
Accelerated multigrid for graph Laplacian operators

Pietro Dell’Acquaa, Antonio Frangionib, Stefano Serra-Capizzanoa,c

aDipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, Via Valleggio 11, 22100 Como, Italy.
bDipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy.

cDepartment of Information Technology, Uppsala University, Box 337, SE-751 05 Uppsala, Sweden.

Abstract

We consider multigrid type techniques for the numerical solution of large linear systems, whose coefficient
matrices show the structure of (weighted) graph Laplacian operators. We combine ad hoc coarser-grid operators
with iterative techniques used as smoothers. Empirical tests suggest that the most effective smoothers have to
be of Krylov type with subgraph preconditioners, while the projectors, which define the coarser-grid operators,
have to be designed for maintaining as much as possible the graph structure of the projected matrix at the
inner levels. The main theoretical contribution of the paper is the characterization of necessary and sufficient
conditions for preserving the graph structure. In this framework it is possible to explain why the classical
projectors inherited from differential equations are good in the differential context and why they may behave
unsatisfactorily for unstructured graphs. Furthermore, we report and discuss several numerical experiments,
showing that our approach is effective even in very difficult cases where the known approaches are rather slow.
As a conclusion, the main advantage of the proposed approach is the robustness, since our multigrid type
technique behaves uniformly well in all cases, without requiring either the setting or the knowledge of critical
parameters, as it happens when using the best known preconditioned Krylov methods.

Keywords: graph matrices, multigrid, conditioning and preconditioning
2000 MSC: 05C50, 15A12, 65F10

1. Introduction

The paper is concerned with solution methods for (extremely) large linear systems whose matrices have a
graph structure with weighing on the arcs (see, e.g.,[19] and references therein). We concentrate our efforts in
particular on the symmetric case, with matrices arising from graph Laplacian operators. Such a type of matrices
are encountered in several applications where a network structure is present, ranging from Web searching engines
[46] to general Markov chains [20], from consensus algorithms [53] to optimization problems such as the Minimum
Cost Flow (MCF) in networks [1, 4]. In all these cases the dimension of the involved matrices is either very
large or extremely large. Among these applications, the central one in the development of this article, at least
as far as the computational part is concerned, involves linear systems arising in Interior Point (IP) techniques
for MCF problems [1, 4]. In this setting, a linear system involving the weighted Laplacian of the underlying
network has to be solved at each iteration, with varying vector of arc weights Θ (cf. relation (2)). Not only
the networks can be very large (e.g., with up to 222 arcs [54]), but these approaches allow a more or less direct
extension [13, 14] to multicommodity flow problems [30, 15, 16], that have a huge range of practical applications
from telecommunication [18] to transportation [31] and beyond. In the latter setting, the size of the matrix is
further multiplied by the number of commodities (different types of flows in the network), that can be easily
run into the thousands (e.g. being quadratic in the number of nodes in some applications). Furthermore, the
graph structure is somewhat “muddled” by the rows corresponding to mutual capacity constraints.

In summary, the considered class of problems exhibits three main issues:

• the large size of the considered linear systems;

• the sparsity and the graph structure of the involved matrices;

Email addresses: pietro.dellacqua@gmail.com (Pietro Dell’Acqua), frangio@di.unipi.it (Antonio Frangioni),
s.serracapizzano@uninsubria.it (Stefano Serra-Capizzano)

Preprint submitted to Applied Mathematics and Computation August 5, 2015

• the potential ill-conditioning, as a function of the matrix dimension and/or of other critical parameters
(such as the weights vector Θ).

These features should immediately refrain from using direct solvers. In fact, while iterative methods exploit
the structure and the sparsity since each iteration is in general reduced to matrix-vector products, the methods
based on factorizations [36], such as Gaussian LR, QR or real Cholesky LLT (only for the MCF problem),
in general do not exploit naturally the structure and in particular the sparsity of the matrices [13] and they
need special techniques such as elimination trees, ordering etc. in order to achieve an acceptable cost, both in
space and time. However, for very large dimensions and in the case of ill-conditioning, the presence of amplified
round-off errors is the main difficulty encountered by direct methods.

The use of iterative solvers has the immediate advantage that the matrix vector product can be done within
linear work in case of sparsity and its stability is guaranteed in the sense that only a moderate amplification
of the round-off errors occurs. Moreover no storage problems arise since the original coefficient matrix is not
manipulated. However, the advantages in the reduced cost per iteration could be negated by a huge number of
iterations, i.e., slow convergence, stagnation, non convergence. Finding fast convergent methods is non-trivial
(see [47] for a very interesting paper dealing with multigrid techniques for graph matrices), and essentially it
relies on spectral information, which may be difficult to identity. Ideally, one would like to design optimal
methods in which the number of iterations for reaching a pre-assigned accuracy ε > 0 is independent of the
dimension and (possibly) of the other parameters involved in the problem, and only depends on the parameter ε
(for a precise notion of optimality see [3]). This difficulty is typically related to ill-conditioning: in our setting of
positive (semi) definite matrices, the latter is related to the ratio between the largest and the smallest non-zero
eigenvalue, while in the general setting where non Hermitian matrices are involved, not only the extremes of
the spectrum, but also other measures are relevant, such as the non-normality measure of the matrix [5] or
the ill-conditioning of the eigenvector matrix. In fact, if the matrix is well-conditioned, then simple scaled
Richardson methods or scaled Richardson methods for normal equations are optimal. The same can be claimed
for Krylov methods such as conjugate gradient (CG) or GMRES. However, for a matrix-sequence An whose
condition number g(n) diverges as n → ∞, the classical iterative solvers (relaxed Richardson, relaxed Jacobi,
relaxed Gauss-Seidel, CG etc.) are not convergent or, at best, the iteration count, as a function of n, diverges
as well in a way that can be related with g(n) [36, 56]. As an example, we consider the discrete Laplacian
∆n related to the equi-spaced finite difference approximation of −d2/dx2 on (0, 1) with homogeneous Dirichlet
boundary conditions, which can also be viewed as a MCF matrix EΘET where Θ is the identity and E is
the node-arc incidence matrix of a linear graph, and the discrete bi-Laplacian ∆′n related to the same type of
approximation of the operator d4/dx4 with homogeneous boundary conditions [40]. Since g(n) ∼ n2 for ∆n and
g(n) ∼ n4 for ∆′n, it is clear that the speed of convergence may not be satisfactory. The following table reports
the iteration count for different classical methods and for reaching a given accuracy.

Jacobi/Richardson Gauss-Seidel CG
∆n O(n2) O(n2) O(n)
∆′n O(n4) O(n4) O(n)

A more complete analysis of the conditioning and extremal eigenvalues of more general graph matrices can be
found in [35].

Three classes of approaches are known to be successful for ill-conditioned systems:

• Krylov methods with preconditioning [56];

• multigrid methods (or multi-level methods, aggregation-disaggregation, etc.) [61];

• multi-iterative solvers [57].

In the case of graph matrices, the first approach has been considered mainly through support-graph precondition-
ers. Proposed by P. Vaidya in [62], but not analyzed or implemented at that time, these are based on the idea
of extracting a properly structured subgraph (such as a tree or tree-like structure) and using the corresponding
matrix as preconditioner. Several authors have analyzed these preconditioners both from the theoretical and
from the practical viewpoint (cf. [8, 9, 6, 49, 32, 33] and the references therein). Support theory was developed
[9] for the study of combinatorial subgraph preconditioners, which lies at the heart of impressive theoretical

2

results culminating first in the proof that symmetric diagonally dominant (SDD) systems can be solved in

nearly optimal O(m logO(1) n) time [59], and later that SDD matrices with planar connection topologies can be
solved asymptotically optimally in O(n) time [44]. The usefulness in practice of these theoretical results is not
completely clear, since some of the hidden constants may be very large. Another relevant avenue of research is
that of Steiner preconditioners, introduced in [37] and extended in [43], whereby the original graph is augmented
with “fake” nodes, thereby yielding a larger equivalent system with “do not care equations”, that are purposely
constructed to increase the effectiveness of support-graph preconditioners. In some cases Steiner trees are much
better than subtrees: for instance, the condition number of the best tree for an unweighted square grid is O(n),
while the condition number of the best Steiner tree is O(

√
n). This extends to more complicated graphs: for

instance, the best condition number that can be obtained for 2D grids using subgraphs with n+ n/k arcs is of
order O(k), while it is O(

√
k) with Steiner graphs of the same size, and the gap between the two approaches is

even wider for 3D grids. Yet, more recent analysis shows that the results initially obtained for preconditioners
can be easily applied to aggregation operators (cf. (8) for multigrid-type approaches). This gives rise e.g. to
the combinatorial multi-grid (CMG) solver of [45], a variant of the multigrid approach running a more complex
cycle than the standard V and W ones, that is then used as a preconditioner for PCG with excellent results.
Such a development is in line with a recent trend of research which aims at increasing the robustness of multigrid
approaches by using them not as a stand-alone solver, but rather in combination with acceleration methods
such as conjugate gradient [23, 24], in accordance with the multi-iterative idea [57]. The latter is driven by the
observation that it is often not only simpler, but also more efficient to use accelerated multigrid approaches
rather than to try to optimize the interplay between the various multigrid components in order to improve the
convergence of stand-alone multigrid cycles. Indeed, multi-iterative solvers are the combination of different it-
erations, where the key notion is that of spectral complementarity. In other words, each method could be slowly
convergent (or even non-convergent) in itself, but their combination is fast since each of them substantially re-
duces the error in a given subspace and the global direct sum of such subspaces coincides with the whole space.
Multigrid methods belong to this class since, in their simplest versions, they can be seen as the combination
of a smoother, usually slowly convergent in the ill-conditioned subspace (that is related, after scaling, to the
eigen-spaces associated with small eigenvalues) but very fast in the complementary one, and of a coarse-grid
procedure which is not convergent at all, but strongly contracts the error in the ill-conditioned subspace. The
product of these two basic iteration matrices has a spectral radius that is much small than the product of the
spectral radii of the basic components and, in this sense, the multigrid procedure is a multi-iterative solver: in
[57], a further intermediate iteration was introduced, usually as post-smoother, in order to reduce the error in
the subspace where the cumulative effect of the pre-smoother and of the coarse-grid correction was less effective.

This paper follows along these research lines, with a twofold objective. From the theoretical viewpoint, we
aim at characterizing the class of projectors that allow to maintain the graph structure of the matrix at all
steps of the multigrid chain, so as to be able to use efficient combinatorial preconditioning techniques at all
steps. From the experimental viewpoint, we aim at comparing PCG approaches and multigrid methods on some
classes of linear systems which can be anything between very well-conditioned and extremely ill-conditioned;
actually, several of these systems need to be solved within a given application (solution of a MCF problem via IP
methods), with the conditioning varying wildly between the initial and the final systems. It is well-known than
no single preconditioned Krylov method is sufficiently effective throughout, as approaches that are appropriate
at one extreme become ineffective at the other, and vice-versa. In this context the multigrid-type approach
proposed in this paper proves to be “robust” for all the systems, independently from their conditioning, which
is a relevant feature.

The paper is organized as follows. In Section 2 we introduce in more detail the MCF problem and we
describe in general terms the multigrid procedure. Section 3 is devoted to the theoretical characterization of
the family of projectors that preserve the graph structure at all steps of the multigrid chain, thereby allowing
combined use of (possibly, accelerated) multigrid and combinatorial preconditioning. Section 4 is devoted to
the presentation of several classes of projectors with the right properties, either newly proposed or drawn
from the relevant literature. Section 5 is devoted to the presentation of a large set of numerical experiments
comparing preconditioned Krylov methods and accelerated multigrid methods in the context of the solution of
MCF problems: in this respect see also the numerics in [26]. Finally, Section 6 reports our conclusions.

3

2. Preliminary steps

In this section we first present in some detail the MCF problem, which will serve as our primary benchmark
for numerical tests, then we introduce the multigrid procedure to be specialized in the next sections in our
graph setting.

2.1. The Minimum Cost Flow Problem

We start by recalling the definition of node-arc incidence matrix of a directed graph.

Definition 1. Let G ≡ Gn = (Un,Vn) be a directed graph with n nodes Un = {u1, . . . , un} and m arcs
Vn = {v1, . . . , vm}; its node-arc incidence matrix E ≡ En = E(Gn) is the n×m matrix such that Eij = 1 if vj
emanates from ui, Eij = −1 if vj terminates at ui and Eij = 0 otherwise. Hence E has exactly two non-zero
elements (a 1 and a −1) in every column.

Given a directed graph G, the linear Minimum Cost Flow (MCF) problem [4] is the Linear Program (LP)

min
{

cTx : Ex = d , 0 ≤ x ≤ u
}

(1)

where E is the node-arc incidence matrix of G, c is the vector of arc costs, u is the vector of arc upper capacities,
d is the vector of node deficits and x is the vector of flows. The flow conservation constraints Ex = d express
the fact that the flow has to travel in the graph from sources (nodes with di > 0) to destinations (nodes with
di < 0), while for the remaining transhipment nodes (with di = 0) the total inbound flow must equal the total
outbound flow. This problem has a huge set of applications, either in itself or, more often, as a submodel of
more complex and demanding problems [1]. Without loss of generality we can restrict our analysis to connected
graphs, as the general case of more than one connected component can be traced back to this case (basically
there is a separate LP for each one).

We study graph matrices coming from the application of Interior Point (IP) methods, which have grown a
well-established reputation as efficient algorithms for large-scale problems. In these methods, at each step we
have to solve linear systems of the form

EΘETx = b , (2)

where E is fixed, while b ∈ Rn and the m×m diagonal positive definite matrix Θ depend on the IP iteration;
as we will not consider (possible) strategies for re-use of information between two different IP iterations, we will
disregard this dependence, thus focusing our attention to the solution of (2) at any one fixed iteration. Since
each diagonal element of Θ is associated to a specific arc of G, we can consider G as a weighted graph, with Θ
specifying the arc weights. In the following we will often use the shorthand L = EΘET , also disregarding the
fact that L actually depends on Θ. As the following remark shows, L is closely tied to other well-known graph
matrices.

