Theory and practice of
learning-based
compressed data structures

March 19, 2021
Links seminar @ Université de Lille and Inria

Giorgio Vinciguerra
PhD Student in CS
pages.di.unipi.it/vinciguerra

OB Dz,
{@J: UNIVERSITA DI PISA

Outline

 Revisit two classical problems in data structure design:
» Predecessor search
* Rank/select dictionary problem

* Exploit a new kind of data regularity based on geometric
considerations: approximate linearity

 Introduce two theoretically and practically efficient solutions for
the problems above:
 PGM-index

e LA-vector

 Discuss the theoretical grounds on the “power” of the
approximate linearity concept

Problem 1

Predecessor search

The predecessor search problem

* Given n sorted input keys (e.g. integers), implement
predecessor(x) = “largest key < x”

* Range queries in DBs, conjunctive queries in search engines,
P routing...

* Lookups alone are much easier; just use Cuckoo hashing for
ookups at most 2 memory accesses (without sorting data!)

predecessor(36) = 36

21111315 (18(23(24|29|31|34|36|44|4748|55|59(60|71|73|74|76|88|95

A

predecessor(E;O) = 48

Indexes

position = 11

13

15

18

23

24

29

31

34

36

44

47

48

55

59

60

71

73

74

76

88

95

(values associated to keys are not shown)

Input data as pairs (key, position)

positions
[]

Ao et al. [VLDB 2011]

Input data as pairs (key, position)

[]
[]
[]
41 ® ¢
° []
34 ®) . o°
21 o 5 o
et @
7 °
(@]
11 @ S K
[]
: ——t—— e
2 11 13 15 Ny
[]
[]
[]
keys

1 2 3 4

Ao et al. [VLDB 2011]

Learning the mapping keys » positions

25 «

positions

13

15

18

76

88

95

Query latency = time to output a

Learned indexes position + time to “fix the error” via

binary search

key

positions

N

keys

l position

21111315 (18(23(24|29|31|34|36|44|4748|55|59(60|71|73|74|76|88|95

Ao et al. [VLDB 2011], Kraska et al. [SIGMOD 2018]

The problem with learned indexes

PN,
A

Too much I/O when

Unpredictable . :
latency data is on disk @
Very slow
. to trai
Fast query time and excellent ™™"
% space usage in practice,
NS
Unscalable bUt
to big data él&
G2 | 2]
\ Must be tuned for
\ Vulnerable tO each new dataset
Blind to the adversarial inputs
query distribution and queries

Introducing the PGM-index

v

aid Constant I/0O wh
Predictable onstan when =
data is on disk (33
latency
Very fast

to build

Fast query time and excellent
space usage in practice,

=
e8
e @Nd guaranteed worst-case bounds

to big data L
| N

@ No_additional

ESQ" Resistant tO tuning needed

Query distribution adversarial inputs

aware and queries

Ingredients of the PGM-index

e & 1

Opt. piecewise linear s-approx. Fixed model “error” € Recursive design

Fast to construct, best space usage for linear Control the size of the search range Adapt to the memory hierarchy
learned indexes (like the page size in a B-tree) and enable query-time guarantees

PGM-index construction

Step 1. Compute the 311
optimal piecewise linear 28 .
g-approximation 25 L
in O(n) time 22 o

position
Il el
AUioN
[
[)

RPNWDAUIONN 00O
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
\

0 20 40 60 80 100 120 140
key

2 |11112|115|18 23|24 |29 |31|34|36|44|47|148|55|59160|71|73|74]|76]|88]| 95|99 (102|1115|122]1123|128]|140]145|146

PGM-index construction

Step 1. Compute the 31 . Step 2. Store the
optimal piecewise linear 2: . segments as triples
g-approximation 25 1 . s; = (k&y, slope, intercept)
in O(n) time 22 ¢

position
Il el
AUioN
[
[)

