FP6 Network oeHewce CoreGRID funded by the European Commission (Conitgl-2002-
004265).

Taking into account such problems, we indicaterapper orientecpproach: legacy tools are not directly included
in the design, but accessible through interfaces that cpmiph portability requirements of the hosting environment
The agent that implements such functionality (the “wrafjpsrin charge of publishing portability issues that charac
terize the specific resource.

One key issue in the design of a Grid environment is the tdolgyaised to support the Grid Information System
(GIS). Itis more and more evident that a unique technologpiffstance, a relational database) cannot satisfy alls)eed
and may exhibit real scalability limits in case of take offtbé Grid technology (BerkeleyDB,). Here we propose
a differentiated strategy for such vital component, splitits functionality into a directory service, and a stréagn
support. The monitoring infrastructure provides inputhie GIS: we describe such infrastructure decomposed into
resource and middleware monitoring, workflow monitoring aetwork monitoring.

Another key aspect of a Grid infrastructure is job submissiaccording to the GGF guidelines in (Rajic et al.,
2004), we consider a unique component that performs batemissions, scheduling and local queuing, workload
monitoring and control. However, such component needsatippr checkpointing and accounting, two activities
that appear to require capabilities that need to be addfegseifically. We introduce two components that implement
such functionalities.

The resulting Grid infrastructure should address both #eglrof e-science applications, mostly oriented to storage
and computation intensive applications with moderateaduility, and emerging industrial applications, where the
demand is variegated and includes the management of a lamglear of small jobs: in this perspective, flexibility is
mandatory to allow customization.

Since we want to follow a clean design strategy, we addressoperation and integration issues since the early
steps, using the GIS as a backbone. As a consequence, thgoadufpa programming style and tools that support
polymorphism is mandatory: the "wrapper oriented” apploadicated above helps on this way.

In Section 2 we indentify the functional components, andeantisn 3 we consider a GIS which provides an
integration backbone. In figure 1 we depict a schematic viesuo proposal.

2 Functional components of a framework architecture

The focus of a Grid infrastructure is on resource managentieatgoal is to compose the operation of basic services
into higher level tasks. To this purpose, the Grid infrastinee accepts and processes task descriptions that atécul
a stepwise composition of computing activities. The useppfapriate basic services, whose availability is congtant
monitored by eResource Monitoringomponent, is scheduled after unfolding the dependeneigglen atomic com-
putational tasks. Resource scheduling extends not onheimame space, to determine which resource is to be used,
but also in time, describing when a certain resource will li&yton a certain task.

The operation of assembling resources in order to perforomgtex task is associated to tiiéorkflow Analyzer
component, whose role is to accept the operational degoripf a complex task, to manage, and to monitor its
unfolding. The unfolding of a workflow must be sufficientlyXikele, in order to cope with unanticipated events that
may affect resources, either improving or degrading theifggmance. The appropriate way to cope with such events
is the logistic re-organization of workflow execution, winigsually entails the displacement of stateful computation
by re-instantiating services whose state corresponds ittt@mmediate computational step.

Two basic functionalities are offered: the registratioracfhapshot of an intermediate state of a service, and the
re-instantiation of the same service with the given intafiate state. All resources in a workflow participate to such
reorganization, and the resulting workflow execution mestnsistent with the expected semantics. CTheckpoint
Managercomponent is in charge of supporting the logistic re-orgation of a workflow, preserving the relevant
state information of a component services in preparatiothfe reconfiguration of the supporting low level services.
Specific checkpointing indications are inserted in the apenal description provided to the Workflow Analyzer.

Since resources are similar to goods, their sharing musttteatled accordingly, taking into account property and
commercial value. In that sense, the Grid infrastructuoeiples identities to Grid users, and defines service sensanti
according to the identity of the user, thus enforcing indliial property. Using the same tools, the usage of a certain
service is quantified, and a commercial value associatdditvifThe User and Account Managemetamponent is
appointed with such aspects.