Remark 1. Let G′ = (U ,V ′) be the undirected graph obtained from G by ignoring the orientation of the arcs.
G′ also is a weighted graph, the weight wuv of each edge {u, v} ∈ V ′ being the sum of the weights of all arcs of
G which “collapse” in {u, v} (note that multiple parallel arcs are allowed in (1), as they can have different cost
and capacity). Then let A(G′) be the symmetric (weighted) adjacency matrix of G′, such that Auv is the weight
of the edge {u, v} if it belongs to V ′ and 0 otherwise. Further let D(G′) be the n× n the diagonal matrix with
Duu =

∑
v∈U Auv (du is the node degree of u in the unweighted case). The Laplacian of G′ is

L(G′) = D(G′)−A(G′) ,

and it is easy to show that
L(G′) = E(G)Θ(G)E(G)T .

Hence, a relevant topological information regarding the original directed graph G is contained in E(G) as well as
in L(G′). The Laplacian of a graph has very many applications in such diverse fields as graph theory, statistics
and combinatorial optimization [17, 41, 48].

In most general-purpose LP solvers, the linear systems (2) are solved by means of direct methods, typically
the Cholesky decomposition preceded by a heuristic reordering of the columns of E aimed at minimizing the
fill-in. For very large, sparse networks this approach is inefficient, as disastrous fill-in (e.g. [13]) may occur
which renders the iteration cost unbearable. One thus has to revert to iterative methods instead, but these

4

approaches can be competitive only if the rate of convergence is sufficiently high. This motivates studies of
the extreme singular values of E and of the spectral behaviour of L, since the convergence rate of iterative
methods largely depends on the conditioning µ(·) and more generally on the spectral structure of the matrix
(see [35] for an analytic study of such topics). In the first IP iterations, the matrix Θ is close to the identity
and the spectral difficulties are mild: µ(L) ≤ cn2, with c absolute constant and the bound attained, up to lower
order terms, in the case of linear graphs [35]. However in the last IP iterations the matrix Θ becomes highly
unbalanced and the conditioning of L is essentially described by the wild conditioning of Θ. This phenomenon is
analyzed in [51] for the case of linear graphs and this analysis is particularly relevant for the numerical solution
of (2) through a preconditioned conjugate gradient (PCG) method. Most PCG-based IP algorithms employ
support-graph preconditioners [62, 6, 8, 9] of the form

LS = ESΘSE
T
S ,

where ES and ΘS denote the restriction of E and Θ respectively, on the arcs of a “simple” subgraph S of
G. Basically there are two possible choices for S. The first aims at minimizing the computational burden of
inversion (factorization) of LS , which is obtained by choosing it as a spanning tree or as some other chordal-type
graph [49, 32, 33]: in this way, the corresponding node-arc incidence matrix is in triangular or block triangular
form and LS can be factorized without fill-in. From a computational viewpoint, spanning trees are the most
effective choice in all but the most difficult cases, due to the fact that S can be chosen as an (approximate)
Minimum Spanning Tree in O(m), e.g. by employing the Prim algorithm. The other choice instead aims at
selecting S in such a way that the best possible provable improvement of the preconditioned system conditioning
is obtained. This usually reduces to appropriately (recursively) partitioning the graph into “weakly interacting”
clusters [59, 44]. Alternatively (or in addition) Steiner preconditioners [37, 43] allow to simplify the task of
choosing the right subgraph at the cost of introducing “fake” nodes in the graph (“do not care equations”) and
therefore solving a slightly larger problem.

While theoretically sound and supported by a sophisticated analysis, the status of “complex” support-graph
preconditioners from the computational standpoint is not yet very clear, as some of the hidden constants in
the complexity results may be large. This is even more relevant when considering actual implementations of
the corresponding approaches, which are complex and not widely available, while “simple” PCG approaches
using tree or tree-like subgraphs can be implemented with minor modifications of standard solution methods.
Yet, while these preconditioners often work quite well, there are some cases where the convergence rate is
slow. Along the lines of [45, 23, 24], the objective of this paper is therefore to evaluate whether “simple”
tree-based PCG approaches can be complemented with ideas from the algebraic multigrid (AMG) field [55, 60]
—and in particular from multi-iterative techniques [57]—to yield methods that combine a relatively simple
implementation and robustness, in the sense of uniformly delivering good performances, without the need of a
complex parameter tuning.

2.2. Multi-iterative idea and MG methods
Let L = LT ∈ Rn×n be a positive definite matrix, b ∈ Rn be the right-hand-side and, l ∈ (0, n) (most often

l ≈ log n) be the number of levels. Fix integers n0 = n > n1 > n2 > . . . > nl > 0, take R i
i+1 ∈ Rni+1×ni

full-rank matrices and consider a class Si of iterative methods for ni-dimensional linear systems. The related
V-cycle method [61] produces the sequence {x(k)}k∈N according to the rule x(k+1) = MGM(0,x(k),b), with
MGM recursively defined as follows:

x
(out)
i :=MGM(i,x

(in)
i , bi)

if(i = l) then Solve(Llx
(out)
l = bl)

else 1 ri := Lix
(in)
i − bi

2 bi+1 := R i
i+1ri

3 Li+1 := R i
i+1Li(R

i
i+1)T

4 yi+1 :=MGM(i+ 1, 0ni+1
,bi+1)

5 x
(int)
i := x

(in)
i − (R i

i+1)Tyi+1

6 x
(out)
i := Sνi

(
x
(int)
i

)
Step 1 calculates the residual of the proposed solution. Steps 2, 3, 4, 5 define the recursive coarse grid correction
by projection (step 2) of the residual, sub-grid correction (steps 3, 4) and interpolation (step 5), while step 6
performs some (ν) iterations of a “post-smoother”.

5

By using the MGM as an iterative technique [55], at the k-th iteration, we obtain the linear systems

Lix
(k)
i = b

(k)
i , i = 0, . . . , l, where the matrices Li = LTi ∈ Rni×ni are all positive definite. Only the last one

is solved exactly, while all the others are recursively managed by reduction to low-level system and smoothing.
The procedures Si are most often standard stationary iterative methods [64], such as Richardson, (damped)
Jacobi, Gauss-Seidel etc., with prescribed iteration matrix Si ∈ Rni×ni , i.e.

Si(x(int)
i) = Six

(int)
i + (Ini − Si)L−1i b

(k)
i , xi ∈ Rni , i = 0, . . . , l − 1 .

If we recursively define the multigrid iteration matrix of level i = l − 1, . . . , 0 asMGMl = 0nl×nl

MGMi =Sνii

[
Ini
−
(
R i
i+1

)T (
Ini+1

−MGMi+1

)
L−1i+1R

i
i+1Li

] , (3)

then x
(out)
i = MGMix

(in)
i + (Ini

−MGMi)L
−1
i bi, so in the finer grid we have

x(k+1) = MGM0x
(k) + (In0

−MGM0)L−10 b, x(r) = x
(r)
0 ∀r,

and MGMi depends on i but not on any of the x
(k)
i and b

(k)
i . For each i = 0, . . . , l − 1, the algorithm has

essentially two degrees of indetermination:

• the choice of the projectors R i
i+1;

• the choice of the smoothers Si.

The former, as well as the calculation of the Li matrices, are performed before the beginning of the V-cycle
procedure (pre-computing phase). While this is not necessary in the general multi-iterative approach, we
will only consider convergent smoother iterations. Moreover, if the smoother is convergent in the L-norm
(‖x‖2L = xTLx, L symmetric and positive definite), then the multigrid iteration matrix has L-norm smaller
than that of the smoother. In other words, the multigrid iteration is never worse than the smoother alone
[57, 38].

Two further modifications can also be applied:

• using a pre-smoother, i.e., adding a step 0 similar to step 6 where a further stationary iterative method is
employed;

• allowing, in steps 6 (and 0), the number of smoothing iterations to depend on the level i.

This corresponds to the matrix in (3) being multiplied on the right by a further iteration matrix, i.e.

MGMi = S
νi,post

i,post

[
Ini
−
(
R i
i+1

)T (
Ini+1

−MGMi+1

)
L−1i+1R

i
i+1Li

]
S
νi,pre
i,pre ,

where the number of smoothing steps νi,pre and νi,post depend on the level i. In practice (cf. [2, 58] and
the references therein) the application of the pre-smoother accelerates the global convergence substantially,
but the explanation of this phenomenon falls outside the convergence theory of the algebraic multigrid and
indeed pertains to multi-iterative methods [57]. For instance, looking just at the two-grid method, in the case
of the d-dimensional discrete Laplacian, it is easy to prove that the post-smoothing given by the Richardson
iteration with ω = ω1 ≡ 1/4d is strongly converging in the subspace of the high frequencies and that the coarse
grid correction strongly reduces the error in the low frequencies subspace. Therefore, the combination of the
two complementary iterations, which separately are slowly convergent on the global space Rn, leads to a fast
convergent two-grid method. However a finer analysis tells us that the global error is now essentially localized
in the middle frequencies: the iteration again given by Richardson, but with ω = ω2 ≡ 1/2d is not a smoother:
however such a simple method is fast convergent just in the middle frequencies subspace. Therefore its further
use in step 6 (or equivalently in step 0) increases very much the “spectral complementarity”, so that we obtain
a real multi-iterative method, whose global spectral radius is really small. We call an iteration having a spectral
behaviour complementary to both the coarse grid correction and the smoother an “intermediate iteration”;
an example is the Richardson iteration with ω2 = 2ω1 in the case of the discrete Laplacian. Regarding the

6

level-dependent number of smoothing iterations [58], it can be easily shown that a polynomial growth with i
does not affect the global cost, that remains linear for banded or sparse structures, only changing the constants
involved in the big O. This strategy, together with sophisticated preconditioners in the smoothing phases, was
the key for developing very effective multigrid solvers for very ill-conditioned IgA Galerkin B-spline matrices
[28] and for Sinc-Galerkin matrices [50], where, like in the case of weighted Laplacians, there is the presence of
a positive diagonal matrix whose conditioning is extremely high (in fact exponential as the size of the matrix
in the Sinc-Galerkin setting). However, while in the standard differential setting there is a gain in using an
increasing νi = νi,pre + νi,post, for problems with a smaller ill-conditioning (regularized Laplacian in [29]) the
method, that achieves the smallest theoretical cost and that minimizes the actual CPU times for reaching the
solution with a preassigned accuracy, is the simplest V-cycle with only one step of post-smoothing given by a
classical damped Jacobi.

Since several possible choices exist in the implementation of the MG approach, in the remainder of this
section we will briefly discuss some initial computational tests, performed in the context of MCF problems, that
provide a guidance on how to choose at least the two main components: projectors and smoothers.

2.3. Ghost node

Let e = e(n) be the all-ones vector of length n. It is immediate to realize that eTE = 0T and therefore
eTL = 0T , i.e. rank(L) = n− 1. However eTd = 0 as well (for otherwise (1) cannot have any feasible solution
[1]), and this property is transmitted to the right-hand sides b. Hence by the Rouché-Capelli Theorem the
linear system (2) has ∞1 solutions of the form x(α) = x̂ +αe for α ∈ R. Thus, let E′ and b′ be obtained by E
and b respectively by erasing any one row and L′ obtained by E′ as usual. A solution to (2) can be obtained
by solving the cut system

L′x′ = b′ (4)

and setting x̂ = (x′, 0). Intuitively this amounts at creating a “ghost node”, the one corresponding to the
deleted row, in the graph, as the columns of E corresponding to arcs entering (leaving) the ghost node will only
have a 1 (−1) without the corresponding −1 (1).

It is well-known that, since L is a semidefinite positive matrix, CG and PCG approaches (started from the
zero vector) solve (2) in the least-squares sense, i.e. find

x̄ = argmin
x∈Rn

‖Lx− b‖2 or equivalently ‖x̄‖2 = min
α∈R
‖x̂ + αe‖2 . (5)

This is, in general, not true for other methods. Hence using CG or PCG allows to work on the original graph
at all levels but the last one, where eliminating one row (i.e. passing from (2) to (4)) to recover L′l is necessary
since a non-singular matrix is required by direct methods. Thus [P]CG can maintain our graph “sheltered from
ghosts” which, as we will see, can have a positive impact on performances.

2.4. Smoothers

In accordance with the most successful strategies in the differential case, we tried as smoothers a combination
of classical iterations. We recall that the discrete Laplacian can be viewed as a special instance of a graph matrix.
In addition, by the analysis in [35], all the (unweighted) graph matrices with Θ = I share the property that
the small eigenvalues are related to smooth eigenvectors. In other words, as in the differential setting, the
degenerating subspace is located essentially in the low frequencies. Thus, following multi-iterative idea [57], we
performed an extensive search for a combination of “simple” pre- and post-smoothers (e.g., relaxed Jacobi or
relaxed Gauss-Seidel with different choices of the relaxation parameter) which was effective from the point of
view of spectral complementarity. However, we were not able to find it. All combinations of classical pre- and
post-smoothers we tested were clearly ineffective, especially in the last iterations of the IP process where the Θ
becomes very unbalanced, with very large entries (≈ 1e+6) and very small entries (≈ 1e-10).

A similar occurrence was already experienced in [50], where the distribution of the nodes in the Sinc-
Galerkin method induced very unbalanced diagonal entries. In that application, the only successful strategy
was the combination of PCG smoothers with sophisticated and powerful preconditioners, in connection with
the classical projection used in the differential context. As will be discussed in §3.3, that previous experience
is strongly related with the current setting by the fact that the full weighting operator is a special case of
the ones studied here. This means that even if the projection operator is appropriate, unlike the simple ones
we used in our initial tests (cf. §2.5 and [26]), “simple” smoothers may not be enough to obtain an efficient

7

approach when the system is ill-conditioned. This was in fact later confirmed, as reported in §4.4, when testing
the solver of [45] on our problems. In that code, a very sophisticated and principled choice of the projection
operator is performed, but it is used in conjunction with standard smoothers; the corresponding results were
not competitive. All these experiences justify our choice of focusing our attention on more powerful smoothers,
that is, the PCG family with a large set of specialized preconditioners:

• diagonal;

• incomplete Cholesky factorization with tolerance parameter droptol (non-zero fill-in);

• tree-based preconditioners.