RPNWDAUIONN 00O
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
\

0 20 40 60 80 100 120 140
key

2 1111121518123 |24 |29 |31 |34 |36|44 4748|5559 60| 71|73 |74|76 (88| 95|99 [102]115]|1221123|128]|140|145|146

Partial memory layout of the PGM-index

Each segment indexes a variable and potentially large sequence of keys
while guaranteeing a search range size of

Segments | (2,sl,ic) | (23, sl,ic) | (31, sl,ic) | (48, sl,ic) | (71, sl, ic) | (22, sl ic) |(122, sl, ic)|(145, sl, ic)

<&

2 |11112|115|18 23|24 |29 |31|34|36|44|47|148|55|59160|71|73|74]|76]|88]| 95|99 (102|1115|122]1123|128]|140]145|146

PGM-index construction

Step 1. Compute the i Step 2. Store the
optimal piecewise linear 2] segments as triples
g-approximation gg s; = (kéy, slope, intercept)
in O(n) time 22

position

Step 3. Keep only s;. kéy 5

RPNWPhUOON©
T T N T N N

0 20 40 60 80 100 120 140
key

2 1111121518123 |24 |29 |31 |34 |36|44 4748|5559 60| 71|73 |74|76 (88| 95|99 [102]115]|1221123|128]|140|145|146

PGM-index construction

Step 1. Compute the
optimal piecewise linear
g-approximation
in O(n) time

position

Step 3. Keep only s;. kéy

RPNWDhOON
T T N T N N

20

40

60

key

80

100

23

31

48

71

88

122

145

120

140

Step 2. Store the
segments as triples
s; = (key, slope, intercept)

PGM-index construction

Step 1. Compute the a1 o Step 2. Store the
optimal piecewise linear 2| segments as triples

g-approximation gg / s; = (Kéy, slope, intercept)
in O(n) time 2

position

Step 3. Keep only s;. kéy 3 Step 4. Repeat recursively

RPNWDhOON
T T T R

0 20 40 60 80 100 120 140
key

2 123|31]148]|71|88]122|145

PGM-index construction

Step 1. Compute the
optimal piecewise linear
g-approximation
in O(n) time

position

Step 3. Keep only s;. kéy

RPNWDhOON
T T N T N N

20

40

60

key

80

31

88

145

100

120

140

Step 2. Store the
segments as triples
s; = (key, slope, intercept)

Step 4. Repeat recursively

Memory layout of the PGM-Index

(2, sl, ic)
(2,sl,ic) | (31, sl,ic) | (88, sl,ic) |(145, sl, ic)
(2,sl,ic) | (23,sl,ic) | (31, sl,ic) | (48, sl,ic) | (71, sl,ic) | (22, sl, ic) |[(122, sl, ic)|(145, sl, ic)
2 (11|12 15| 18|23 |24 |29 31|34 | 36|44 |47|48|55|59|60|71|73|74]|76]88|95]99|102]|115|122]123|128|140|145|146
1 n

Predecessor search with « = 1

-

predecessor(57)?
B = disk page-size 2, sl, i)
Set ¢ = O(B) for
queries in 0(logg n) 1/Os
(2,0, 0) [(31,sl,ic) | (88, e,0) | (145, e, e)
0(n/¢) space N
~
26 +1
\V(Z,%') (23, 0,0) | (31, 0,0) [(48,sl,ic) | (71,0,0) | (55, 0,0) |(127,0,0)](145,0,0)
N _
'
26 +1 \
2 1112|1518 |23 |24 29| 31|34 | 36|44 |47]48 @ 5960|7173 74|76 | 88| 95| 99 [102]|115|122|123[128|140|145|146
1 Y n

2e+1

Experiments

Experiments

Avg search range

Fastest CSS-tfree
128-by’re pages
=350 MB

Matched by PGM with
2¢ set to 256

~4 MB (-83%)

Index size (MB)

Weblogs (714M keys, 8-byte keys, 128-byte payloads)

