
Chunking and Dependency Parsing

Giuseppe Attardi, Felice Dell’Orletta

Affiliation1, Affiliation2, Affiliation3
Address1, Address2, Address3

author1@xxx.yy, author2@zzz.edu, author3@hhh.com

Abstract
Since chunking can be performed efficiently and accurately, it is attractive to use it as a preprocessing step in full parsing stages. We
analyze whether providing chunk data to a statistical dependency parser can benefit its accuracy. We present a set of experiments meant
to select first a set of features that provide the greates improvement to a Shift/Reduce dependency parser, then to determine an appropriate
feature model. We report on accuracy gain obtained using features from chunks produced using a statistical chunker as well as from an
approximate representation of noun phrases induced directly by the parser. Finally we analyze the degree of accuracy that such a parser
can achieve in chunking compared to a specialized statistical chunker.

1. Introduction
Chunking or shallow parsing segments a sentence into a se-
quence of syntactic constituents or chunks, i.e. sequences
of adjacent words grouped on the basis of linguistic prop-
erties (Abney, 1996).
This process can be carried out efficiently and thus chunk-
ing can be useful in several tasks, for instance Termi-
nology Discovery, Named Entity Recognition (Carreras &
Màrquez, 2005) and Text Mining (Banko et al., 2007), and
also as an intermediate step providing input to further full
parsing stages (Shiuan & Ann, 1996).
Chunking can be see as the basic task in Partial Parsing.
Partial Parsing was introduced as a response to the difficul-
ties of the full traditional parsing and it is described as a
techniques to recover syntactic information efficiently and
reliably from unrestricted text, by sacrificing completeness
and depth of analysis (Abney, 1996). Among the critiques
of full parsing (and in favor of partial parsing) the most
important are that full parsing are not sufficiently robust for
many NLP application and that full parsing doesn’t identify
good parse tree in noisy surroundings. Recent progresses
in full statistical parsing (see for instance the CoNLL 2007
Shared Task on multilingual dependency parsing (Nivre at
al., 2007)) show that full parser is not only robust but also
capable of giving good results in analysing many different
languages.
In this paper we will discuss whether providing chunk data
to a statistical dependency parser can benefit its accuracy by
presenting some experiments showing which kind of output
from the chunker appears to be more effective in improving
the accuracy of a dependency parser for English.
We first present a set of experiments meant to evaluate sev-
eral possible features extracted from gold chunks and to de-
termine which ones improve most the parser accuracy. We
then verify whether these improvements are still preserved
when using the output of a statistical chunker instead of the
gold chunks.
Chunking exploits POS tags produced by previous process-
ing steps and hence using a chunker leads to a more com-
plex layered parser architecture. But since the parser it-
self may have access to the same information that the chun-
ker uses to infer the chunks, one may wonder whether the

parser might itself subsume the task of the chunker.
We will show that indeed the addition of simple chunker-
like features allows the parser to achieve an accuracy close
to that from using gold chunk data.
In particular we define a simple feature extracted from in-
ducing noun phrase boundaries from simple rules applica-
ble to the input of a dependency parser.
The above information pre-segments the text and bene-
fits the dependency parser accuracy thus avoiding both the
propagation of errors introduced by the use of further statis-
tical chunkers and the cost of an additional pre-processing
step.
The only drawback is that these rules are language-
dependent and hence must be adapted for each language.
Finally we analyze the degree of accuracy that a state-of-
the-art dependency parser can achieve in a chunking task
and compare it to that of a specialized statistical chunker.

2. Related Work
Hollingshead, Fisher and Roark (2005) compare high-
accuracy context-free constituent parsers with high-
accuracy finite-state chunkers on several shallow parsing
tasks. Specifically, they compare the Charniak parser
(Charniak & Johnson, 2005) with their own state-of-the-art
chunker, concluding that there is no accuracy or robustness
benefit to shallow parsing with finite-state models over us-
ing constituent parsers.
Vice-versa, but less surprisingly, they show large improve-
ments in combining the output of high-accuracy context
free parsers with the output of shallow parsers on shal-
low parsing tasks, but of course at significant higher per-
formance costs.
Ciaramita and Attardi (2007) report on experiments by
adding semantic features to a dependency parser. Two of
these features are similar to chunk features: the EOS (End
Of Segment) feature, similar to the distance to the end of a
chunk, and the IOB tag, which however are only provided
for Named Entities recognized in the text. Using these fea-
tures, alone or in combinations, they report an improve-
ment in error reduction in the LAS up to 5.8% with a parser
trained on the WSJ Penn Treebank sections 2-21 (Marcus
et al., 1993).