However, as it will be clear from the next subsection, the problem with general graph matrices is more compli-
cated than the one in [50], since the graph structure is not nearly as regular as those arising in the context of
differential operators.

Regarding the computational burden, we assume that the cost at every level of the MG iteration is linear
with respect to the dimension (let us say bounded by O(ni) = γni) plus the recursion part and we assume that
the size is halved at every recursion step. Concerning the number of smoothing steps, we consider the growth
function νi,pre = ik that is we make more smoothing steps at the inner levels and we assume that the cost of
the smoothing iteration is responsible of the linear cost O(ni) = γni. The total work Wi at level i required to
perform a MG iteration is then given by the recursive law

Wi ≤ γni(l + 1− i)k +Wi−1, ni−1 =
ni
2
,

with W0 constant. Therefore, setting n = nl, at the finest level l ≈ log(n) we have

Wl ≤
l∑
i=1

γ
n

2i−1
ik +W0 < γn

∞∑
i=1

ik

2i−1
+W0 . (6)

The rightmost series in (6) is convergent; its initial values for k = 0, 1, 2, 3, 4, 5 are respectively 2, 4, 12, 52,
300 and 2164. This estimate has to be multiplied by 2 when employing both pre- and post-smoother, as in our
case. Numerical experiments with different values of k (∈ {0, 1, 2}) clearly showed that k = 0 results in the best
performances [26], which was therefore the setting used in all the subsequent test.

2.5. Projectors

Our initial interest was to verify whether standard operators with good performances in the context of
differential equations, such as the very classical Full Weighting Operator (FWO)

RFWO =
1

4

1 2 1

1 2 1
. . .

1 2 1

 , (7)

would perform equally well in the context of general graph matrices. The preliminary results quickly made it
clear that this was not the case [26]: in fact, the corresponding MGM is not efficient even for these easy graphs
and Θ = I, which is generally the easiest case because it shows a moderate conditioning [35]. The results are
also confirmed by the fact that using more sophisticated choices, such as quadratic approximation [27] with
stencil

1

16
[1, 4, 6, 4, 1]

and even cubic interpolation [61] with stencil

1

32
[−1, 0, 9, 16, 9, 0,−1]

does not lead to better results (actually even to worse ones). Thus the differential setting is of no help in our
graph problem. This is due to the fact that the matrix at lower levels is far away from a graph matrix and this
destroys the structure which the MGM relies upon.

8

All this pushed us towards the development of the different operators described in this paper. In particular
we quickly focused our attention on Aggregation Operators (AGO) of the generic form

RAGO =

1 1 1

1 1
. . .

1 1 1 1

 , (8)

which preserve the graph structure in the recursion, i.e.

RAGOEΘETRTAGO = RAGOL(G)RTAGO = L(G′)

is the Laplacian of a new graph G′ corresponding to the aggregation of nodes of the original graph (see Definition
2). Similar operators have been used with good results in different contexts, for example when designing
multigrid solvers for Markov Chains [20]. Numerical testing clearly showed that MG approach with a simple
structure-preserving projector appeared to be competitive. Furthermore the tests showed that, for general
graphs and arc weights (such as these of MCF matrices at final IP iterations), the only effective smoothers are
preconditioned Krylov methods. Therefore the only ingredient that may possibly make the V-cycle competitive
is the right choice of the projectors. Since most of the effective preconditioners for this class of systems are
of support-graph type, it is interesting to investigate the class of projection operators, preserving the graph
structure — and therefore using support-graph preconditioners — at all levels of the MG approach. This is
precisely what the next section is devoted to.

3. Graph operators theory

In this section we study the conditions under which projection operators preserve the graph structure of the
matrix. We start with some preliminary definitions.

Definition 2. An operator R is called a graph operator if, given any incidence matrix E,

RE = E′Θ′ , (9)

where E′ is an incidence matrix and Θ′ is an invertible diagonal matrix.

According to (2), one has

REΘETRT = E′Θ′ΘΘ′E′T = E′Θ̃E′ ,

where Θ̃ = Θ′ΘΘ′ is a diagonal matrix with positive diagonal entries, if Θ is (we do not need the diagonal
entries of Θ′ to be positive). Consequently it is evident that if the restriction Rii+1 in the multigrid method
is a graph operator, then it preserves the graph structure at the lower levels, in the sense that the projected
problem is still a (smaller) weighted Laplacian, thus allowing an efficient recursive strategy in the MG solver.
A weaker notion is:

Definition 3. An operator R is called a graph operator for a given matrix E if (9) holds for E, although it
may not hold for all possible incidence matrices.

Definition 4. An operator R is called admissible if it does not have any column with all zero elements and
any row with all equal elements.

The rationale for this definition is that an all-zero column means that a node is “ignored”, so that the
projection (ri = (Rii+1)T ri+1) cannot produce any correction of the error. Symmetrically, a row with all equal
elements in R means that RE has an all-zero row, i.e. E′ in (9) has an isolated node. Furthermore note that
AMG conditions impose that R has to be of full rank, so that in any case at most only a unique row could
have all equal elements. We remark that Definition 4 implies that nz(R) ≥ n, where nz(·) denotes the number
of non-zero elements. This leads to the following refinement of the concept.

Definition 5. An admissible graph operator R such that nz(R) = n is called minimum.

Of course, any admissible operator with nz(R) > n is non-minimum, and the set of graph operators is
partitioned between the two subsets. Similar definition can be given for graph operators w.r.t. a specific matrix
E.

9

3.1. Necessary and sufficient conditions for graph operators

We now are interested in a characterization of the set of graph operators. In this section we will employ the
following notation: A[k] is the k-th column of a generic matrix A, E is the n×m node-arc incidence matrix of
the underlying connected graph G (cf. §2.1), for each k = 1, . . . ,m the tail and head nodes of the corresponding
arc (the row indices corresponding to 1 and −1 in E[k]) are ik and jk respectively, R is a n′ × n operator with
n′ < n (usually n′ ≈ n/2) so that F = RE is a n′ ×m matrix, e′ = e(n′) is the all-ones vector of length n′.

Definition 6. R is a constant column sums (CCS) operator if the sum of elements of every column is constant,
i.e. there exists ρ ∈ R such that (e′)TR = ρeT .

Definition 7. R is a zero column sum (ZCS) operator for E if (e′)TF = (e′)TRE = 0T (i.e R conserves the
property of E that all columns have zero sum). R is a ZCS operator if it is a ZCS operator for all graph matrices
E.

Theorem 1. Let E be an incidence matrix. R is a ZCS operator for E if and only if R is a CCS operator.

Proof. [⇒] We want to prove that rT = (e′)TR = ρeT for some ρ ∈ R. Suppose otherwise and let i, j be two
indices such that ri 6= rj . Because G is connected, there exists at least one path in G having the nodes i and
j as endpoints. It cannot be that rp = rq for every arc k = (p, q) belonging to the path, as this would imply
ri = rj . Hence there must be k = (p, q) such that rp 6= rq, which leads to

0 = (e′)TF [k] = (e′)T (RE)[k] = rTE[k] = rp − rq 6= 0

that is a contradiction.
[⇐] For every CCS operator R and for every incidence matrix E we have (e′)TF = (e′)TRE = ρeTE =

0T .

Corollary 1. If R is a ZCS operator for E then it is a ZCS operator.

Proof. Since R is a ZCS operator for E, by Theorem 1 R is also a CCS operator. Now, by the second point of
the previous proof, it follows that R is a ZCS operator.

Remark 2. Corollary 1 implies that the two forms in Definition 7 are equivalent.

Corollary 2. Let E be an incidence matrix. Any graph operator for E is a CCS operator.

Proof. Since R is a graph operator for E, we have (cf. §2.3)

(e′)TF = (e′)TRE = (e′)TE′Θ′T ,

i.e. R is a ZCS operator for E. Hence by Theorem 1 it is a CCS operator.

Corollary 3. Let R be a minimum operator. Then, up to a scalar factor ρ, R is a binary matrix, i.e. R ∈
{0, 1}n′×n.

Proof. By Definition 5 every column of the graph operator R only has one non-zero element and by Corollary
2 (e′)TR = ρeT , hence every non-zero entry must be equal to ρ.

Definition 8. R is a difference operator for a set I = {(i1, j1), (i2, j2), . . .} of pairs of node indices if for every
(ik, jk) ∈ I the vector R[ik] −R[jk] has either 0 or 2 non-zero elements.

Lemma 1. For each k = 1, . . . ,m, F [k] = (RE)[k] = R[ik] −R[jk].

Proof. Immediate by the definition of E.

Theorem 2. Let R be a CCS operator. R is a graph operator for E if and only if R is a difference operator
for the set I = V of the arcs of G.

10

Proof. [⇒] Assume by contradiction that R is not a difference operator for I = V. There exists an arc
k = (ik, jk) ∈ V such that R[ik]−R[jk] has neither 0 nor to 2 non-zero elements. This by Lemma 1 implies that
the same holds for F [k] = (RE)[k], therefore R is not a graph operator, since (9) cannot hold.
[⇐] If R is a difference operator for V, then for each k = (ik, jk) ∈ V the column F [k] = R[ik] −R[jk] has either
0 or 2 non-zeroes. Assume the latter and let p and q be the row indices of the non-zeroes in F [k]. Since R is a
CCS operator, by Theorem 1 we have

0 = (e′)TF [k] = Fpk + Fqk ⇒ Fpk = −Fqk .

We can then scale F [k] by using the k-th diagonal entry of Θ′, finally yielding F = E′Θ′ where E′ is an incidence
matrix (possibly with “empty arcs”). Therefore R is a graph operator.

Remark 3. It is easy to verify that minimum operators are CCS operators and difference operators for any set
I.

3.2. Admissible graph operator theorem

In the following we prove a somewhat surprising result concerning admissible graph operators.

Definition 9. C ∈ Rn′×n is called a row matrix if each of its rows is a scalar multiple of eT , i.e. C = ceT for
some c ∈ Rn′

.

Lemma 2. Let A ∈ Rn′×n, s ∈ Rn′
and Q ∈ Rn′×n defined as

Qij =

{
0 if Aij = si
1 otherwise

.

Then for any pair (i, j) the number of non-zero elements of A[i]−A[j] is equal to the number of non-zero elements
of Q[i] −Q[j] plus the number of indices k such that Aki 6= Akj and Qki = Qkj = 1.

Proof. For any k, denote αk = Aki−sk and βk = Akj−sk. If Qki 6= Qkj , it means that Qki = 1 and Qkj = 0 or
vice-versa; hence αk 6= 0 and βk = 0 or vice versa. Therefore Aki−Akj = (Aki−sk)− (Akj−sk) = αk−βk 6= 0.
When Qki = Qkj = 0, one has αk = βk = 0, and therefore Aki − Akj = 0. In the only remaining case
Qki = Qkj = 1 one directly counts whether Aki 6= Akj or not, hence the proof is finished.

Theorem 3. If R is an admissible graph operator and n′ > 2 then

R = M + C ,

where C is a row matrix and M is a minimum operator.

Proof. Since R is admissible, after a proper reordering of rows and columns of R, we have R = [R1 | R2] where
R1 is a n′×n′ matrix such that Rii 6= 0 for all i. For minimum operators, without loss of generality, R1 = ρ · I,
where ρ is a scalar factor and R2 contains only copies of some columns of R1.

We arbitrarily select one column of R — say R[t] — as s and we apply Lemma 2 to R. Since R is admissible,
there cannot be an all-zeroes row in Q, because R does not have any row with all equal elements. Since R is
also a graph operator, (9) holds for any graph G. By Theorem 2 R is therefore a difference operator for any set
I, hence in particular for I = {(1, t), (2, t), . . . , (n, t)} (the star tree rooted at t). By the definition of difference
operator, in each column of Q there are either 0 or 2 ones. Moreover, for any pair Q[i] and Q[j] of non-zero
columns at least one of the two non-zeroes must be in the same row. In fact, assume by contradiction that Q[i]

and Q[j] have all their non-zeroes in different positions: this means that there exists for Q a difference vector
Q[i] −Q[j] with 4 non-zero elements and by Lemma 2 the same holds for R, since there is no index k such that
Qki = Qkj = 1.

These two facts imply that we can reorder the rows and columns of Q (which corresponds to reordering R)
by putting the column t as the first one and all the others appropriately in such a way that Q = [Q1 | Q2],
where Q1 is the following n′ × n′ matrix

Q1 =

0 1 1 · · · 1
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

11

and Q2 contains only copies of some columns of Q1. Now assume that R has in fact been reordered (if necessary)
to match Q, consider the first row in (the reordered) R and pick any two column indices h 6= j such that Q[h]

and Q[j] are not all-zero; hence Q1h = Q1j = 1 (remind that the columns in Q2 are copies of these in Q1, hence
all the non-zero ones have a 1 in the first row). We claim that R1h = R1j . We start with the case where the
other two non-zeroes are in different rows, i.e. Qph = 1 and Qqj = 1 for 1 < p 6= q > 1: by Lemma 2 we have
a difference vector for R with 2 or 3 non-zero elements, depending on whether R1h = R1j or not, which proves
our claim since R is a difference operator. The case when p = q easily follows by transitivity, considering one
further column h (which must exists) that has its other non-zero element in a different row: R1i = R1h and
R1j = R1h, so R1i = R1j . Note that the hypothesis n′ > 2 is crucial in this part of the proof.

Consider now any row i > 1. Needless to say, all entries Rij such that Qij = 0 have the same value (that of
Rik). Therefore we know that R has an arrangement as R = [R1 | R2], where

R1 =

r1 c1 c1 · · · c1
c2 r2 c2 · · · c2
c3 c3 r3 · · · c3
...

...
...