CoreGRID TR-0089 2

Streams Functional components Descriptors GIS
F L] -— \

- Workflow descr.
% """""""""""""""""""""""""""" -Sessiondescr. [TT777T »: 1
2 I
:) .../~ Jobdescr. | -
3 Workflow - Session descr. 1
@ Analyzer - Ckpt image descr. 1 1
E)h — Ckpt provider descr. 1 1
(@] - ----- - Sessiondescr. kesses Q
® J - Workflow descr. 1 o 1
- Job descr. 1 —
= 1
) _._]-Ckptimage desc. | .. »I Q 1
Checkpoint — Ckpt provider descr. 1 3 1
Manager | 2 1
(@)
- 4 - Job descr. Fl) 1
J 1 wn I
D
=
1 < 1
) _..]-Userdescr. |.._._.. 1 8 I
User/Account - Environment descr. I
Management I :
------ 4 - Job descr. Fl
) 1
1 [
R d ! 1
- Resource descr.
Resource “"1-sessiondeser. [T Ll 1
Monitoring 1 1
- 4 - Session descr. FI 1
\ -_— -— -_— I

Figure 1: Integration between the functional componensufframework. Eacltomponents a distributed entity
that contributes to resource management excharagegriptorswith other components. Persistent information flows
are encapsulated ingireamsrepresented bgessiordescriptors)

The whole Grid infrastructure hinges upon tBeid Information Systen(GIS), which supports the integration
between the parts of this distributed entity. From an abspaint of view, the content of the Grid Information System
represents the state of the Grid, and is therefore dynanaieweMer, while some data remains constant for long periods
of time, other are updated frequently, for instance wherh snformation represents the residual (or preemptable)
share of a resource.

The activity of a component is pervasive, and many distigeinas contribute to its implementation: for instance,
each site can provide a Workflow Analyzer agent in charge oépiing user requests. Such approach fits naturally
with security requirements, which are based on mutual ifiestion among agents.

Here we give a summary of the functionalities each compooféats, and we outline their internal structures: we
use as a reference the work of the partners of the CoreGRIiuiteson Grid Information, Resource and Workflow
Monitoring.

2.1 Workflow Analyzer

The Workflow Analyzer cares about workflows management uselesral aspects such as mapping, scheduling, and
orchestration of workflow tasks against the available, dyic&rid resources. To such purpose, it has close interactio

CoreGRID TR-0089 3

with the Grid Information System in order to discover andedite appropriate resources. But, at the same time, it is
also a source of information coming from the monitoring & thorkflows being executed: most of such information
is reused by the Workflow Analyzer itself for adjusting thejoimg executions.

A Grid workflow can be specified at different levels of abdti@t in (Deelman et al., 2003bstract workflows
andconcrete workflowsre distinguished, the difference being whether resouapespecified through logical files
and logical component names or through specific executablé$ully qualified resources or services. According to
this approach the workflow definition is decoupled from thdentying Grid configuration.

For this reason, the mapping phase (also referred to as makghg) is particularly important for selecting the
most suitable resources that better satisfy the conséraimd requirements specified in the abstract workflow, also
with regard to quality of service and workload. The mappingcpss produces a concrete workflow that is suitable
to be executed by a workflow engine, providing for scheduéing execution management capabilities. It is worth
observing that, in case of dynamic scheduling, it is posdiblre-invoke the mapping process at runtime, in order to
modify the concrete workflow instance as a result of releearnhts modifying the status of candidate resources.

However, it is important to instrument job descriptionsdrefactual execution, in order to ensure that the work-
flow execution is suitably checkpointed: succinct requieais about workflow recoverability are in the Workflow
description provided by the user.

When the workflow enters the running state, the Workflow Amatymonitors its advancement, and takes appro-
priate actions in response to relevant events. During thifleav execution, monitoring is essentially related to the
observation of the workflow status. In particular, inforinatabout the execution of each single job included in the
overall workflow is reported by the monitoring system. Tygdioformation is constituted by services execution status
failures, progress, performance metrics, etc.

In case of failure, the workflow execution service itselésrto recover the execution, for example by reassigning
the work to a different host in case of host failure. To impéermfault tolerance on a more refined extent, it is
necessary whenever possible to trigger checkpoint rewgy@ind drive the restart of one or more jobs from the last
available checkpoint. The decision whether to checkpaimestart a workflow is made on the basis of information
from Resource monitoring.

2.2 Checkpointing

The Checkpointing component is built around the idea of @teckpointing Architecture (Jankowski et al., 2006;
Jankowski et al., 2005), a novel concept that defines Gridegladd agents and associated design patters that allows
the integration of a variety of existing and future low-leekeckpointing packages.