[NP The computer]
		

[VP processes]
�� ��

[NP 13.3 million

operations].
		

Figure 1: Chunked phrase and its dependency tree.

3. Chunk Information in Context Free
Parsing

With respect to the dependency tree of a sentence, chunks
have some properties which may provide useful hints to a
parser.
For example all tokens in a chunk are linked through depen-
dency chains to a single token which can be thus identified
unambiguously as the head of the chunk (Federici et al.,
1996). In the case of English, this is often the rightmost
word of the chunk, in particular for noun phrases.
External links addressing a target in a chunk, point to the
the head of the chunk. Figure 1 shows an example of a
chunked phrase and its dependency tree.
The first set of experiments aims at investigating how best
to exploit chunk information in a statistical dependency
parser, selecting a set of features that provides the largest
accuracy gain.
To this end we use “gold chunks” both in training and in
testing. The chunks are those provided in the training set of
the CoNLL 2005 Shared Task (Carreras & Màrquez, 2005).
They were produced with a state-of-the-art statistical chun-
ker (Carreras & Màrquez, 2003).
For our parsing experiments we used the WSJ sections
02-11 of the Penn Treebank II (Marcus et al., 1993),
which were also used as the English training corpus in
the CoNLL 2007 Shared Task on multilingual dependency
parsing (Nivre at al., 2007), so that our scores can be com-
pared with those of current state-of-the-art parsers.

3.1. Feature Model Selection
The first set of experiments was designed to evaluate the
possible benefits of chunk data in parsing. We considered
representing such information by means of the following
four features types:

IOB: Inside, Outside, Beginning of chunk, in the standard
IOB notation;

EOC: Distance to the end of the chunk;

TYPE: Type of the chunk;

NUMB: Number of the chunk within the sentence.

The IOB tag indicates whether a token is at the beginning,
inside or outside a chunk (tokens outside of any chunk are
mostly punctuation signs and conjunctions in ordinary co-
ordinated phrases). TYPE denotes one of the 11 types of
chunks defined in the CoNLL-2000 task (Sang & Buch-
holz, 2000).

Feature Tokens
FORM -1 0 1 head(-1)
POS -2 -1 0 1 2 3 leftChild(-1)

leftChild(0)
CPOS -1 0 prev(-1)
DEPREL -1 leftChild(-1) rightChild(-1)

leftChild(0)

Table 1: Feature model for the baseline MaltParser.

In order to test which combination of these features was
most effective, we used the dependency parser MaltParser
(Nivre, Hall & Nilsson, 2006), which we could taylor by
adding extra types of features.
MaltParser is a classifer-based Shift/Reduce parser, which
processes input tokens advancing on the input with Shift
actions and accumulates processed tokens on a stack with
Reduce actions.
The features of a number of tokens are considered at each
step in the parsing algorithm as input to a classifier in order
to decide the next action to perform. This set is called the
feature model.
The features extracted for learning from the annotated cor-
pus are: Form (the lexical form of the token), PosTag (the
part of speech), CPosTag (the coarse part of speech) and
DepRel (the dependency label).
As a baseline for English we used the same feature model
chosen for English in (Hall et al., 2007), for their submis-
sion to the CoNLL 2007 Shared Task.
Table 1 describes concisely the feature model, listing which
features are extracted from which tokens: positive numbers
refer to input tokens while negative numbers refer to tokens
on the stack, leftChild(x) refers to the leftmost child of
token x, rightChild(x) to the rightmost child of token x,
head(x) to the head of x and prev(x) to the token preced-
ing x in the sentence.
We tested seven feature models, created by adding to the
baseline model the four features individually as well as
three combinations: IOB/NUMB, i.e. a pair of IOB tag
and chunk number, EOC/TYPE, a pair of distance to end of
chunk and chunk type, and finally both the last two pairs.
Differently from (Hollingshead, Fisher & Roark, 2005), we
do not use a combination of parser and chunker results, but
the chunker outputs are used directy as features.
Table 2 list the results obtained, measured in terms of la-
beled attachment score (LAS) and unlabeled attachment
score (UAS).
All features provide improvements with respect to the base-
line model. Knowledge about chunks can be helpful to a
Shift/Reduce dependency parser, since it typically operates
with a limited lookahead and hence has only a narrower vi-
sion of the phrase being analyzed than for instance a Maxi-
mum Spanning Tree parser (McDonald et al., 2005).
In English the last word in a chunk often coincides with
the head of the chunk. Most words inside the chunk will
depend on it and this will be the only word in the chunk to
depend on words external to the chunk.
Hence the ability to identify the head of a chunk may help
the parser for instance in: a) directing links from internal