. . .
...

cn′ cn′ cn′ · · · rn′

and each column R[j] of R2 has the form [c1, c2, c3, . . . , cn′]T except (possibly) for one unique element, Rij =
rj 6= ci, at the unique row i > 1 (if any) such that Qij = 1. Consider any two column indices h 6= j such that
Qih = Qij = 1: we claim that, again, Rih = Rij , i.e. that all columns of R2 are copies of some column of
R1 (the one having the non-zeroes in Q in the same position). This comes from the fact that, being a graph
operator, R is also a CCS operator: (e′)TR[j] = (e′)TR[h] = ρ. Then one has

ρ = (e′)TR[j] =
∑
p 6=i

cp + rj and ρ = (e′)TR[h] =
∑
p 6=i

cp + rh

whence Rih = rh = ρ−
∑
p 6=i cp = rj = Rij . Again from the fact that R is a CCS operator, we have

ρ = (e′)TR[1] = r1 + c2 +
∑
p>2

cp = (e′)TR[2] = c1 + r2 +
∑
p>2

cp

and similarly for all pairs (i, i+1) with i < n′, whence r1−c1 = r2−c2 = . . . = rn′−cn′ . Let us call the common
value ri−ci = α: it must be α 6= 0, for otherwise one would have ri = ci for all i, i.e. R = C = ceT , contradicting
the hypothesis that R is admissible (each row would have all equal elements). Hence M = R − C 6= 0. In
particular M has exactly one non-zero per column, no all-zero rows, and all its non-zeroes have the same value
α. Thus M clearly is a minimum operator (cf. Corollary 3).

Remark 4. The action on an incidence matrix E of any graph operator R and of the related minimum operator
M (see Theorem 3) is the same. In fact, F = RE = ME + CE = ME.

Remark 5. The hypothesis n′ > 2 in Theorem 3 is necessary, as for n′ = 2 the thesis does not hold. In fact, the
conditions which have to be satisfied are

• R1j +R2j = ρ for all j,

• R1j = R1k if and only if R2j = R2k for all j and k,

and these do not prevent from choosing all different Rij , so in general R 6= M + C. An easy counterexample
with m = 5 is for instance

R =

(
0.1 0.8 −1 1 0.25
0.9 0.2 2 0 0.75

)
.

Corollary 4. Let R be an admissible graph operator. If R is a binary matrix, then either R = M or R =
e′eT −M where M is a minimum operator.

Proof. By Theorem 3 R = M +C. By Corollary 3 M is a binary matrix, up to a scalar factor α. Hence either
C = 0 and R = M or C is the matrix with all entries equal to 1 and R = C −M is the complement of the
minimum operator M (the one having 0 where M has 1 and vice-versa).

12

We finish this section by noting that if the original graph G is connected (as is the case in our applications),
then so is the “restricted” graph G′.

Theorem 4. Let R be an admissible graph operator for E(G). Then G′ is a connected graph.

Proof. By Remark 4 F = RE = ME, hence R acts on E as a minimum operator; these aggregate nodes, which
can be adjacent (cf. Definition 10) or not. Clearly contracting nodes in an already connected graph produces a
connected graph: each path in G corresponds to a (possibly non-simple) path in G′. In other words, connectivity
in G′ is the same as connectivity in the graph obtained by adding to G arcs forming cliques within the aggregated
nodes.

3.3. Interpretation: the FWO operator for Poisson problems

The above results help heuristically in understanding why the full weighting operator is a good choice for
Poisson problems: basically it is a graph operator for the corresponding very special graph matrix. Recalling
its algebraic expression in (7), omitting the constant 1/4, and leaving out the first and the last column, one
immediately notes that the FWO is a CCS operator with constant 2. The fundamental observation now is that
the matrix associated with the Poisson problem has the EET form with the elimination of the first and the last
row and the first and the last column:

(LPoisson)n =

2 −1
−1 2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

n×n

= PnEnE
T
n P

T
n ,

where En =

1
−1 1

−1
. . .

. . . 1
−1 1

−1

(n+2)×(n+1)

, Pn =
(

0 In 0
)
n×(n+2)

.

The incidence matrix E is associated to the linear graph with n + 2 nodes, in which every node points to the
next one, as depicted in Figure 1.

n+242 3 ...1 n+1

Figure 1: Linear graph with n+ 2 nodes. Nodes colored in grey are related to the Dirichlet boundary conditions.

Indeed, RFWO — which is clearly an admissible operator — is a difference operator for the set I = {(2, 3),
(3, 4), . . . , (n− 2, n− 1)}, as the difference vector is 2

−
 1

1

 =

 1
−1

 or

 1
1

−
 2

 =

 1
−1

 .

The exceptions represented by the first and the last column, in which the difference vector has one non-zero
element, do not contradict our results, as they can be explained by the elimination of rows and columns related
to the Dirichlet boundary conditions. By Theorem 2 we conclude that RFWO is a graph operator for the matrix
E of Poisson problems (cf. Definition 3), although not a graph operator in general. Moreover, by Theorem 4
also the graph associated to E′ = En′ is connected; even better, such graph is still a linear graph. In fact,

RFWO(LPoisson)nPFWO =
1

4
(LPoisson)n′ =

1

4
Pn′En′ETn′PTn′

13

where PFWO = 2(RFWO)T is the operator of linear interpolation, En′ is the incidence matrix associated to the
linear graph with n′ + 2 nodes, and Pn′ is defined as above. Thus the FWO projection preserves the Poisson
structure and so it is not surprising that it does work well in the Poisson case. However for general graphs,
the structure of weighted Laplacian is not conserved at all by the FWO projection. Consequently, we are not
surorised that the related multigrid performances are not good (see the discussion in Section 2.5). Our heuristic
indication is to consider only projections that preserve the weighted Laplacian structure.

4. Projection operators

In this paragraph we will review several proposals for projection operators in the context of Laplacian
matrices. For each of them we describe the restriction operator R ∈ {0, 1}n′×n, where n′ is a fraction of n (n
actually is nk, i.e. the matrix dimension at the k-th level). The value d = n − n′ is called descent parameter
and usually d ≈ n′ ≈ n/2.

4.1. Iterative pairwise minimal operators

Many different minimal operators can be constructed by iterating the simplest possible form of aggregation,
that is the one given by the Pair Operator

R(i, j) =

1 i j
1 ↓ ↓

1 1
. . .

1
1

1

w.r.t. the pair (i, j); in other words, by selecting a set R of pairs of nodes (with |R| = d) and defining
RR =

∏
(i,j)∈RR(i, j). For instance one could define oblivious operators that are independent of the graph

they are applied to, such as the Couple Operator aggregating successive nodes (R = {(1, 2), (3, 4), . . .}) or the
Random Operator where R is randomly chosen. Oblivious operators are attractive from the computational
viewpoint because they can be computed a-priori, therefore they are as cheap as possible. However their
effectiveness is strongly influenced by the structure of the underlying graph G: in order to construct “robust”
operators, adaptive choices must be considered which depend on the values of the matrix at hand (topological
structure of the graph and weights of the arcs too), despite the fact that they can be more costly to determine
[26]. Therefore a non-trivial trade-off between increase of the performances and computational cost has to be
determined. In choosing the rules to determine the elements of R, it is likely a wise choice to preserve as much
as possible the topological structure of the graph.

Definition 10. A graph operator R is a contraction operator for E if it aggregates exclusively adjacent nodes
in G.

Remark 6. RFWO is a contraction operator for the matrix E of Poisson problem.

Contractor operators are intuitively attractive, since they do not “mess up” with the structure of the graph.
Indeed we tested a simple but effective scheme for choosing the pairs (i, j) to aggregate:

• select i either at random or as the diagonal entry of L with the least (or the greatest) value;

• select j either at random or as the index of the non-zero off-diagonal entry in the i-th column with the
least (or the greatest) absolute value (since Lij = −Θij < 0).

Note that, when the process is repeated, the (iteratively) aggregated matrix

R(i, j)LR(i, j)T

is looked at instead of the original L. This gives rise to nine “{x, y}” projectors with x and y chosen between
“rand”, “min” and “max”. Our preliminary results [26] showed that {x,max} projectors substantially outper-
form the corresponding variants, where j is selected either at random or by looking at arcs with small weight.

14

Thus in our experience using contractor operators turns out to be better then aggregating non-adjacent nodes.
Furthermore, as with subgraph-based preconditioners, choosing arcs with large weight for R appears to be the
best option.

It is clear that different, and possibly more sophisticated, choices of R may exist. For instance, every possible
pair (i, j) actually defines the 2× 2 minor

Lij =

[
Lii Lij
Lji Ljj

]
,

where Lii > 0, Ljj > 0, Lij = Lji < 0 and det(Lij) is positive. Because weak dominance for rows holds, that
is
∑
j 6=i |Lij | ≤ Lii with strict inequality at least for one index (if R is a graph operator, then this is true at

every MGM level), it follows that |Lij | ≤ min(Lii, Ljj). The choice of j of {x,max} operators implies that, if
we suppose that min(Lii, Ljj) = Ljj , then Lij ≈ Ljj and

det(Lij) = LiiLjj − L2
ij ≈ (Lii − Ljj)Ljj ,

i.e. if Lii ≈ Ljj then one aggregates a badly conditioned part, whereas if Lii � Ljj then one aggregates a
nicely conditioned part. Hence one may use quantities related to det(Lij), such as “normalized” versions like
det(Lij)/(L2

ii + L2
jj) or det(Lij)/(LiiLjj), which measures how well or badly conditioned the 2× 2 minor is, to

understand how promising a (i, j) pair is. This gives rise to max-minor or min-minor operators, depending on
whether one chooses to preferentially aggregate well-conditioned or ill-conditioned minors.

Our experience with these two variants is that aggregating badly conditioned minors is by far the most
effective variant. The choice of the (i, j) pair is done as in the previous case: first i is selected with either one
of the three above strategies, then j is selected in O(n) (O(1) for sparse graphs) as the one giving the most
ill-conditioned minor. Note that it would be possible to determine the “overall best” minor operator by looking
at all arcs in G, but that would have a O(m) cost. The {x,min-minor} operator seems to somewhat improve
upon the previous {x,max} ones. In particular its performances seems to be even less depending on the choice
of i, so the average behaviour is somewhat better. This is especially true when treating extremely ill-conditioned
problems, which therefore makes such a strategy our preferred choice. In the rest of the paper we will refer to
these projection techniques respectively as Max and Minor aggregation.

One may wonder whether non-minimum admissible graph operators (which exist by §3.2) could be preferable
to minimum ones. Since they are row matrix “perturbations” of minimum operators, these could e.g. by chosen
by selecting the minimum operator first, and the perturbation next. In practice, we did not identify any
promising way to construct non-minimum operators. All our attempts with non-minimum operators invariably
gave either equivalent or worse results than these with minimum ones [26]. Remark 4 may provide a good part
of the rationale for such observed results, since for the most part the effect of a non-minimum operator is similar
to that of the corresponding minimum one.

4.2. Strength-based aggregation operators

Different projection operators have been defined for different but related problems. For instance, a series of
papers [20, 21, 22, 23, 24] by De Sterck and his collaborators examine strength-based operators in the context
of the solution of problems of the form

Bx = x , x ≥ 0 , ||x||1 = 1 ,

where B a irriducible Markov matrix, which can be rewritten as Lx = 0, where L = I − B. The techniques
proposed in these papers are all based on the concept of strong dependence; namely, node i strongly depends
on node j if

−Lij ≥ θ
[
max
k 6=i
−Lik

]
where θ ∈ [0, 1] is strength threshold parameter. This says that the coefficient Lij is comparable in magnitude
to the largest off-diagonal coefficient in the i-th equation; in other context, the same concept is described “in
reverse” by saying that the node j strongly influences the node i. Let us immediately remark that this notion
is strongly influenced by the choice of the parameter θ which is far from being trivial, as discussed in the
computational section. Taking into consideration the latter, different aggregation strategies can be developed
based on this notion.

15

• Strength aggregation. The algorithm, presented in [20], is based on the notion that “important states”, i.e.
nodes i that have a large value in the current iterate x, are good candidate “seed points” for new aggregates
and that states that are strongly influenced by the seed point of an aggregate are good candidates to join
that aggregate. The idea amounts then in choosing, among the unassigned nodes, the one which has
the largest value in the current iterate x; a new aggregate is formed, and all unassigned nodes that are
strongly influenced by that seed point are added to the aggregate. This process is repeated until all nodes
are assigned to one aggregate. In the original implementation, the algorithm recompute aggregates at
every level of every V-cycle. In our experience this did not lead to good results, while a similar approach
using b instead of x (and therefore run only once before applying MGM) proved to be competitive.

• Neighborhood aggregation. This algorithm, proposed in [63] and used in [23], is based on the undirected
version of strong influence: the (undirected) pair of nodes {i, j} is considered to be strongly connected if at
least one of the nodes is strongly dependent on the other. This gives rise to the strong neighborhood Ni of
node i — the set of all points that are strongly connected to i — and to the two-phase neighborhood-based
aggregation algorithm. In the first phase, the algorithm assigns entire neighborhoods to aggregates: for
each node i, if none of the nodes of Ni have been assigned yet, then a new aggregate is formed and all
the nodes in Ni are assigned to the aggregate. This phase terminates with at least one aggregate formed,
and possibly some non-assigned nodes: then in the second phase each of the remaining nodes is assigned
to the aggregate it is “most connected” to, i.e. the one having the largest number of nodes in Ni.

• (Double) Pairwise aggregation. This pairwise aggregation algorithm, proposed in [52] and used in [24], is
based on the “directed version” of strong neighborhoods, i.e. on the sets Di of all the nodes j strongly
influenced by i (upon which i strongly depends). The algorithm chooses the unassigned node i with
minimal cardinality of Di and forms a new aggregate containing i. Then it looks for the unassigned node
j with the strongest negative connection with i, i.e. with the minimal value of Lij : if j ∈ Di, then j is
also added to the new aggregate together with i, otherwise i is left alone (in a single-node aggregate). The
process is repeated, but the assigned nodes (i, and possibly j) are removed from the sets Dh they belong
to, so that at each step the selected node is the one with the smallest number of unassigned strongly
influenced nodes. This approach is therefore similar to those discussed in §4.1, except that the number of
aggregations is not fixed a-priori, but depends on θ, and that all aggregations are performed “in parallel”
(on the original matrix). Furthermore, because the number of aggregations can be too small, the double
pairwise aggregation is also proposed, whereby the pairwise aggregation algorithm is run once providing
a projector R1. At that point, the projected matrix L1 = R1LR

T
1 is formed, the pairwise aggregation

algorithm is run again on L1 providing a second projector R2, and the final R is just the combination of
the two R = R2R1. The considered approach is even more similar to those in §4.1 and it is the one we
tested in our computational experiments.