The emphasis has been put to make the GCA able to be integriittedther components and especially with
the upper layer management services, for instance the GakieBor the Workflow Analizer. The main idea of the
GCA boils down to provide a number of Checkpoint Translaanvices (CTS) which are treated as drivers to the
individual low-level checkpointing packages. The CTSeas/fute a uniform front-end to the upper layers of the GCA,
and are customized to the underlying low-level checkpaointe

When the CTS is deployed on a Computing Resource, the GCAoHaes informed about its existence. To fulfill
this requirement each CTS is registered at component nameddGeckpointing Service (GCS), and the GCS further
exports the information about the available CTSes andaglptoperties to the GIS, so that the GIS becomes the
mechanism that connects the GCA with the external Grid enwirent. Additionally, from the point of view of the
Workflow Analyzer, the GCS is the gateway to which a checkp@quest has to be sent. When the GCS receives the
request of taking the checkpoint of a given job, it forwatustequest to the appropriate CTS. The GCS is able to find
the adequate CTS using the information that the executsvjalpper registers when a checkpointable job is started.

The execute-job wrapper is a special program provided hagetith an associated CTS. The component that is in
charge of submitting the user’s job to the given Executiomdger replaces the actual job with the adequate execute-
job wrapper and passes to the second the original job anddbalddentifier assigned to this job. Which execute-job
wrapper is to be used depends on which CTS has been matchedjods requirements, according with GIS records.
When the execute-job wrapper is started it appropriatehfigares the GCA environment and finally with help of
exec() syscall replaces itself into the original job.

When the Workflow Analyzer decides that a given job is to b@veced, then the job has to be resubmitted in

CoreGRID TR-0089 4

an adequate way: one relevant issue is that the job can bemésed only to a Computing Element associated with
a CTS of the same type that was used to checkpoint the job. \&h@oper Computing Element is found the job

is resubmitted to it, but instead of resubmitting the ordgjijob itself the recovery-job-wrapper is resubmitted. The
original job, as well as the identifier of the checkpoint tlgato be used in the recovery process, are passed to the
recovery-job-wrapper as the arguments.

The recovery-job wrapper is the counterpart of the exembewrapper used for the recovery activity. The
recovery-job wrapper starts fetching the image, and thesequent actions are similar to those performed by the
execute-job wrapper. As a last step, the recovery-job weapalls the appropriate low-level checkpointing package
to recover the job using the image indicated by the callinghiow Analyzer.

The GCA shares the motivations of the Grid Checkpoint andbRery working group of the GGF (Stone et al.,
2005), which is to include the checkpointing technologwitiite Grid environment. However, the GCA focuses mainly
on legacy checkpointing packages and, notably those that@rGrid-aware, while the GridCPR "is defining a user-
level API and associated layer of services that will perrhi2akpointed jobs to be recovered and continued on the
same or on remote Grid resources”. Therefore, while Grid@BFs on a specification that future Grid applications
will have to adhere to in order to make them checkpointahlegffort is towards the integration of existing products
into a complex framework.

2.3 User and Account Management

The User and Account Management component (Denemark €204l5) offers a controlled, secure access to grid
resources, complemented with the possibility of gathedia from resource providers in order to log user activity
for accounting and auditing purposes. These objectiveealtized introducing authorization, ensuring an appedpri
level of job isolation and processing logging datavikual environmenencapsulates jobs of a given user and grants
a limited set of privileges. Job activity is bound to a usenitity, which is qualified as a member of an organization.

The User and Account Management component is a pluggaliesfvark, that allows combining different autho-
rization methods (e.g. gridmap file, banned user list, VO imenship based authorization) and different implemen-
tations of environments (virtual accounts, virtual maeisinand sandboxes). The configuration of the framework is
quite flexible and depends on detailed requirements whighvagy between the resources, so the administrators may
tune local authorization policy to the real needs and aslit

The internal architecture of an agent consists of 3 modalesuthorization module, a virtual environment mod-
ule and a virtual workspace database. The authorizatiorutagaerforms authentication first (based on existing
software, such as Globus GSI). The authorization is doneugyying a configurable set of authorization plugins.
The virtual environment module is responsible for creatigletion and communication with virtual environments
modeled as Stateful Resources. The module is also pluggabieis possible to use different implementations of
VE. The database records operations on the virtual envieomsr(time of creation and destruction, users mapped to
the environment, etc.). These records together with thedsta system logs and accounting data, provides complete
information on user actions and resource usage.