baseline 85.06 86,23
NUMB 85.66 87,11
IOB 86.75 88.01
EOC 87.03 88.24
TYPE 87.10 88.36
IOB/NUMB 86.29 87.75
EOC/TYPE 88.01 89.10
IOB/NUMB + EOC/TYPE 86.50 87.89

Table 2: Parser accuracy with the addition of various chunk
features.

tokens to the head, b) avoiding creating links from outside
the chunk.
The EOC feature is quite informative in this respect since
it represents the distance to the head and indeed the
EOC/TYPE combination achieves the highest score.
From these observations and from the observation that
only noun phrases occurred frequently as chunks of length
greater than two, we tested a variant of EOC computed only
for noun phrases (EOC/NP), which achieved these scores:
87.65% LAS and 88.85% UAS. Hence, the EOC/NP alone
gets a LAS and UAS scores that are not statistically signif-
icantly different from the best.
In a similar vein, Ciaramita and Attardi (2007) exploit the
information derived from a Named Entity tagger to improve
the accuracy of a dependency parser.
The semantic features extracted from the Named Entity tag-
ger in their models exploit the named entity tag, the IOB tag
and the distance from the end of the segment (EOS). IOB
and EOS provide similar improvements, slightly better than
named entity tags. The authors remark in fact that IOB tags
break the text into segments and “with respect to the rest
of the tree, segments tend to form units, with their own in-
ternal structure. Intuitively, this information seems relevant
for parsing. These locally structured patterns could help
particularly simple algorithms like ours, which have lim-
ited knowledge of the global structure being built.”
In our experiments the single feature producing the greatest
improvements turned out to be EOC/NP, which is similar to
EOS, but includes also determiners, adjective, etc.
So we decided to use the EOC for noun phrases in all fur-
ther experiments.

4. Using a Statistical Chunker in
Dependency Parsing

A more realistic experiment is to replace “gold chunks”
with the output of a statistical chunker in order to check
whether the benefits of chunking are preserved even when
chunks are computed statistically.

4.1. Chunker
We developed a Maximum Entropy chunker that assigns
an IOB tag to each word in a sentence, based on generic
features like the lexical form of the tokens, the POS tags,
bigrams and trigrams of POS tags and words.
Table 3 describes the feature used by the chunker.
For training the chunker the same corpus annotated with
“gold chunks” was used as in the previous section.

Feature Tokens
FORM -1 0 1
POS -2 -1 0 1
FORM bigram <-2,-1> <-1,0> <0,1>
POS bigram <-2,0> <-1,0> <0,1>
POS trigram <-2,-1,0>

Table 3: Chunker features.

Chunks Precision Recall F-measure
all 95.10% 96.05% 95.57
NP 95.07% 94.62% 94.84

Table 4: Accuracy of Maximum Entropy chunker.

Table 4 shows the accuracy of the chunker in terms of preci-
sion, recall and F-measure on the test set used in our pars-
ing experiments. The accuracy is typical of state-of-the-
art chunkers like the one by Carreras and Màrquez (2003)
which achieved an F-measure of 93.74 at the CoNLL 2000
shared task.
The first row shows the accuracy on all types of chunks,
while the second provides the values on chunking only
noun phrases.
Since the chunker has linear complexity in the length of the
sentence, its use will not increase the overall parser com-
plexity.

4.2. Parsing Accuracy with Statistical Chunker
Table 5 shows the results of the experiments using Malt-
Parser. The first row is a baseline with no chunk data, the
second using EOC/TYPE features and gold chunks. The
last two lines report experiments using the EOC feature for
just NP-chunks, obtained either from gold annotations or
from a statistical chunker.
With the use of statistically computed chunks, we observe
only a slight improvement with respect to the baseline, but a
significant drop with respect to the accuracy achieved using
the EOC feature extracted from “gold chunks”.