PGM
Linear RMI (our impl)

1057 =2tene .
& CSS-tree (our impl)
8 -
6 -
%29 4210 2<1>3
445
~ 2%+ 21 <1>4
2
2 209 = 21<|3:|¢ 212
0] X912 4 514
10 Q) -
O T / ’ 211 7012 =
/ 800 1000 1200 1400 1600 1800

2e Query time (ns)

Intel Xeon Gold 5118 CPU @ 2.30GHz, data held in main memory

Page size

New experiments with tuned Linear RMI

Index size (bytes)

8-byte keys, 8-byte payload

Tuned Linear RMI and PGM have the same size
10M predecessor searches, uniform query workload

osm (800M)
10° 7%
1: ©
lo o m]
108 { © 102 g
i o ¢ O
] 0] <><>|:|
7 J o) n]
10 & o
] o lln %
1096 3 06 o
] o o
200 300 400

Query time (ns)

amzn (800M)

10° 4 ¢
@ O ljl:l
o) . o
107 - O 8 o
0 ¢ &
o) > o
0] O
10° A o o
O (m]
O (]
500 600 700 800

Query time (ns)

o PGM m]

Linear RMI (new impl)

108
107 4

10°

105 4

wiki (200M)
o]
O 8 .
O 10 3
<<>> 0 7 :
107 4
<><> o]
o = 1
o O 10° 5
0 %]
Q0. gy Bgn| 105 4
04 &]

400 600

Query time (ns)

& CSS-tree

New tuned Linear RMI implementation and datasets from Marcus et al. [VLDB 2021]

face (200M)

oo

400 600
Query time (ns)

New experiments with tuned Hybrid RMI

« 8-byte keys, 8-byte payload
* RMI with non-linear models, tuned via grid search
« 10M predecessor searches, uniform query workload

osm (800M)
\Y) PGM
VO Y/ Hybrid RMI (new impl)
108 4--NVQO
8
_ o . Avg search range 2
£ o _.»~ Max search range 2°
T R o k
>] \Y O
©
£ _ /‘\\ o .
10¢ 4 Av\ 21 o
é : Yo
Max 22
O
200 300 400 500 600 700

Query time (ns)

New tuned Linear RMI implementation and datasets from Marcus et al. [VLDB 2021]

New experiments

« 8-byte keys, 8-byte payload
* RMI with non-linear models, tuned via grid search
* 10M predecessor searches

osm (800M)
) PGM
O Hybrid RMI (new impl)
108 5 O
= O
Q
2 O
(0]
5 107 E O
2 E
3 O
£
O
106 E o
] O
O
200 300 400 500 600 700

Query time (ns)

Index size (bytes)

17.5% A

15.0% A

12.5% A

[N
o
o
X

Frequency

~N
n
X

5.0% -

2.5%

0.0% T T T T T T T T T
0 100M 200M 300M 400M 500M 600M 700M 800M

Answer position

osm (800M)
O PGM
Hybrid RMI (new impl)
108 4O
Q
O
107 4
: O
O
10° - Q
] O
O
4CI)O | 6CI)O | 8CI)O | 1OIOO | 12|OO

Query time (ns)

New tuned Linear RMI implementation and datasets from Marcus et al. [VLDB 2021]

Experiments on updates

1 billion uniform key-value pairs, 8-byte keys, 8-byte values

Dynamic PGM
B*-tree<128>
B*-tree<256>
B*-tree<512>
B*-tree<1024>

1400 -
1200 -

1000 -]

L1

]

([

.
800 A
600 -
400 -
200 A
O .