2.4 Resource Monitoring

The information on resources and accompanying middlevggreovided by the Resource Monitor. Resource Monitor
component collects data from various monitoring tools latédé on the grid. We do not presume any particular
monitoring approach, since the current state of the artipes\quite wide range of monitoring toolkits and approaches
Itis however a difficult task to integrate and process mairipinformation from various monitoring tools. Moreover,
we cannot assume any scale of the resulting infrastrudtuegcalability of the proposed solution, both in terms of
amount of monitored resources and required processingghput for monitoring data, must be emphasized.

To achieve the desired level of scalability, with securitd dexibility in mind, we propose the design of a Resource
Monitor based on the C-GMA (Krajicek et al., 2006) monitgriarchitecture. C-GMA is a direct extension of the
GMA (Tierney et al., 2002) specification supported by the ©OBeid Forum.

The key feature supplied by the C-GMA is the introduction @feral metadata layers associated with services,
resources and monitoring data. The metadata may specifgataedefinition language used by the services, the
non-functional properties and requirements imposed bgéneices and resources (such as security and QoS-related

CoreGRID TR-0089 5

requirements) and others. The metadata are used imaehmakingrocess implemented by the C-GMA architec-
ture, which is essentially a reasoning on provided metaaladat the compatibility of the services and data described
by them. When the examined parties are considered comggtild “proposal” is sent to them to initiate a potential
communication. In this way, and with the introduction ofieais translation components, the C-GMA architecture
enables the exchange of monitoring data between variouganiog services.

The Resource Monitor service leverages this functionaltgonnecting to the C-GMA monitoring architecture
and using translation services for various monitoringkislit collects the monitoring data and supplies them to the
Grid Information System.

Special attention is paid to Network Monitoring, since abdlity issues appear as challenging. We have identified
one basic agent, the Network Monitoring Element, which gpoasible of implementing the Network Monitoring
Service (Ciuffoletti and Polychronakis, 2006). Networkihtoring Elements (NMES) cooperate in order to implement
the Network Monitoring component, using mainly lightweigtassive monitoring techniques. The basic semantic
object is Network Monitoring Session, which consists inteasurement of certain traffic characteristics between the
Domains whose NMEs patrticipate in the session.

To improve the scalability of the Network Monitoring Sergjche NMEs apply an overlay Domain partition to
the network, thus decoupling the intra-domain networkasfiructure (under control of the peripheral administrgtio
from the inter-domain infrastructure (meant to be out oftonlrof the peripheral administration). According to the
overlay domain partitioning network, monitoring sessians associated to Resources denoted as Network Elements
(NE), corresponding to inter-domain traffic classes.

The overlay domain partition is maintained in an internatributed database, which allows the coordination
among Network Monitoring Elements. The management of netwaeonitoring sessions includes the control of
periodic sessions, as configured by network administratord of on-demand sessions dynamically configured by
applications, and uses a scalable peer to peer mechanisfiusedipdates.

3 Integration between functional components

The central idea of the proposed architecture is to convdlgeatata through the Grid Information Service in order to
have a standard interface across the different administrsites and services (see (Aiftimiei et al., 2006; Andaoz
et al., 2005) for a similar approach).

One relevant feature of a data repository, and of the Gridrination System, is the volatility of its content. At
one end we find “write once” data, that are not subject to updpérations and have a relatively low volatility. At the
other hand we find data that are frequently updated. Theifumadity associated to the Grid Information System is a
mix of both: while certain data, like a Workflow descriptidall in the “write-once” category, other kind of data, like
resource usage statistics, fall into the category of dathate frequently updated: a solution that devises a common
treatment for both kinds of data suffers of a number of inefficies, first the lack of scalability.

Therefore our first step is to recognize the need of distiolcit®ns for persistent and for volatile data. One criteria
to distinguish the two kinds of data is the length of the timteival during which the information remains unchanged,
under normal conditions. Here we assume that a significaaeshiold is given by the typical job execution time: we
consider as persistent those pieces of information thateunormal conditions, remain valid during the execution
of a job. We call such informationdescriptors starting from the specifications of the components thatpmsa
our framework given in previous sections, we now classify diescriptors that are exchanged among them, and that
collectively represent the persistent content of the Grfdrimation System.