5. Comparing a Statistical Chunker and a
Dependency Parser

We now turn to comparing the accuracy of a specialized
chunker to that of a dependency parser in the NP-chunking
task.
We will try to assess whether a dependency parser can be as
accurate as a special purpose finite-state shallow parser, as

Model Data LAS UAS
baseline 85.06 86.23
EOC/TYPE gold 88.01 89.10
EOC/NP gold 87.65 88.85
EOC stat 85.18 86.50
EOC/NP stat 85.41 86.70

Table 5: MaltParser accuracy with gold or statistical chunk
features.

Chunks precision recall F
gold tree 94.84% 94.62% 94.73
none 92.09% 90.27% 91.17
EOC/NP 93.86% 91.85% 92.84
EOC-102 93.46% 92.64% 93.05
ME chunker 95.07% 94.62% 94.84

Table 6: Accuracy of dependency parser at chunking.

Hollingshead, Fisher and Roark (2005) showed in the case
of a constituent parser.
We needed a tool for extracting chunks from a dependency
tree similar to those produced by the the script chunklink
(Buchholz, 2000) used in the CoNLL-2000 Shared Task
(Sang & Buchholz, 2000).
This was not only difficult because constituent trees and
dependency trees are quite different, but also because some
of the choices in chunklink were hard to interpret. Some
of them were questionable, for instance the words tagged
NN, but considered out-chunk (O-) or VP chunks having as
heads words tagged NN.
Such anomalies occur frequently in the data set provided
by the CoNLL-2000 Shared Task and are somehow ac-
knowledged in (Sang & Buchholz, 2000), when they cite
Ramshaw and Marcus (1995):

While this automatic derivation process intro-
duced a small percentage of errors on its own,
it was the only practical way both to provide the
amount of training data required and to allow for
fully-automatic testing.

Despite the incompatibilities between the chunks extracted
from dependency trees and those extracted by chunklink,
in the next section we will attempt a comparison between
the accuracy of a specialized chunker and of a dependency
parser in the chunking task.

5.1. Accuracy of a Dependency Parser at Chunking
There is an upper bound to the accuracy of chunks we can
obtain from dependency parse trees due to inaccuracies of
our chunks extractor: this limit is given in the first line of
Table 6 where chunks are extracted from the correct parse
trees.
The table also lists the percentages of precision, recall and
F-measure obtained on NP-chunks extracted using three
parsers augmented with chunk information: the first with
no chunk data, the second with gold chunk data and the
third with simulated chunk data, using the model EOC-102
presented in the next section.
The parser using EOC-102 chunks achieves an F-measure
which is 1.8% less than the upper bound, 1.9% less than the
statistical chunker and is even better than the one obtained
using the gold chunks. We expect that such small differ-
ence might disappear by making our chunk extractor more
similar to chunklink.
The results by the parser are quite acceptable, but one
should consider that they could be even better if chunks

were obtained in a more consistent way than through a con-
version from chunklink, for instance directly from depen-
dency trees.

6. Simplified Chunking
In the previous sections we showed that pre-segmenting the
text into chunks and determining the head of the chunk,
greatly benefited the accuracy of a dependency parser.
However, such benefits were not preserved when gold
chunks were replaced by statistically extracted chunks.
In this section we present a method to obtain similar ben-
efits as those provided by chunks in dependency parsing
task, as shown in the first part of this paper, though avoid-
ing the use of both gold chunks and statistically extracted
chunks.

6.1. Simple Noun Phrases
We consider approximate noun phrases which can be rec-
ognized deterministically with a simple finite-state parser.
Ambiguous cases, for instance due to the presence of con-
junctions, are discarded.
A simple noun phrase (NP-simple) is a sequence of words
ending with a noun (i.e. a token having one of the following
POS: NN, NNS, NNP, NNPS) possibly followed by a pos-
sessive ending. Adjectives, adverbs, pronouns, nouns and
determiners may precede the noun according to the follow-
ing pattern:

RB+DT?(JJ|JJR|JJS|CD|VBD|PRP\$)*
((NN|NNS|NNP|NNPS)POS?)+

Detection of simple noun phrases can be easily incorpo-
rated within the feature extraction processing steps of the
parser, avoiding the addition of a separate preprocessor and
the potential introduction of extra errors.
We will show how it is possible to obtain significant im-
provements in the dependency parser accuracy exploiting
the pre-segmentation and the chunk head indication in the
NP-like chunk.