It has to be remarked that these techniques have been proposed for, and applied to, methods that are
significantly different from the ones we consider. This is made apparent by the fact that the theoretical results
are based on the estimate of the multiplicative error e of the current iterate x, defined as the one which solves
A diag(x)e = 0, as well as from the fact the matrix at the lower level is given by

RA diag(x)RT ,

i.e. a scaling of the standard restricted system using the current iterate x. This is motivated by the interpretation
of the scaled matrix in Markov context: “for a link in the Markov chain from state i to state j, state i contributes
to the probability of residing in state j in the steady state not just by the size of the transition probability from
i to j but by the product of that transition probability and the probability of residing in state i” [20]. These
modifications to the standard MG approach are not applicable in our setting (at the very least they require that
b = 0, which is not the case), nor they are any likely to be effective. Indeed [23] reports that “a standard Krylov
acceleration technique cannot be applied, because the spaces involved are not related by a fixed preconditioner
applied to residual vectors”, while according to [24] “in the case of CG or GMRES acceleration of stationary
multigrid cycles (our cycles are non-stationary), excellent convergence properties are often obtained because the
spaces are nested”. In order to obtain an acceleration, ad-hoc techniques are needed such as the minimization
of a functional [23] or the solution of a two-dimensional quadratic programming problem and repeated use of
W cycles [24]. This is true also for the smoothed version of aggregate operators proposed in [21] on the basis

16

of [10], which necessitate several ad-hoc interventions (a “lumping procedure” to keep the M-matrix nature
of the coarse-level operators) and may exhibit high memory and execution time complexity. Our preliminary
tests confirmed that smoothing applied to projectors almost always results in a substantially slower method.
Thus, most of the theoretical results of [20, 21, 22, 23, 24] are largely inapplicable in our context, although the
aggregation techniques can be mirrored.

4.3. Strength-based AMG operators

We remark that the projectors discussed in §4.2 are basically the “aggregation form” of non-aggregation
operators, based on the notion of strong dependence, proposed for the Algebraic Multigrid Method (AMG) in
[10, 11, 22, 23, 12]. In the AMG terminology, the projection process is denoted as finding the “C/F splitting”,
i.e. deciding which equations will remain in the coarsened (restricted) system (C) and which ones only belong
to the finer (original) system (F). Once this is is done, the projector R is chosen so as to satisfy

(cTR)i =

{
ci if i ∈ C∑
j∈C∩Si wijcj if i ∈ F

where Si denote the set of points that strongly influences i (i.e. the “opposite” of the sets Di above), c is the
coarse-level error approximation and the wijs are the interpolation weights given by [12]

wij = −
Lij +

∑
m∈F∩Si

(
LimLmj∑

k∈C∩Si
Lmk

)
Lii +

∑
r/∈Si Lir

.

While C and F are therefore used in rather different ways than constructing an aggregation operator, they are
found in similar ways as the aggregations in §4.2. In particular, two heuristic criteria are defined to guide the
search for the C/F splitting:

• for each F -point i, every point j ∈ Si should either be in the coarse interpolatory set C ∩ Si or should
strongly depend on at least one point in C ∩ Si;

• the set of coarse points C should be a maximal subset of all points with the property that no C-point
strongly depends an another C-point.

Satisfying both criteria is not always possible and typically the first has priority over the second if necessary.
The standard heuristics used for finding the C/F splitting are two-phase greedy algorithms that closely resemble
the neighborhood aggregation approach of §4.2, except for looking at the “directed” sets Si and Di rather than
to the “undirected” Ni (as the pairwise aggregation does).

It is worth remarking that the results of [10, 11] were aimed at problematic cases in which “errors missed
by standard relaxation processes can vary substantially along strong matrix connections”. This suggested a
generalization of the classical AMG so that a number of vectors (prototypes), which are related to the error
components that relaxation cannot break down, are in the range of interpolation, instead of having only the
vector 1 as prototype as usual in the AMG development. The matrices in our application are very close to those
for which the original AMG was designed. Furthermore the aggregations operators based on strong connection
of §4.2 worked quite well already. Thus, in our numerical tests, we employed the standard AMG approach [12],
rather than the variants of [10, 11, 22, 23], which do not seem to fit our application. In our setting, these are
interesting only as further examples of different possible definitions of strength-based operators. Nevertheless,
there is no evidence that aggregation operators based on these principles should dramatically those considered
in §4.2.

4.4. Combinatorial operators

While all the previous aggregation operators are inherently heuristic, the combinatorial operators studied in
[45] are based on a sound theoretical analysis. Interestingly this is grounded on the theoretical results developed
for the study of an apparently unrelated subject, that of Steiner tree and Steiner support graph preconditioners.
The former were introduced in [37], while [42] and [43] extended the results to the latter.

“Sophisticated” support-graph preconditioners (with guarantees on the conditioning number of the resulting
preconditioned system) can be constructed with a process that is based on identifying a partitioning of the graph

17

into “weakly interacting” clusters, selecting the (few) arcs that join them (which have to be “important” arcs,
since their removal disconnects the graph), and possibly recursively repeating the process within each cluster
[59, 44]. Since the clustering process is non-trivial to attain within low computational cost, the idea of Steiner
support graph has been proposed in order to simplify it. Basically, once a set of promising vertex-disjoint clusters
Vi is identified (with non-trivial algorithms which provide some appropriate guarantees on their quality), a new
Steiner node ri is created for each cluster, and the star trees rooted at ri with leaves corresponding to the
vertices in Vi are added to the preconditioner (which, of course, is defined for the new Steiner graph comprising
all the original nodes plus the new roots). The process can then be repeated on the quotient graph corresponding
to all the roots ri; with appropriate care, this produces provably good preconditioners [43]. However in [45]
it was realized that the very same process can be used for different purposes: namely the clusters Vi then
become these of an aggregation operator, so that the quotient graph becomes the coarsened graph at the next
level of a MGM. With appropriate choices, the guarantees on the conditioning obtained for the Steiner graph
preconditioner can be “extended” to the coarsened system. This suggests the implementation of multigrid-like
solvers. In particular, in [45] a solver running quite sophisticated cycles (more complex than the standard V
and W cycles) and employing Jacobi as smoother obtains promising results for image processing applications.
According to the authors, for the same underlying clustering approach, multigrid-like methods should almost
always be preferable to the direct application of Steiner support graph preconditioners.

Because a sophisticated implementation of the approach of [45] was made available to us, we were able
to test it on our instances. Our computational experience indicated that direct use of that approach did not
seem to provide competitive results. This may be due to the use of “poor” smoothers like Jacobi, that are
typically ineffective in our applications, as discussed in §2.4. However nothing prevents to re-use the “core” of
the approach, i.e., the sophisticated choice of the aggregation operator, into a more standard MGM (accelerated
or not) with more powerful Krylov-based smoothers.

5. Numerical tests

In this section we report a wide set of numerical tests aimed at comparing the computational behaviour of
PCG and MG approaches on instances of (2), coming from real applications, in particular MCF problems. The
stopping criterion used for all the methods was the slightly non-standard

|bi − Lix| ≤ εmax(|bi|, 1) ∀i (10)

(with ε = 1e-5), because this is the form typically required by the specific application [32, 33]. Note that (10)
is basically a (scaled) ∞-norm stopping criterion, and therefore more difficult to attain (for the same ε) than
more standard 2-norm stopping criteria. The results have been obtained on a PC equipped with an Intel Core
I5 750 CPU and 4 Gb of RAM running under Windows 7, using a 32-bits Matlab version 7.9 (R2009b).

5.1. Problem generators

The tests have been performed on matrices L coming from the solution of randomly-generated MCF in-
stances. Three different well-known random problem generators have been used: Net, Grid, Goto. These have
been used in several cases to produce (both single and multicommodity) flow test instances [13, 14, 30, 32, 33, 34].
Each generator produces matrices with different topological properties, as shown in Figure 2. Furthermore the
solution of the MCF instances via a IP methods produces weight matrices Θ with a different behavior.

As the pictures show, the graph in Net problems has a random topological structure; these are the easiest
instances to solve with the IP algorithm. Both Grid and Goto (Grid On TOrus) problems have a grid structure,
but the latter are considerably more difficult to solve than the former, both in terms of IP algorithm and as
the corresponding linear system. The difficulty of Goto is likely to be related by the structure of the L matrix,
which is far from the block and the banded case. We recall that the latter is the classical pattern related to
standard grid graphs. Under the same conditions (problem size, IP iteration and preconditioning), generally a
Goto system requires an order of magnitude more PCG iterations than those required when solving the systems
Net or Grid.

18

Net Grid Goto

Figure 2: Structure of L for different problem classes.

5.2. List of methods

For our experiments, we have compared a large number of “pure” PCG approaches and accelerated multigrid
(ACC-MG) approaches, i.e., the PCG algorithm where a single V-cycle is used as preconditioner. This is because
on one hand PCG approaches have been popular and useful for the solution of this kind of systems in the context
of MCF problems [13, 54, 14, 49, 32, 33] and on the other hand the most recent developments suggest that
accelerated multigrid is both more effective and efficient than stand-alone multigrid [45, 23, 24]. In order to
explore the multigrid strategy, we have taken into account several choices both for aggregation operators and
preconditioners of PCG (as smoother in MGM).

The preconditioners employed are the diagonal one (D), the incomplete Cholesky one (IC) with tolerance
parameter droptol (non-zero fill-in), the maximum spanning tree one (T), the “maximum spanning tree +
diagonal” (T+D) one, obtained by summing to the T preconditioner the diagonal of the non-selected part the
matrix. In particular, previous results [32, 33] have shown that the T+D preconditioner is always preferable
to the T preconditioner for Net and Grid matrices, and therefore it is the only one employed in these cases.
Conversely no dominance between T and T+D exist for the more difficult Goto matrices (with T+D being
preferable in the first IP iterations and T in the last ones) and therefore both are tested in these cases.

All methods showed convergence, which however in some cases was exceedingly slow; thus we had to resort
in setting an a priori upper-bound for the number of iterations. This was (somewhat arbitrarily) chosen as 1000
iterations for “pure” PCG and at 500 iterations for ACC-MG methods, since the latter have an higher cost per
iteration.

We have to remark that providing consistent running times for all the methods proved to be very challeng-
ing, because of the different levels of optimizations of the available routines. For instance, while all aggregation
operators have similar complexity, only for some of them efficient C implementations (and the corresponding
MEX interface routines) were available, while others were implemented as ordinary (interpreted) m-files. This
alone can produce orders-of-magnitude differences in running times. While highly sophisticated C++ imple-
mentations of support graph preconditioners are available [32, 33], for uniformity the built-in pcg function of
Matlab has always been used, which, besides being an m-file, does not allow to exploit some of the relevant
structure. Analogously the multigird approach has been implemented as an m-file and therefore is far less
efficient than what a compiled version could be. Furthermore the maximum spanning tree has been computed
with the graphminspantree function of Matlab; this uses an exact ordering rather than an approximated one
as in [32, 33] and therefore is significantly less efficient, despite being a compiled C routine. Moreover it does
not automatically produce the right column ordering which avoids fill-in in the Cholesky factorization of the
preconditioner, thereby making this step less efficient, too. As a consequence, the running times in the following
tables are not necessarily indicative of these that a fully optimized C or Fortran version may obtain. In partic-
ular, the times for forming and applying the projectors has been excluded from the figures, due to the above
mentioned issues. Yet all methods have been implemented with the maximum possible uniformity, therefore we
believe that the figures should be reasonably indicative of the relative performances of the approaches.