Workflow descriptor It is acquired from a user interface by the Workflow Analizemponent. It has the function
of indicating the stepwise organization of a Grid computati It contains high level indications about the
processing requested at each step, as well as dependemcrg andividual steps. It should be designed in
order to hide all unnecessary details, for instance packagees or versions, and focus on the functionality
(for instance, “fast fourier transform”, or “MPEG4 compsas”). During workflow execution, such structure
is used by the Workflow Analizer component in order to monitorkflow execution.

Job descriptor It is produced by the Workflow Analizer component, and fedddaus other components: it is used
by the Checkpointing component in order to prepare the di@tenvironment with checkpointing facilities,

CoreGRID TR-0089 6

and by the User and Account Management component in ordessticeate an appropriate environment to its
execution. The Job description is used by the Workflow Aeal@omponentin order to instruct resources about
their activity, and during workflow execution, to monitor skkflow advancement.

Checkpoint Image Descriptor Itis produced by the Checkpointing component (in case o864, this descriptor is
produced by the CTS) upon recording a new checkpoint. Therigeésr contains the bookkeeping data regarding
the newly created image. The data can be used by the Workflaliz&n in order to find the identifier of the
image that is to be used in order to perform recovery and riiigraThe GCA itself, basing on the descriptor,
is able to fetch the image to the node on which the given job etrecovered.

Checkpoint Provider Descriptor It is produced by the Checkpointing component. The desarigtivertises the
location of service that provides access and unified interfa a particular low-level checkpointing package.
The Workflow Analizer uses such descriptior to find the node finovides the desired checkpointing package,
as specified in job descriptor. Upon recovery, the desargdtows finding the nodes offering the same package
used for checkpointing.

Session descriptorlt is produced by a generic component, and supports the agehaf volatile data, as described
below.

User descriptor Itis produced and used by the User and Account Managemergaoent. It contains a description
of a user, like its name, institution, reachability, rols,aell as security related data, like public keys. The
Workflow Analysis component uses such data to enforce acessgctions when scheduling a Workflow.

Environment descriptor It is produced and used by the User and Account Managemenpaoent. It contains
references to he descriptions of the resources assooiasagiten processing environment, as well as the access
modes for such resources. This may correspond, for instéameehat is needed to run a specific kind of job,
and to the identities of the users that are allowed to opeveken such environment. The Workflow Analysis
component uses such data in order to process a workflow gésaori

Resource descriptor It represents usual resource descriptions, includingagtmrprocessing, network and network
monitoring elements. The identification of a resource idekiits network monitoring domain. The Workload
Analyzer uses such descriptions in order to schedule jobutixen, and allocate checkpoint storage.

The management afescriptorsrelies on a directory-like structure. Such structure carfmeoconcentrated in
replicated servers, but distributed in the whole systenethas local needs. Functional components that need to have
access to such data should address a proxy, which makeastdgdie requested information, or add/delete a descriptor
An LDAP directory provides a first approximation of such gnthowever, descriptors are not organized hierarchically
A better alternative is an adaptive caching of those desgsphat are considered locally relevant: for instance, th
descriptor of a monitoring session might be cached in a G&ypnear the monitored resource. Descriptors are
diffused in the system using a low footprint, low performamcoadcast protocol, and cached wherever needed.

The volatile data is represented by data that change duréngpxecution of a job: a typical example is the workload
of a computing element. Such data are produced by one of tia@oeents described in the previous section, and
made available to a restricted number of other componerits.sforage into a globally accessible facility, included
a distributed relational database, seems inappropriate $he information is usually transferred from a source to a
limited number of destinations. The concept that is usugdiplied to solve such kind of problems is the multicast.

A multicast facility appropriate for diffusing volatile t&of a Grid Information System has many points in com-
mon with a Voice over IP infrastructure: the container of tbenmunication is similar to a Session (as defined in the
SIP protocol). In contrast with a typical VolP applicatidhe data trasfer within a session in mainly uni-directional
and requires a low bandwidth with moderate real time requanmgs: we calstreamghe information flows associated
to the trasport of volatile data within a Grid Informationssgm.

All of the components outlined in section 2 are able to itdtiar accept a session with another component: security
issues are coped with using the descriptors associatedhvathgents. E.g., a Resource will accept a call only from a
Workflow analyzer that submitted a job. Here we outline sofrte@relevant streams:

CoreGRID TR-0089 7

Resource usage streantt is originated by a resource, like a Storage Element, amehsarizes the performance of
the resource, as well as the available share of it. Typidirsaare the Workflow Analyzer, either during the
resource selection or the execution phase.