6.2. Experimental Results
In the experiments with NP-simple chunks we used the
same training and test as in the previous experiments.
The feature used to represent chunks is EOC, which had
proved most effective with gold chunks. For the tokens
contained in an NP-simple chunk, the feature represents the
distance from the end of the chunk; for the other tokens the
feature is just the POS of the token. Since this EOC is only
an estimate and only for NP chunks, we call it pseudo EOC
(EOC-pseudo).
Similarly to the experiments based on the NP chunks, the
EOC-pseudo feature was extracted from two tokens on the
stack and from three tokens on the parser input. The results
of this experiment are shown for MaltParser in Table 7.
These results show a great improvement with respect to
both the baseline and to those obtained using the statisti-
cal chunker. These demonstrate how the NP-simple chunk
pre-segmentation and the determination of the final token
crucially contribute to the improvement of the Shift/Reduce
parser accuracy.

Model LAS UAS
baseline 85.06 86.23
NP-simple 85.78 87.03

Table 7: MaltParser accuracy with NP-simple features.

Model Tokens LAS UAS
EOC-10123 -1 0 +1 +2 +3 85.78 87.03
EOC-101 -1 0 +1 85.29 86.50
EOC-102 -1 0 +2 85.96 87.13
EOC-103 -1 0 +3 85.86 86.99
EOC034 0 +3 +4 85.20 86.25
EOC-12 -1 +2 85.59 86.80
EOC-13 -1 +3 85.61 86.78
EOC-10 -1 0 85.82 86.89
EOC03 0 +3 85.49 86.62
EOC0 0 85.78 86.82

Table 8: Models using EOC-pseudo features and corre-
sponding accuracy scores.

As stated before, such information provides a more com-
prehensive view of the remaining part to be analyzed rather
than that of a dependency Parser based on the Shift/Reduce
model. The latter is intrinsically unable to produce such re-
sults. Having used a non-ambiguous segmentation allow us
to obtain really homogeneous train and un test, differently
from the experiments performed with the statistical parser.
It was therefore avoided the necessity to introduce a greater
quantity of information in the system through the introduc-
tion of a further training-set for the statistical chunker.
Having realized that using NP-simple chunks improves a
dependency parser accuracy, we decided to verify whether
we could reduce the number of features extracted from NP-
simple chunks without much loss in accuracy.
Table 8 lists the feature models that we tested and the cor-
responding accuracy scores. For each model we report the
tokens for which the EOC-pseudo features are extracted.
The simplest model EOC0, which exploits the EOC-pseudo
information only from the next input token, achieves a
score which is not statistically different from the best re-
sult. More surprisingly, the score is higher than most of
those obtained using features extracted from “gold chunks”
as reported in an earlier section.
The best model, EOC-102, exploits information from the
token on top of the stack, the next input token and the sec-
ond input token.
Apparently, the EOC feature on token +1 is less relevant
once the value for token 0 is known: indeed whenever the
value of EOC for token 0 is positive, the value for token +1
is determined.

7. Conclusions
While chunking can be a useful tool in itself, we have
shown that it is of marginal utility as a preprocessing step
to full dependency parsing.
Vice versa, dependency parsing can provide quite good ac-
curacy at chunking and provide also richer syntactic infor-

mation on sentences for many language processing appli-
cations.
With the current availability of efficient and accurate de-
pendency parsing technologies, dependency parsing should
be considered as a valid and more sophisticated alternative
to chunking in many applications requiring language pro-
cessing.
Sagae, Miyao and Tsujiii (2007) for example have shown
that constituent parsing can benefit from exploiting depen-
dency constraints.
Chunking is an example of a task which has been some-
times delegated to a preprocessing stage in order to sim-
plify the task of the parser by reducing the complexity of
the data to analyze (Shiuan & Ann, 1996) or the number of
features to deal with.
Parsers still rely on preprocessors for simple syntactic tasks
like POS tagging, or they might rely on semantic analyzers
for Named Entity Recognition. While this sounds appropri-
ate from a software engineering perspective, it also breaks
the sources of information in an artificial way.
Since most of these preprocessors are now based on sta-
tistical machine learning methods, an alternative approach
would be to create a combined system which, instead of
combining the outputs of the individual processors, collects
the features that each one would extracts and learns directly
from those.
This might have been impractical up to recently because of
the explosion of the feature space, but it can be feasible by
using methods that are capable of performing feature induc-
tion, like those using latent variables (Titov & Henderson,
2007).