5.3. Preliminary comparisons

In a first phase of our experiments, we performed a tuning of the ACC-MG methods by comparing the
different aggregation operators (cf. §4.1, 4.2 and 4.4) among them. Some data is shown in Table 1 for Net and
Grid matrices and in Table 2 for Goto matrices. Only the case with n = 212 and density 64 (m ≈ 64n) is

19

D IC T+D D IC T+D D IC T+D
IP it time it time it time it time it time it time it time it time it time
Net CMG Aggregation Max Aggregation Minor Aggregation
1 lev lev lev lev lev lev 4 0.09 4 0.12 4 0.82 4 0.15 4 0.24 4 1.59
2 lev lev lev lev lev lev 5 0.12 4 0.12 5 0.90 5 0.93 5 1.07 5 2.88
8 10 0.57 8 0.63 6 2.55 17 0.40 9 0.32 6 1.13 15 0.49 8 0.39 6 1.60
17 19 2.13 11 1.68 6 2.19 85 2.16 19 0.99 10 1.45 74 2.15 13 0.96 6 1.45
25 19 2.09 7 1.57 6 2.04 ** ** 11 1.43 14 1.65 494 13.60 10 1.49 14 1.77
32 60 6.25 11 2.05 5 1.91 ** ** 13 1.27 6 1.29 ** ** 11 1.27 5 1.37
33 58 6.08 10 1.90 5 1.98 ** ** 10 1.17 5 1.24 ** ** 10 1.24 5 1.35
Net Strength Aggregation Neighborhood Aggregation Double Pairwise Aggregation
1 4 0.46 4 0.42 4 1.26 4 0.09 4 0.12 4 0.70 4 0.51 4 0.62 4 1.93
2 5 0.15 5 0.21 5 1.27 5 0.12 5 0.18 5 0.99 5 0.63 5 0.73 5 2.04
8 13 0.43 8 0.39 6 1.56 11 0.40 8 0.43 6 1.65 13 1.66 8 1.17 6 2.37
17 19 3.07 9 2.21 6 3.21 59 9.25 23 4.58 11 4.21 90 11.34 17 2.63 9 3.18
25 ** ** 7 1.91 6 2.48 222 34.38 13 3.44 13 4.46 ** ** 11 2.35 9 2.85
32 ** ** 11 2.43 6 2.46 ** ** 172 31.48 12 4.38 ** ** 12 2.41 5 2.19
33 ** ** 11 2.37 5 2.32 ** ** 128 23.52 10 3.77 457 57.42 17 2.99 5 2.23

Grid CMG Aggregation Max Aggregation Minor Aggregation
1 lev lev lev lev lev lev 4 0.11 4 0.12 4 0.87 4 0.71 4 0.76 5 2.65
2 lev lev lev lev lev lev 7 0.15 7 0.20 7 0.99 5 0.17 5 0.21 5 1.32
11 lev lev lev lev lev lev 5 0.12 6 0.18 5 0.93 5 0.84 5 0.98 5 2.91
23 14 1.57 6 1.37 7 2.26 73 1.82 12 1.11 19 1.85 30 0.93 7 1.12 6 1.51
34 18 1.95 12 1.65 7 2.27 145 3.65 21 1.04 17 1.74 86 4.43 13 0.87 8 1.49
44 18 1.90 42 6.27 5 1.88 ** ** 146 6.59 14 1.67 ** ** 166 7.86 4 1.31
45 18 1.95 41 6.09 5 1.91 ** ** 55 3.34 11 1.54 ** ** ** ** 6 1.40

Grid Strength Aggregation Neighborhood Aggregation Double Pairwise Aggregation
1 5 0.15 5 0.22 5 1.23 5 0.49 5 0.54 5 1.54 5 0.59 5 0.73 5 1.96
2 7 0.21 7 0.28 6 1.38 7 0.23 7 0.28 7 1.29 7 0.87 7 0.99 7 2.34
11 6 0.18 6 0.32 5 1.23 5 0.15 5 0.21 6 1.21 5 0.63 5 0.74 5 2.06
23 18 3.35 10 2.99 12 5.03 33 5.01 11 2.93 12 4.32 41 5.03 10 2.09 9 3.07
34 63 10.59 21 4.47 12 4.63 114 16.81 24 4.46 14 4.83 173 20.99 28 4.07 13 3.86
44 ** ** ** ** 13 4.68 ** ** ** ** 15 4.92 ** ** ** ** 16 3.99
45 ** ** 238 47.79 9 4.02 ** ** 426 77.23 10 3.94 ** ** ** ** 14 3.93

Table 1: ACC-MG methods: comparison between aggregation operators for Net and Grid 12-64, considering diagonal (D), incom-
plete Cholesky (IC), maximum spanning tree + diagonal (T+D) and maximum spanning tree (T) preconditioners.

shown, but the results are fairly indicative of the general trends. In the Tables, iteration numbers and total
running times are reported for ACC-MG methods employing the different preconditioners. Here, “lev” indicates
that the aggregation operator failed to produce a reasonable number of levels (see below for more details) or
that there were memory issues with the matrices. For CMG Aggregation operators, for instance, this happens
occasionally due to the fact that the available implementation still lacks an appropriate sparsification routine.
Entries with “**” instead indicate that the approach could not converge to the required accuracy within the
allotted iteration limit.

The Tables show a rather complex picture. There is no single aggregation operator that dominates all
the others for all matrices, preconditioners and IP iterations. However, especially when paired with “powerful”
preconditioners (IC, T+D), all aggregation operators are quite effective, often (although not always) performing
similarly. Yet, it is important to remark that the different operators require different amounts of tuning. In
particular, all strength-based aggregation operators strongly depend on the parameter θ. Finding an appropriate
value of that parameter is not trivial and bad choices can lead to extremely poor performances. A few examples
of this are shown in Table 3, where (a subset of) the levels produced on the same matrix by different settings
of θ for the Strength Aggregation are reported. In the matrix, three stacked cells of the form (k, . . . , h)T mean
that k − h + 1 levels have been generated, the size of each one being just one less than that of the previous.
Thus inappropriate setting of θ can lead to very many levels of very similar size, quite the opposite of the
expected exponential reduction. Although the number of levels tends to decrease as θ does, the behavior is not
monotone and can be highly erratic. Note that the AMG operators, although not aggregation ones, are still
strength-based and suffer from the same drawbacks.

These issues happen much less frequently to the CMG operator, although sometimes the “descent” in the
set of levels is not as smooth as one could imagine. For instance, for the Grid 16-8 matrix at IP 22 the obtained
levels have size respectively 65535, 16907, 4518, 2461, 2198, 2142, 2122, 2114, 2110, 2104, 2097, 2092, 2087,

20

D IC T+D T D IC T+D T D IC T+D T
IP it time it time it time it time it time it time it time it time it time it time it time it time

CMG Aggregation Max Aggregation Minor Aggregation
1 8 0.35 7 0.39 8 2.10 ** ** 20 2.01 16 1.59 15 3.96 ** ** 13 0.32 11 0.32 11 1.23 ** **
2 21 0.40 7 0.18 6 0.78 91 3.93 46 1.07 9 0.31 7 1.01 93 6.13 24 2.76 6 0.95 5 1.84 81 17.73
24 23 1.99 16 1.80 15 2.82 49 7.67 481 10.53 26 1.35 45 2.68 42 3.07 493 11.38 22 1.21 35 2.35 41 2.99
47 27 2.21 31 2.97 15 2.94 33 5.42 265 6.11 26 1.06 22 1.80 30 2.87 ** ** 21 0.88 63 3.63 31 2.52
71 25 2.18 16 1.63 17 3.10 24 4.92 ** ** 12 0.70 23 1.82 23 2.41 ** ** 12 0.67 28 2.09 23 2.29
93 21 1.73 10 1.04 9 2.07 16 3.66 ** ** 7 0.49 11 1.34 16 2.09 ** ** 9 0.49 14 1.51 16 1.79
94 20 1.70 14 1.40 10 2.18 13 3.21 ** ** 7 0.48 12 1.35 14 1.91 ** ** 10 0.49 13 1.46 14 1.79

Strength Aggregation Neighborhood Aggregation Double Pairwise Aggregation
1 14 1.46 13 1.54 14 3.55 ** ** 14 0.87 12 0.82 12 1.81 ** ** lev lev lev lev lev lev lev lev
2 17 1.74 6 0.82 5 1.59 80 14.49 21 1.48 7 0.65 6 1.31 76 9.53 19 0.29 7 0.18 6 0.60 77 2.41
24 23 3.21 14 2.79 15 4.92 46 16.45 26 2.83 15 2.23 13 3.18 45 9.48 427 38.15 18 2.09 14 2.94 48 10.73
47 23 3.15 22 3.60 14 4.52 33 8.73 31 3.29 25 3.18 15 3.66 32 8.01 ** ** 29 3.10 15 3.04 36 6.11
71 22 3.10 11 1.99 13 4.61 23 8.25 48 5.11 12 1.73 15 3.79 24 7.23 ** ** 18 2.10 17 3.35 24 5.83
93 19 2.79 11 2.16 10 3.99 16 6.81 80 9.03 10 1.48 18 4.50 16 4.66 ** ** 12 1.41 10 2.40 16 4.21
94 17 2.48 12 2.40 10 3.61 13 5.47 28 3.10 11 1.70 8 2.57 13 4.07 ** ** 12 1.37 10 2.32 13 2.83

Table 2: ACC-MG methods: comparison between aggregation operators for Goto 12-64, considering diagonal (D), incomplete
Cholesky (IC) and maximum spanning tree + diagonal (T+D) preconditioners.

Grid 16-8, IP 11
θ 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

65535 65535 65535 65535 65535 65535 65535 65535 65535
35959 34380 32660 30729 28578 26235 23610 20696 17113
20919 18393 15959 13712 11562 9583 7687 5851 4085
13133 10343 7984 6122 4777 3903 3292 2740 2296
8755 6190 4333 3229 2627 2688 2434 882 1
6336 4182 2637 2433 658 6 2 1
4818 3068 1456 11 1
4210 2964 362
4059 975 361
4022 974 360

...
...

...
1 1 1

Net 12-64, IP 1
4095 4095 4095 4095 4095 4095 4095 4095 4095
1567 1567 1567 1567 523 523 523 523 523
1322 1268 1123 796 450 404 332 152 63
1290 1257 1111 689 449 403 331
1284 1255 1110 646 448 402 330
1283 1254 1109 645 447 401 329

...
...

...
...

...
...

...
1 1 1 1 1 1 1

Goto 14-64, IP 1
16383 16383 16383 16383 16383 16383 16383 16383 16383
7417 7418 7418 7404 1409 1394 1368 1288 1089
3686 2914 2158 2080 912 864 757 674 579
2283 2056 1621 1490 685 657 597 562 410
1713 1752 1455 1363 642 581 586 551 405
921 1576 1325 1344 285 242 559 43 397
422 1292 1320 1320 284 241 558 396
388 995 804 1319 283 240 557 395
387 411 1 1318 282 239 556 394

...
...

...
...

...
...

...
378 408 1306 267 220 520 384
1 1 2 1 1 1 1

Table 3: Multigrid levels as a function of θ for the Strength Aggregation.

21

IP 2 IP 56 IP 84 IP 111
droptol it p.t. time it p.t. time it p.t. time it p.t. time
1e-02 1581 0.23 18.42 ** ** ** ** ** ** ** ** **
1e-03 415 0.24 5.14 1916 0.45 25.95 ** ** ** ** ** **
1e-04 189 0.39 2.88 760 1.06 10.88 4198 0.50 57.12 ** ** **
1e-05 99 24.85 26.34 187 12.64 14.49 375 0.82 5.78 3875 0.45 48.60
1e-06 48 56.99 57.95 80 38.61 39.99 105 5.38 6.95 574 0.50 7.69
1e-07 28 0.90 108.54 46 54.67 55.64 51 27.25 28.09 95 0.72 1.98
1e-08 ** ** ** 21 118.94 119.62 28 48.26 48.80 35 1.82 2.30
1e-09 ** ** ** ** ** ** 17 67.39 67.82 18 13.65 13.94
1e-10 ** ** ** ** ** ** ** ** ** 12 30.52 30.74

Table 4: Performances of IC PCG as a function of droptol.

2070, 2063, 2061, 2060, 2056, 2011, 1938, 1765, 926, and 1. By contrast, Max and Minor operators always
precisely halve the number of nodes at each level, and therefore are preferable in this respect.

We also have to remark that the aggregation operators are not the only part of the approach which may
require tuning. This is also true, in particular, for the Incomplete Cholesky preconditioner, which requires
setting of the droptol parameter. Finding the appropriate setting is crucial for the overall performances, but
this setting is by far not uniform across all our instances. This is shown e.g. in Table 4, where the performances
of the IC PCG approach are reported for varying droptol for the same basic instance (Goto 14-64) and different
IP iterations. In the Table, “it” is the number of PCG iterations, “time” the total time, and “p.t.” the time
spent in solving the preconditioned system at each iteration. As the Table shows, too large values of droptol
result in “poor” preconditioners, which are very easy to invert but provide poor convergence and therefore high
overall running time. On the contrary, too small values result in very dense preconditioners, which are effective
but too costly. The right trade-off crucially depends on the IP iterations and can vary of several orders of
magnitude.

5.4. Overall results

We proceed at comparing the best PCG variants, the best aggregation-based multigrid variants, and the
standard AMG (with the same set of possible and powerful preconditioners). It is worth observing that our
projectors are aimed at preserving the graph structure as much as possible, while in the standard AMG variants
the projectors are chosen by using algebraic conditions on the entries of the considered matrices.

The results are shown in Table 5, Table 6, Table 7 for Net, Grid, Goto matrices respectively.
The tables show that accelerated multigrid approaches are in general competitive, when compared with

PCG-based ones. Although the running times of the latter can be significantly smaller when the iteration count
is reasonable (e.g., at low IP iteration for all networks and sizes with the D preconditioner), due to their much
simpler structure and cost per iteration, the iteration count of ACC-MG is, with the same basic preconditioner,
always considerably smaller. This is always true, and in particular for the Goto matrices, that are well-known
to represent the most challenging structures [32, 33]. This results in the fact that ACC-MG has a considerably
lower failure rate (“**” entries). Thus, PCG and graph-based projection operators do seem to have a good
spectral complementarity.

However, the trade-off between efficiency and robustness is nontrivial. The only combination that regularly
solves all the cases is ACC-MG with the diagonal preconditioner (D), that, as it could be expected, is sometimes
not the most efficient one (cf. e.g. the Net matrices for large values of IP). That is, whenever they don’t break
down, “strong” preconditioners like IC and T+D usually significantly outperform D. Among them, IC can be
very effective, especially in running time; however, this is partly due to the fact that the current implementation
of the tree preconditioner is not completely optimized. Again, it also breaks down somewhat more often, and
it is more sensitive to nontrivial appropriate choices of the fill-in parameter.