Workflow advancement stream Itis originated by a Workflow Analyzer component, and repaine caller about the
workflow advancement. Typical callers are user orientegtiates.

One characteristic of a session, that makes it not integeele with a directory service, is that the establishment
of a session has a relevant cost, which is amortized onleig#ssion persists for a significant time interval. For this
reason we include sessions in the number of entities tha &aescriptor recorded in the Grid Information Service.

Such descriptor advertizes the existence of a given sessiema task of the callee to create and make available an
appropriateSession descriptoas outlined above. Sessions can be activated on demang perimanently available:
such option depends on the balance between the workloaédé®édctivate a new session on demand, and of keeping
it warm for connection. E.g., Network Monitoring sessionfi the mostly activateabn demandwhile Storage usage
statistics can be maintained permanently active.

4 Comparison with other works

The architecture we propose takes into account the goalsaelmévements of a number of scientific, as well as
industrial projects that accepted the challenges propogdlae design of an effective grid infrastructure.

One outstanding project which is being developed to meeatthgirements the scientific community is gLite: itis
developed within the European EGEE project, the succe$$oAPAGRID. Its purpose is to capitalize tools and ex-
perience matured in the course of DATAGRID, in order to asdera Grid infrastructure usable for high performance
computation, first the LHC experiment on schedule for the gear.

We consider glLite (Laure et al., 2006) as a precious souregpdrience about a real scale Grid environment. We
considered as relevants the inclusion of a number of featina are not considered, or considered at an embrional
level, in gLite. Namely, we introduce a specific componeat tlakes into account job checkpointing, we adopt a
more powerful workflow description language (but glLite isting towards a DRMAA (Rajic et al., 2004) compliant
interface), we take into account the task of workflow momitgrunder scalability requirements, also considering
networking resources, we differentiate the functionatitthe GIS into a high latency directory service, and a matic
real-time streaming service. Overall, with respect to glLwwe considered the need for a wide portability: although
such problem is not overly relevant for the environment fbick gLite has been developed, we considered it relevant
in a broader scope. To improve portability we suggest thézagon of an integrated framework for the whole
infrastructure, hosting legacy components encapsulatepécific wrappers.

With respect to implementations based on the DRMAA propadaddard (Rajic et al., 2004) we consider the
interactions between Resource Management and Checkmpisince we observe that the resource management is
the component in charge of instructing the resource abdivitées relevant to recovery and relocation of running
jobs. Therefore we describe an interface between a companeharge of managing a transparent management of
checkpoints, and another in charge of interpreting userasts.

The N1GE by Sun (Bulhes et al., 2004) is considered as a r#legpresentative of the industrial effort towards
the implementation of a Grid infrastructure. Such projetognises the problems arising from the adoption of a
monolythic relational database, and adheres to the DRMAAdsrds as for job descriptions. In order to overcome
scalability limits imposed by a monolythic databases, b@d a more flexible commercial database, Berkeley DB
(BerkeleyDB,). In our proposal we identify the kind of sex@$ of interest for our infrastructure, and indicate com-
plementary solutions, that cannot be assimilated to aioal@tdatabase. This should improve scalability and resour
usage.

The focus of the GPE (Ratering, 2005) prototype by Intel ibridge users from non-Grid environments, and to
provide an interface that will remain sufficiently stabletie future, shielding the user from the changes of a still
evolving middleware technology. Therefore the focus istangrovision of a powerful interface that adapts to several
kinds of users. In order to take advantage of legacy todts, UNICORE (UNICORE, 2003), security issues are
delegated to a specific component, the Security Gatewayettiaces a secure access to sensitive resources. In our

CoreGRID TR-0089 8

view this is a source of problems, since the presence of &ehettk limits the performance of a system. Instead, we
indicate a pervasive attention to security issues, in dalanplement appropriate security issues inside each agent

We pay special attention to a Grid resource that is oftenlooked: the network infrastructure. Such resource is
difficult to represent and to monitor since, unlike otheprases, its complexity grows with the square of system size.
Yet this resource has a vital role in a distributed systemwahdale, since its availability determines its performance,
and directly reflects on jobs performance.