Acknowledgments
8. References

S. Abney. 1996. Tagging and Partial Parsing. In K. Church,
S. Young, and G. Bloothooft (eds.), Corpus-Based Meth-
ods in Language and Speech.

G. Attardi. 2006. Experiments with a Multilanguage
Non-Projective Dependency Parser. In Proceedings of
CoNNL-X 2006. http://desr.sourceforge.net.

M. Banko, M.J. Cafarella, S. Soderland, M. Broadhead and
O. Etzioni. 2007. Open Information Extraction from the
Web. In Proceedings of the 20th IJCAI.

S. Buchholz. 2000. http://ilk.uvt.nl/ sabine/chunklink/README.html.
S. Buchholz and E. Marsi. 2006. Introduction to CoNNL-

X Shared Task on Multilingual Dependency Parsing. In
Proceedings of CoNNL-X 2006.

X. Carreras and L. Màrquez. 2003. Phrase Recognition by
Filtering and Ranking with Perceptrons. In Proceedings
of RANLP-2003.

X. Carreras and L. Màrquez. 2005. Introduction to the
CoNLL-2005 Shared Task. In Proceedings of CoNLL-
2005.

E. Charniak and M. Johnson. 2005. Coarse-to-Fine n-Best
Parsing and MaxEnt Discriminative Reranking. In Pro-
ceedings of ACL 2005.

M. Ciaramita and G. Attardi. 2007. Dependency Parsing
with Second-Order Feature Maps and Annotated Seman-
tic Information. In Proceedings of IWPT 2007.

S. Federici, S. Montemagni and V. Pirrelli. 1996. Shallow
Parsing and Text Chunking: a View on Underspecifica-
tion in Syntax. In Proceedings of the Workshop On Ro-
bust Parsing. (ESSLLI-1996).

J. Hall, et al. 2007. Single Malt or Blended? A Study in
Multilingual Parser Optimization. In Proceedings of the
CoNLL Shared Task Session of EMNLP-CoNLL 2007

K. Hollingshead, S. Fisher and B. Roark. 2005. Comparing
and Combining Finite-State and Context-Free Parsers. In
Proceedings of HLT/EMNLP 2005.

R. McDonald, F. Pereira, K. Ribarov and J. Hajic̆. 2005.
Non-projective Dependency Parsing using Spanning
Tree Algorithms. In Proceedings of HLT-EMNLP 2005.

M. Marcus, B. Santorini and M. Marcinkiewicz. 1993.
Building a Large Annotated Corpus of English: The
Penn Treebank. Computational Linguistics, 19(2): 313–
330.

J. Nivre, J. Hall and J. Nilsson. 2006. MaltParser: A
Data-Driven Parser-Generator for Dependency Parsing.
In Proceedings of the fifth Int. Conf. on Language Re-
sources and Evaluation (LREC2006).

J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nils-
son, S. Riedel and D. Yuret. 2007. The CoNLL 2007
Shared Task on Dependency Parsing. In Proceedings of
EMNLP/CoNLL-2007.

L.A. Ramshaw and M.P. Marcus. 1995. Text Chunking Us-
ing Transformation-Based Learning. In Proceedings of
the Third ACL Workshop on Very Large Corpora.

E. Tjong Kim Sang, S. Buchholz. 2000. Introduction to the
CoNLL-2000 Shared Task: Chunking. In Proceedings of
CoNLL-2000.

E. Tjong Kim Sang, F. De Meulder. 2003. Introduction to
the CoNLL-2003 Shared Task: Language Independent
Named Entity Recognition. In Proceedings of CoNLL-
2003. 142–147.

K. Sagae, Y. Miyao and J. Tsujii. 2007. HPSG Parsing with
Shallow Dependency Constraints. In Proceedings of the
45th Annual Meeting of the ACL.

P.Li Shiuan and C. Ting Hian Ann. 1996. A Divide-and-
Conquer Strategy for Parsing. In Proceedings of IWPT
1996. 57–66.

I. Titov and J. Henderson. 2007. Constituent Parsing with
Incremental Sigmoid Belief Networks. In Proceedings of
ACL 2007.