The comparison between AGO and AMG is also unclear. Usually they are quite comparable, but there are
differences. AMG is more prone to failure especially for IP = 1, where all arcs are equal and it is more difficult
to distinguish. For the same preconditioner, AGO and AMG trade blows in a complex pattern, that is very
hard to predict; see for instance the behavior of AGO and AMG with T+D on the Grid 14-64 matrices for IP

22

PCG ACC-MG (AGO) ACC-MG (AMG)
IP D IC T+D D IC T+D D IC T+D

12-64 it time it time it time it time it time it time it time it time it time
1 13 0.05 13 0.06 13 0.64 4 0.09 4 0.12 4 0.70 12 0.82 12 0.87 12 3.44
2 15 0.03 15 0.08 15 0.67 5 0.12 4 0.12 5 0.90 17 2.13 16 2.19 15 7.20
8 59 0.15 24 0.12 17 0.68 11 0.40 9 0.32 6 1.13 19 3.47 17 3.33 11 4.66
17 468 1.21 39 0.29 25 0.73 19 2.13 13 0.96 6 1.45 11 1.62 10 1.99 6 2.87
25 ** ** 37 0.67 19 0.68 19 2.09 11 1.43 14 1.65 13 1.19 6 1.88 5 2.55
32 ** ** 191 1.10 11 0.63 60 6.25 13 1.27 6 1.29 12 1.76 9 2.38 5 2.63
33 ** ** 148 0.97 9 0.62 58 6.08 10 1.17 5 1.24 14 2.15 8 2.21 5 2.48

14-64 it time it time it time it time it time it time it time it time it time
1 14 0.21 14 0.34 14 5.21 5 1.67 5 1.79 5 7.41 12 3.69 11 4.11 17 26.83
2 18 0.26 18 0.42 16 5.38 5 0.87 6 1.34 5 9.51 19 13.44 21 16.83 18 40.48
11 73 0.99 21 0.59 18 5.49 11 2.10 6 1.87 6 11.84 26 15.81 14 10.06 21 30.40
23 473 5.95 207 3.09 23 5.57 21 3.07 40 6.42 10 10.18 12 6.42 40 22.80 7 17.08
34 ** ** 372 6.16 22 5.50 20 8.45 38 19.53 8 11.98 15 5.47 36 18.57 7 15.47
44 ** ** ** ** 13 5.47 26 11.79 ** ** 6 10.79 18 8.48 40 38.18 5 15.28
45 ** ** ** ** 13 5.55 26 11.76 ** ** 7 8.54 16 8.25 48 40.99 5 14.92

16-8 it time it time it time it time it time it time it time it time it time
1 26 0.40 25 0.53 25 47.29 9 0.95 8 1.10 8 49.10 lev lev lev lev lev lev
2 39 0.57 23 0.73 24 49.46 9 1.45 6 1.66 7 57.93 17 24.13 17 24.99 15 128.15
11 99 1.43 41 0.98 24 47.72 16 3.29 9 2.83 6 64.05 22 8.50 18 8.86 14 85.25
21 305 4.46 126 2.37 21 51.68 38 6.83 28 6.39 9 64.69 38 11.57 35 12.60 12 81.66
31 ** ** ** ** 23 52.04 36 5.67 208 50.27 8 59.48 14 8.79 141 103.71 6 77.47
40 ** ** ** ** 38 58.67 28 9.92 ** ** 21 87.26 15 12.30 ** ** 8 89.49
41 ** ** ** ** ** ** 27 4.32 ** ** ** ** 15 10.15 ** ** ** **

Table 5: Comparison between pure PCG, ACC-MG based on aggregation operators and ACC-MG based on algebraic multigrid
approaches for Net matrices, considering diagonal (D), incomplete Cholesky (IC) and maximum spanning tree + diagonal (T+D)
preconditioners.

PCG ACC-MG (AGO) ACC-MG (AMG)
IP D IC T+D D IC T+D D IC T+D

12-64 it time it time it time it time it time it time it time it time it time
1 13 0.03 13 0.06 13 0.61 4 0.11 4 0.12 4 0.87 12 1.32 12 1.62 12 6.45
2 12 0.03 12 0.06 11 0.62 7 0.15 7 0.20 7 0.99 6 1.59 6 1.90 6 4.71
11 13 0.05 13 0.06 12 0.62 5 0.12 6 0.18 5 0.93 7 2.96 7 2.71 7 7.73
23 120 0.32 15 0.49 19 0.67 14 1.57 12 1.11 6 1.51 10 1.54 6 1.88 6 2.90
34 607 1.48 51 0.35 21 0.68 18 1.95 13 0.87 8 1.49 13 1.98 10 1.93 6 2.94
44 ** ** 281 1.70 15 0.63 18 1.90 42 6.27 4 1.31 14 2.11 28 5.99 5 2.67
45 ** ** 257 1.63 14 0.64 18 1.95 55 3.34 6 1.40 14 2.10 32 6.59 5 2.66

14-64 it time it time it time it time it time it time it time it time it time
1 15 0.20 15 0.34 16 3.82 6 1.04 5 1.21 5 8.26 16 15.03 16 18.17 16 54.16
2 13 0.18 13 0.31 12 5.07 7 1.13 7 1.45 7 9.70 7 5.76 7 6.75 7 31.59
8 29 0.43 17 0.57 16 5.17 8 1.51 6 1.84 5 10.99 16 9.93 12 9.64 15 27.23
16 567 7.11 205 3.22 28 5.53 20 3.93 27 6.27 6 12.12 12 6.24 20 9.41 6 15.66
24 ** ** 665 10.92 18 5.36 23 10.20 118 18.98 8 8.97 14 5.78 52 29.67 6 15.08
31 ** ** ** ** 20 5.27 90 38.67 72 61.13 12 11.31 36 13.74 34 48.67 9 17.17
32 ** ** ** ** 20 5.33 26 11.66 22 35.20 7 11.46 16 7.28 12 35.84 39 32.79

16-8 it time it time it time it time it time it time it time it time it time
1 28 0.39 28 0.46 23 17.26 11 1.13 11 1.27 9 21.07 lev lev lev lev lev lev
2 23 0.24 16 4.57 17 34.22 11 1.24 9 5.54 9 40.52 9 4.68 7 8.78 7 51.48
11 34 0.39 18 7.19 20 41.12 9 1.40 6 8.26 7 56.45 11 7.41 9 14.78 9 73.69
22 436 5.11 104 1.77 24 42.54 17 2.76 19 4.07 6 57.76 26 13.97 20 12.96 8 67.14
33 ** ** ** ** 26 43.68 24 9.23 197 168.66 6 51.46 13 6.56 144 162.81 6 64.61
43 ** ** ** ** 20 43.50 27 11.06 ** ** 7 53.14 14 4.33 ** ** 5 65.52
44 ** ** ** ** ** ** 30 11.37 ** ** ** ** 14 7.59 ** ** ** **

Table 6: Comparison between pure PCG, ACC-MG based on aggregation operators and ACC-MG based on algebraic multigrid
approaches for Grid matrices, considering diagonal (D), incomplete Cholesky (IC) and maximum spanning tree + diagonal (T+D)
preconditioners.

23

PCG ACC-MG (AGO) ACC-MG (AMG)
D IC T+D T D IC T+D T D IC T+D T

12-64 it time it time it time it time it time it time it time it time it time it time it time it time
1 30 0.07 27 0.07 26 0.51 807 3.86 13 0.32 11 0.32 11 1.23 ** ** 17 1.38 15 1.40 14 2.63 ** **
2 475 1.03 68 0.18 43 0.53 94 0.82 19 0.29 7 0.18 6 0.60 77 2.41 7 1.06 5 0.96 3 1.95 59 14.67
24 ** ** 417 1.21 472 2.73 69 0.82 23 1.99 22 1.21 35 2.35 41 2.99 15 1.81 12 2.10 10 2.96 43 12.51
47 ** ** 829 1.96 898 4.80 54 0.74 27 2.21 21 0.88 22 1.80 31 2.52 18 2.02 22 2.91 12 3.21 31 6.77
71 ** ** 381 0.95 ** ** 41 0.70 25 2.18 12 0.67 23 1.82 23 2.29 16 1.88 14 1.96 12 3.36 25 7.28
93 ** ** 367 0.90 ** ** 26 0.67 21 1.73 7 0.49 11 1.34 16 1.79 16 1.82 12 1.65 8 2.46 16 4.58
94 ** ** 398 0.96 ** ** 23 0.63 20 1.70 7 0.48 12 1.35 14 1.79 15 1.71 11 1.57 9 2.74 13 4.35

14-64 it time it time it time it time it time it time it time it time it time it time it time it time
1 54 0.62 54 0.71 51 3.79 ** ** 15 3.99 16 4.74 11 15.70 ** ** 55 5.92 56 6.24 63 15.75 ** **
2 ** ** 189 2.88 279 7.97 37 3.08 46 4.61 14 3.18 27 7.64 21 7.90 22 2.83 8 2.82 10 6.50 20 10.01
28 ** ** 384 22.94 ** ** 137 6.25 36 3.69 14 19.37 21 7.78 112 22.43 20 2.96 12 20.93 14 9.95 99 30.17
56 ** ** 760 10.88 ** ** 102 6.27 34 3.29 17 3.57 20 8.41 78 18.03 19 2.69 13 4.13 16 10.62 58 22.86
84 ** ** 375 5.78 ** ** 73 5.63 35 3.35 10 2.40 18 7.76 50 14.43 22 2.99 8 2.93 14 10.20 47 20.43
111 ** ** 574 7.69 ** ** 35 4.63 39 5.11 9 2.69 27 9.32 19 8.34 18 2.35 10 2.49 11 8.89 20 10.88
112 ** ** 91 1.85 ** ** 34 4.44 39 3.93 8 1.98 19 8.31 19 8.89 19 2.49 5 2.10 11 8.86 19 10.37

16-8 it time it time it time it time it time it time it time it time it time it time it time it time
1 76 1.04 64 0.95 65 22.35 ** ** 12 1.06 11 1.27 11 25.64 ** ** 17 2.32 14 2.76 13 37.83 ** **
2 ** ** 644 8.06 753 50.73 66 17.50 116 11.09 31 4.33 43 26.75 182 74.24 48 6.98 17 5.13 22 24.18 263 255.49
10 ** ** 928 12.77 ** ** 38 14.86 124 11.60 38 6.22 48 30.26 102 47.11 39 4.96 19 4.10 26 21.40 76 50.24
19 ** ** 694 11.18 ** ** 76 24.58 44 3.82 14 3.61 23 30.56 94 83.72 28 3.35 13 3.04 20 27.93 281 149.01
28 ** ** 601 8.70 ** ** 30 24.91 37 3.40 8 1.70 13 31.44 20 31.55 20 2.51 8 1.99 32 35.03 17 39.48
36 ** ** 68 1.62 ** ** 20 30.15 32 2.76 4 1.79 9 29.68 12 35.22 24 2.73 4 1.34 74 46.64 9 43.41
37 ** ** 68 1.51 ** ** 17 34.99 32 2.73 4 1.51 9 29.76 9 39.17 ** ** 4 1.46 32 37.65 8 48.59

Table 7: Comparison between pure PCG, ACC-MG based on aggregation operators and ACC-MG based on algebraic multigrid
approaches for Goto matrices, considering diagonal (D), incomplete Cholesky (IC), maximum spanning tree + diagonal (T+D) and
maximum spanning tree (T) preconditioners.

31 and 32 (just two consecutive iterations). The general feeling is that more often than not the somewhat more
sophisticated approaches underlying the AMG projection operators give them a slight edge upon the simple
rules employed in the AGO ones; however, they also make them more prone to failure.

In summary, the Tables show that the aggregation-based multigrid variants present a favorable profile in
terms of the efficiency to robustness trade-off. While not as effective as the pure PCG approach, it is also
much more stable: indeed, if the parameters are not chosen properly (and this is sometimes not trivial), the
PCG algorithm could become unacceptably slow. Simple aggregation rules can also be preferable to more
sophisticated ones, as they result in comparable performances with less failure points.

What the Tables clearly show, however, it that the best choice of the combination between projection
operator and smoother is still far from being completely understood. The relative performances of the approaches
wildly vary among different network types and sizes, and even among consecutive IP iterations. We can
therefore state that while the combination of graph-preserving aggregation operators and strong graph-based
preconditioners seem very promising towards developing an optimal approach, more research is required if this
goal has to be reached.

6. Conclusions

We have considered multi-iterative techniques of multigrid type for the numerical solution of large linear
systems with (weighted) structure of graph Laplacian operators. We combined efficient coarser-grid operators
with iterative techniques used as smoothers, showing that the most effective smoothers typically are of Krylov
type with subgraph-based preconditioners, while the projectors have to be designed for maintaining as much
as possible the graph structure of the projected matrix at the inner levels. We have developed necessary
and sufficient conditions for this to happen, showing that, basically, all operators of this kind are based on
node aggregations. These coarse-grid operators that preserve the fine-level structure are necessary to obtain
good performances: see the case of the Poisson problem in Section 3.3 as a clear example and, conversely, the
discussion in Section 2.5 about the fact that the same FWO is not satisfactory for general graphs, for which the
structure of weighted Laplacian is not preserved. Interestingly enough, this framework is useful for explaining the
reason why the classical projectors inherited from differential equations are good in the differential context and

24

why they behave unsatisfactorily in general for unstructured graphs. However, even the best graph-preserving
projection operators are not sufficient to attain good performances in all cases, unless they are paired with
“strong” smoothers.

Several numerical experiments have been conducted on different classes of matrices coming from Interior-
Point methods for network flow problems. This is a challenging application because the matrices can have
significantly different structure, and even for a fixed structure the weights can vary wildly between even con-
secutive IP iterations. Attaining optimal results in all cases is therefore particularly difficult, and robustness
becomes of paramount importance, the “best” solution method being the one that performs acceptably in all
cases. In this respect, combining graph-preserving projection operators and subgraph-based preconditioners
appears to be a promising venue: the corresponding approaches seem to be reasonably uniformly effective irre-
spectively (at least to some degree) of the conditioning of the considered matrices, the type of the problems, and
the IP iteration. This robustness is the most relevant result obtained in this paper, as while sophisticated PCG
techniques exist that often work quite well, in some cases their convergence rate is exceedingly slow. Hence, our
results significantly improve on the previous state of the art for this particular application.

However, our findings also show that several aspects still remain to be completely investigated. Our aim has
been at methods that are not only robust but simple, both in terms of not requiring a particularly sophisticated
implementation and, especially, in the sense of uniformly delivering good performances without the need of
complex parameter tuning. In this respect, our simple coarse-grid operators are usually comparably effective as
these based on more sophisticated ideas [45, 23, 24], while providing analogous or even better robustness with
(or, probably, because of) less need of delicate adjustments of the algorithmic parameters. Yet, we still ended
up with a pretty large set of possible algorithmic variants, among which choosing the best ones appears to be
nontrivial.