5 Conclusions

CoreGRID is an European project whose primary goal is tefagillaboration among european organizations towards
the definition of an advanced Grid architecture. One of tekstghat contributes to this achievement is targeted at the
description of arintegrated Framework for Resource and Workflow Monitorihgorder to enforce integration since
the early steps, the research and development activitigsseveral research groups are included in the same containe
with frequent and planned meetings.

This paper presents an early result on this way, after twesyfeam the beginning of the project. We have tried to
understand the problems left opened by other similar inréa, specifically aiming at scalability and security issu
and identified the actors inside our framework. The resegretips have produced relevant results for each of them
that are only summarized in this paper; instead, we focudelntegration among such actors, basedescriptors
advertised in th&rid Information Service

References

Aiftimiei, C., Andreozzi, S., Cuscela, G., Bortoli, N. D.pvito, G., Fantinel, S., Fattibene, E., Misurelli, G., iPoe
A., Rubini, G., and Tortone, G. (2006). GridICE: Requirertsearchitecture and experience of a monitoring tool
for grid systems. IrProceedings of the International Conference on Computmgligh Energy and Nuclear
Physics (CHEP2006Mumbai - India.

Andreozzi, S., De Bortoli, N., Fantinel, S., Ghiselli, A.uBni, G., Tortone, G., and Vistoli, C. (2005). GridICE: a
monitoring service for Grid systemButure Generation Computer Systems Jouy24(4):559-571.

BerkeleyDB. Diverse needs, database choices. Technjpaittr&Sleepycat Software Inc.

Bulhes, P. T., Byun, C., Castrapel, R., and Hassaine, O4(200L grid engine 6 — features and capabilities. Technical
report, SUPerG.

Ciuffoletti, A. and Polychronakis, M. (2006). Architecaiof a network monitoring element. Technical Report TR-
0033, CoreGRID.

Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, GahiyK., Blackburn, K., Lazzarini, A., Arbree, A,
Cavanaugh, R., and Koranda, S. (2003). Mapping abstragblesrworkflows onto grid environmentsournal
of Grid Computing1(1):25-39.

Denemark, J., Jankowski, M., Matyska, L., Meyer, N., Ruda, &nd Wolniewicz, P. (2005). Usermanagement for
virtual organizations. Technical Report TR-0012, CoreBRI

Foster, I., Kesselman, C., Nick, J., and Tuecke, S. (2002¢. physiology of the grid: An open grid services architec-
ture for distributed systems integration.

Jankowski, G., Januszewski, R., Mikolajczak, R., and Keydc(2006). Grid checkpointing architecture - a revised
proposal. Technical Report TR0036, CoreGRID - Network ofé&lbence.

Jankowski, G., Kovacs, J., Meyer, N., Januszewski, R., aildlgiczak, R. (2005). Towards Checkpointing Grid
Architecture. INPPAM2005 proceedings

CoreGRID TR-0089 9

Krajicek, O., Ceccanti, A., Krenek, A., Matyska, L., and Rut1. (2006). Designing a distributed mediator for the
C-GMA monitoring architecture. Iim Proc. of the DAPSYS 2006 Conferengage to appear, Innsbruck.

Laure, E., Fisher, S., Frohner, A., Grandi, C., Kunszt, Peni€k, A., Mulmo, O., Pacini, F., Prelz, F., White, J.,
Barroso, M., Buncic, P., Hemmer, F., Meglio, A. D., and EdluA. (2006). Programming the grid with glite.
Technical Report EGEE-TR-2006-001, EGEE.

Rajic, H., Brobst, R., Chan, W., Ferstl, F., Gardiner, J.,a$jaA., Nitzberg, B., and Tollefsrud, J. (2004).
Distributed resource management application API spetifica Technical report, Global Grid Forum.
http://www.ggf.org/documents/GWD-R/GFD-R.022.pdf.

Ratering, R. (2005). Grid programming environment (GPE)oepts. Technical report, Intel Corporation.

Stone, N., Simmel, D., and Kielmann, T. (2005). An architeetfor grid checkpoint and recovery (gridcpr) services
and a gridcpr application programming interface. TecHriggort, Global Grid Forum. draft.

Tierney, B., Aydt, R., Gunter, D., Smith, W., Swany, M., TaylV., and Wolski, R. (2002). A grid monitoring
architecture. Technical Report GFD 1.7, Global Grid Forum.

UNICORE (2003). UNICORE plus final report. Technical rep&WBF Project UNICORE Plus.

CoreGRID TR-0089 10