00O 01 02 03 04 05 06 07 08 09 10
Frequency of queries wrt inserts and deletes

Time (ns)

Intel Xeon Gold 5118 CPU @ 2.30GHz, data held in main memory

Experiments on updates

1 billion uniform key-value pairs, 8-byte keys, 8-byte values

i B Dynamic PGM
0 [] B*-tree<128>
1200 - I | M] B*-tree<256>
N N e B*-tree page size Index size
1000 -] i _ Bl B'-tree<1024>
Z I 128-byte 5.65 GB
é o I R 256-byte 2.98 GB
" oo0- i 512-byte 1.66 GB
- 1024-byte 0.89 GB
400 A
200 -
0- T T T T T T T T T T T

00 01 02 03 04 05 06 07 08 09 10
Frequency of queries wrt inserts and deletes

Intel Xeon Gold 5118 CPU @ 2.30GHz, data held in main memory

Also in the paper:
» Compression of segments
* Query distribution awareness

LETH INTERMNATIANAL CANFERENCE AN VERY LARGE DATA BHASES

Paolo Ferragina and Giorgio Vinciguerra. The PGM-index: a fully-
dynamic compressed learned index with provable worst-case bounds.
PVLDB, 13(8): 1162-1175, 2020.

Website and libraries

Website: https://pgm.di.unipi.it

Library (C++17): https://github.com/gvinciguerra/PGM-index {\
Library (Python): https://github.com/gvinciguerra/PyGM

New feafures
v" Indexing data on disk
The PGM-index v' Multidimensional data

v Cinterface

The PGM-index

The Piecewise Geometric Model index (PGM-index) is a data
structure that enables fast lookup, predecessor, range searches
and updates in arrays of billions of items using orders of
magnitude less space than traditional indexes while providing the
same worst-case query time guarantees.

@ source [l @ pyoM [l ® pocs [O PAPERS

https://pgm.di.unipi.it/
https://github.com/gvinciguerra/PGM-index
https://github.com/gvinciguerra/PyGM

Intermezzo

Theoretical grounds of
learning-based data structures

The knowledge gap

Practice

Theory
Same query time of
traditional tree-based ——

vs Same asymptotic query
time of traditional
indexes tree-based indexes
Space improvements of Same asymptotic space
orders of magnitude,
from GBs to few MBs

— occupancy of traditional

tree-based indexes v

()

-
)\r:

What is the space of learned indexes?

e Space occupancy « Number segments

* The
T
.
T

number of segments depends on
he size of the input dataset
ow the points (key, pos) map to the plane

he value ¢, i.e. how much the approximation is precise

£, K & /‘
—

'

positions
positions
positions

¢

keys keys keys

Model and assumptions

« Consider gaps g; = k;,, — k; between consecutive input keys

* Model the gaps as positive iid rvs that follow a distribution with
finite mean u and variance ¢*

positions
= \S] w B Ul
o

The result

Theorem. Consider iid gaps between consecutive input keys with
finite mean u and variance .

If £ is sufficiently large, the number of segments (= the space of a
PGM) on n input keys converges to

Corollary. Under the assumption above, the PGM-index with
¢ = O(B) improves the space of a B-tree from @(n/B) to 0(n/B*)

Sketch of the proof

1. Consider a on the stream of random gaps and the
at distance ¢

2. How many steps before a new segment is needed?

<o [EAS’rar’r a new
o segment

o from here

positions
o
L)

keys

Sketch of the proof (2)

3. Adiscrete-time random walk, iid increments with mean u

4. Compute the expectation of
i* = min{i € N | (k;,1) is outside the red strip}
i.e. the Mean Exit Time (MET) of the random walk

5. Show that the slope m = 1/u maximises E[i*], giving E[i*] = (u?/c?) &2

7 2 Start a new
segmen’r

. from here
° (keyi*'l)

K Tf\, Start a new
o ° seqment

o from here

. .
° 5;> time

positions
L2
random walker location

keys

o3 ICML

International Conference
On Machine Learning

Paolo Ferragina, Fabrizio Lillo, and Giorgio Vinciguerra.
Why are learned indexes so effective? In: Proc. 37th Intl.

Conference on Machine Learning (ICML), 2020.