Thus, one of the main conclusions that we can draw from these experiments is that the goal of developing
a robust and efficient iterative approach for graph-structured linear systems is still rather far off. This is in
particular true for our motivating application, i.e., KKT systems for IP methods for Linear (and, specifically,
MCF) Problems, that are particularly challenging due to the high variability of the characteristics of the
systems to be solved, even within the solution of the same LP. In this context there is no scope for any system-
specific tuning, as the solver has to be capable of effectively and efficiently (enough) solving each system it
is presented with. This is especially true as the solution of a LP is, in itself, most often not even the final
goal: a (long) sequence of different but related LPs has to be solved in order to tackle even more difficult
combinatorial problems. The existing methods, included those analyzed in this work, all require sophisticated
implementations which involve many options and parameters: a-priori making the more efficient and robust
choice is a challenging task, for which further investigations will be needed. In particular, we believe that it
would be of interest to study the relationships between preconditioner and projector. This seems to be a largely
unexplored path: some very preliminary results can be found in [26], but there is clearly still a lot to be done.

Several further research lines seems to be worth future investigation. From the theoretical viewpoint, it would
be very interesting to obtain a rigorous characterization of the convergence speed of the proposed multigrid
techniques with varying pre- and post-smoothers and choices of the projector. Regarding the latter, a better
understanding of the effect of the projection step on the spectral properties of the matrices at lower level would
be required in designing more effective approaches to choosing R, possibly simultaneously taking into account
selection of an appropriate subgraph for preconditioning techniques.

A final important challenge would be the extension of our proposal to a non-symmetric setting, as it occurs
when dealing with the celebrated Google problem [46, 25, 39], and to system matrices having structure of graph
combined with structures of different nature, as it occurs when dealing with IP methods for problems related
to more general graph-structured Linear or Quadratic Programs [7, 15, 16].

Acknowledgements

We are deeply indebted with Killian Miller and Ioannis Koutis for having shared with us their implemen-
tations of aggregation projectors, as well as for extremely useful discussion and support. We also thank the
referees for the useful remarks and suggestions, which helped to improve the presentation of the paper. Finally,
we acknowledge that the work of the third author has been partly supported via Donation KAW 2013.0341
from the Knut & Alice Wallenberg Foundation, in collaboration with the Royal Swedish Academy of Sciences,
supporting Swedish research in mathematics.

25

References

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin. Network flows: theory, algorithms and applications. Prentice
Hall, Englewood Cliffs, NJ, 1993.

[2] A. Aricó, M. Donatelli, S. Serra-Capizzano V-cycle optimal convergence for certain (multilevel)
structured linearsystems. SIAM J. Matrix Anal. Appl. 26(1), 186–214, 2004.

[3] O. Axelsson, M. Neytcheva. The algebraic multilevel iteration methods – theory and applications. Proc.
of the 2nd Int. Coll. on Numerical Analysis, D. Bainov Ed., Plovdiv (Bulgaria), 13–23, 1993.

[4] M.S. Bazaraa, J.J. Jarvis, H.D. Sherali. Linear programming and network flows. Wiley, New York,
NY, 1990.

[5] R. Bhatia. Matrix Analysis. Springer Verlag, New York, 1997.

[6] M. Bern, J. Gilbert, B. Hendrickson, N. Nuygen, S. Toledo. Support-graph preconditioners.
SIAM J. Matrix Anal. & Appl. 27(4), 930–951, 2006.

[7] S. Bocanegra, J. Castro, A.R.L. Oliveira. Improving an interior-point approach for large block-
angular problems by hybrid preconditioners. European Journal of Operational Research 231, 263–273, 2013.

[8] E.G. Boman, D. Chen, B. Hendrickson, S. Toledo. Maximum-weight-basis preconditioners. Numer.
Linear Algebra Appl. 11(8-9), 695–721, 2004.

[9] E.G. Boman, B. Hendrickson. Support theory for preconditioning. SIAM J. Matrix Anal. Appl. 25(3),
694–717, 2003.

[10] M. Brezina, R.D. Falgout, S. MacLachlan, T.A. Manteuffel, S.F. McCormick, J. Ruge.
Adaptive smoothed aggregation (SA) multigrid. SIAM Review 47(2), 317–346, 2005.

[11] M. Brezina, R.D. Falgout, S. MacLachlan, T.A. Manteuffel, S.F. McCormick, J. Ruge.
Adaptive algebraic multigrid. SIAM J. Sci. Comput. 27(4), 1261–1286, 2006.

[12] W.L. Briggs, V.E. Henson, S.F. McCormick. A multigrid tutorial. SIAM, 2nd edition, 2000.

[13] J. Castro A specialized interior-point algorithm for multicommodity network flows. SIAM J. Opt. 10,
852–877, 2000.

[14] J. Castro, A. Frangioni. A parallel implementation of an interior-point algorithm for multicommodity
network flows. in Vector and Parallel Processing – VECPAR 2000, J.M. Palma, J. Dongarra and V. Her-
nandez eds., Lecture Notes in Computer Science Vol. 1981, Springer-Verlag, 301–315, 2001.

[15] J. Castro, J. Cuesta. Quadratic regularizations in an interior-point method for primal block-angular
problems. Mathematical Programming 130, 415–445, 2011.

[16] J. Castro, J. Cuesta. Improving an interior-point algorithm for multicommodity flows by quadratic
regularizations. Networks 5, 117–131, 2012.

[17] A. Cayley. A theorem on trees. Quart. J. Math. 23, 376–378, 1889.

[18] D. Cherubini, A. Fanni, A. Frangioni, A. Mereu, C. Murgia, M.G. Scutellà, P. Zuddas.
A Linear Programming Model for Traffic Engineering in 100% Survivable Networks under combined IS-
IS/OSPF and MPLS-TE Protocols. Computers & Operations Research 38(12), 1805–1815, 2011.

[19] D. Cvetkovic, M. Doob, H. Sachs. Spectra of Graphs. Academic Press, New York, 1979.

[20] H. De Sterck, T.A. Manteuffel, S.F. McCormick, Q. Nguyen, J. Ruge. Multilevel adaptive
aggregation for Markov chains, with application to web ranking. SIAM J. Sci. Comput. 30(5), 2235–2262,
2008.

26

[21] H. De Sterck, T.A. Manteuffel, S.F. McCormick, K. Miller, J. Pearson, J. Ruge,
G. Sanders. Smoothed aggregation multigrid for Markov chains. SIAM J. Sci. Comput. 32(1), 40–61,
2010.

[22] H. De Sterck, T.A. Manteuffel, S.F. McCormick, K. Miller, J. Ruge, G. Sanders. Algebraic
multigrid for Markov chains. SIAM J. Sci. Comput. 32(2), 544–562, 2010.

[23] H. De Sterck, T.A. Manteuffel, K. Miller, G. Sanders. Top-level acceleration of adaptive algebraic
multilevel methods for steady-state solution to Markov chains. Advances in Computational Math. 35, 375–
403, 2010.

[24] H. De Sterck, K. Miller, G. Sanders, M. Winlaw. Recursively accelerated multilevel aggregation
for Markov chains. SIAM J. Sci. Comput. 32(3), 1652–1671, 2010.

[25] G. Del Corso, A. Gulĺı, F. Romani. Fast PageRank computation via a sparse linear system. Internet
Math. 3(2), 259–281, 2005.

[26] P. Dell’Acqua, A. Frangioni, S. Serra-Capizzano. Computational evaluation of multi-iterative ap-
proaches for solving graph-structured large linear systems. Calcolo, 22, 10.1007/s10092-014-0123-y, 2015.

[27] M. Donatelli. An algebraic generalization of local Fourier analysis for grid transfer operators in multigrid
based on Toeplitz matrices. Numer. Linear Algebra Appl. 17, 179–197, 2010.

[28] M. Donatelli. C. Garoni, C. Manni, S. Serra-Capizzano, H. Speleers. Robust and opti-
mal multi-iterative techniques for IgA Galerkin linear systems. Computer Meth. Appl. Mech. Eng.,
http://dx.doi.org/10.1016/j.cma.2014.06.001, 2014.

[29] M. Donatelli, M. Semplice, S. Serra-Capizzano. Analysis of Multigrid preconditioning for implicit
PDE solvers for degenerate parabolic equations. SIAM J. Matrix Anal. Appl., 32–4, 1125–1148, 2011.

[30] A. Frangioni, G. Gallo A bundle type dual-ascent approach to linear multicommodity Min Cost Flow
problems. INFORMS J. Comput. 11, 370–393, 1999.

[31] A. Frangioni, B. Gendron 0-1 reformulations of the multicommodity capacitated network design prob-
lem. Disc. Appl. Math. 157, 1229–1241, 2009.

[32] A. Frangioni, C. Gentile. New Preconditioners for KKT Systems of Network Flow Problems. SIAM
J. Opt. 14, 894–913, 2004.

[33] A. Frangioni, C. Gentile. Prim-based BCT preconditioners for Min-Cost Flow Problems. Com-
put. Opt. Appl. 36, 271–287, 2007.

[34] A. Frangioni, A. Manca. A Computational Study of Cost Reoptimization for Min Cost Flow Problems.
INFORMS J. On Comput. 18(1), 61–70, 2006.

[35] A. Frangioni, S. Serra-Capizzano. Spectral analysis of (sequences of) graph matrices. SIAM J. Matrix
Anal. Appl. 23(2), 339–348, 2001.

[36] G.H. Golub, C.F. Van Loan. Matrix computations. North Oxford Academic, 1983.

[37] K. Gremban. Combinatorial Preconditioners for Sparse, Symmetric, Diagonally Dominant Linear Sys-
tems. PhD Thesis, Carnegie Mellon University, CMU CS Tech Report CMU-CS-96-123, 1996.

[38] A. Greenbaum. Analysis of a multigrid method as an iterative technique for solving linear systems. SIAM
J. Numerical Anal. 21(3), 473–485, 1984.

[39] R. Horn, S. Serra-Capizzano. A general setting for the parametric Google matrix. Internet Math. 3(4),
385–411, 2008.

[40] H.B. Keller. Numerical methods for two-points boundary-value problems. Blaisdell, London, 1968.

27

[41] G. Kirchhoff. Uber die Auflosung der Gleichungen, auf welche man bei der Untersuchung der linearen
Verteilung galvanischer Strome gefuhrt wird. Ann. Phys. Chem. 72, 497–508, 1847.

[42] I. Koutis. Combinatorial and algebraic algorithms for optimal multilevel algorithms. PhD Thesis, Carnegie
Mellon University, CMU CS Tech Report CMU-CS-07-131, 2007.

[43] I. Koutis, G.L. Miller. Graph partitioning into isolated, high conductance clusters: theory, computation
and applications to preconditioning. Symposiun on Parallel Algorithms and Architectures (SPAA), 2008.

[44] I. Koutis, G.L. Miller. A linear work, O(n1/6) time, parallel algorithm for solving planar Laplacians.
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms (SODA ’07), 2007.

[45] I. Koutis, G.L. Miller, D. Tolliver. Combinatorial Preconditioners and Multilevel Solvers for Prob-
lems in Computer Vision and Image Processing. International Symposium of Visual Computing, 1067–1078,
2009.

[46] A. Langville, C. Meyer. A survey of eigenvector methods for WEB information retrieval. SIAM Review
47(1), 135–161, 2005.

[47] O.E. Livne, A. Brandt. Lean Algebraic Multigrid (LAMG): Fast Graph Laplacian Linear Solver. SIAM
J. Sci. Comput. 34(4), 499–522, 2012.

[48] B. Mohar. Some Applications of Laplace Eigenvalues of Graphs. Graph Symmetry: Algebraic Methods
and Applications, G. Hahn and G. Sabidussi eds., NATO ASI Ser. C 497, Kluwer, 225–275, 1997.

[49] R.D.C. Monteiro, J.W. O’Neal, T. Tsuchiya. Uniform boundedness of a preconditioned normal
matrix used in interior-point methods. SIAM J. Opt. 15(1), 96–100, 2004.

[50] M. Ng, S. Serra-Capizzano, C. Tablino Possio. Multigrid preconditioners for symmetric Sinc sys-
tems. ANZIAM J. 45(E), 857–869, 2004.

[51] D. Noutsos, S. Serra-Capizzano, P. Vassalos. The conditioning of FD matrix sequences coming from
semi-elliptic Differential Equations. Linear Algebra Appl. 428(2/3), 600–624, 2008.

[52] Y. Notay. An aggregation-based algebraic multigrid method. Electronic Trans. Num. An. 37, 123–146,
2010.

[53] R. Olfati-Saber, R.M. Murray. Consensus problems in networks of agents with switching topology and
time-dealays. IEEE Trans. Automatic Control 49(9), 1520–1533, 2004.

[54] L.F. Portugal, M.G.C. Resende, G. Veiga, J.J. Jùdice. A truncated primal-infeasible dual-feasible
network interior point method Networks 35, 91–108, 2000.

[55] J.W. Ruge, K. Stüben. Algebraic multigrid. in Multigrid methods, vol. 3 of Frontiers Appl. Math., SIAM,
Philadelphia, 73–130, 1987.

[56] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS, Boston, 1996.

[57] S. Serra-Capizzano. Multi-iterative methods. Comput. Math. Appl. 26(4), 65–87, 1993.

[58] S. Serra-Capizzano, C. Tablino Possio. Multigrid methods for multilevel circulant matrices. SIAM
J. Sci. Comput. 26(1), 55–85, 2004.

[59] D.A. Spielman, S.H. Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification,
and solving linear systems. Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
81–90, 2004.

[60] K. Stüben. A review of algebraic multigrid. J. Comput. Appl. Math. 128, 281–309, 2001.

[61] U. Trottenberg, C. Oosterlee, A. Schuller. Multigrid. Academic Press, 2001.

28

[62] P. M. Vaidya. Solving linear equations with symmetric diagonally dominant matrices by constructing
good preconditioners. Unpublished manuscript. A talk based on the manuscript was presented at the IMA
Workshop on Graph Theory and Sparse Matrix Computation, Minneapolis, 1991.

[63] P. Vanek, J. Mandel, M. Brezina. Algebraic multigrid on unstructured meshes. Technical Report X,
Center for Computational Mathematics, Mathematics Department, 1994.

[64] R.S. Varga. Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs, 1962.

29