Code available at github.com/gvinciguerra/Learned-indexes-effectiveness

Problem 2

Rank/select dictionaries

Rank/select dictionaries

* Given a set S of n elements over an integer universe 0,1, ..., u
1. Store them in compressed form
2. Implement rank(x): number of elements in S which are < x
3. Implement select(i): return the ith smallest elementin S

* Building block of succinct data structures for texts, genomes,
graphs, etc. Very mature field

rank(12) = 3

e,
‘e
‘e
.
o,

Stored in

3| 6(10|15|18(22|40|43|47 53| 1 Zomoressed form

1 2 3 4 5 6 7 8 9 10
A

Select(‘7) =40

The idea

53 |

47 |

43 |

40 |

anjeA

10

position

3|16110|115|18(22{40(43|47/ |53

10

The 1dea: data = segments

value

1 2 3 4 5 6 7 8 9 10
position

6 110115|18|22(40(43 |4/ |53

The idea: data = segments + corrections

[log(2¢ + 1)] bit
—

¢ [3]1]o]o]-2]-3|@[0]-2]-2)
1 2 3 4 5 6 7 8 9 10

value

1 2 3 4 5 6 7 8 9 10
position

3| 6 10|15 | 18 22707 43 47‘53{
2 3 4 5 6 7 8 9 10

xi=a-i +p + C[i]

The LA-vector

Given c bits for the corrections (i.e. allow an error of e = 2¢=1 — 1) :
* Space O(¥) + nc bits, where ¢ is the number of segments

* Select in O(1) time, in additional n + o(n) bits

* Rank in O(loglog(u/?) + c) time, in additional O((#/2¢)logu) bits

53 | fo)
fo(x)=6x—5

47 | fo)

43 +

40 + o)

[log(2¢ + 1)] bit

¢ [3]1]o]o]-2]-3|@]0[2[-2)

11111111111

value

1 2 3 4 5 6 7 8 9 10
position

How to minimise the space?

* Space O0(¥) + nc bits. How to choose ¢ without increasing £?

 Partition the input according to its linearities, choose a different ¢ for
each chunk, minimise the overall space

1 segment 1 segment 1 segment 1 segment 1 segment
with ¢ = 1 bits with ¢ = 0 bits with ¢ = 2 bits with ¢ = 4 bits with ¢ = 0 bits

A A A A A
4 N/ A4 N/ N/ \

1 n

* Reduction to the shortest path problem on ad hoc graphs
 Optimal takes 0(n?logu) time and O(nlogu) space
* Greedy takes O(nlogu) time and O(n) space
* We prove that the greedy adds a constant factor more space wrt the optimal

Experiments on LA-vector

 Tested on DNA, 5Gram, URLs, and inverted lists

« Compared to well-engineered rank-select structures (Elias-Fano,
RRR-vector, Gap-encoded vector) implemented in Gog’s SDSL

» Faster select and competitive rank

URL (1.303%) URL (1.303%)

% -

o0 | a\ i

£ 15 15|

5 1% \\ T1x%

aQ 1 X b4 o 1Vx

g 101’ e 10 3 W

2 i X\,\ “;‘g Sy 1wl

i T T T] \ L L L R L
200 400 600 0 500 1,000 1,500

Select time (ns) Rank time (ns)

v Symposium on
aldfm Algorithm Engineering
202]

and Experiments

Antonio Boffa, Paolo Ferragina, and Giorgio Vinciguerra.
A “learned” approach to quicken and compress rank/select dictionaries.
To appear in: Proc. SIAM Symposium on Algorithm Engineering and
Experiments (ALENEX), 2021.

Code available at github.com/gvinciguerra/la_vector

Conclusions

Wrap up

 New way to look at the data based on geometric considerations

 Introduced two theoretically and practically efficient structures
that exploit the approximate linearity of the data
 The PGM-index for the predecessor search problem
* The LA-vector for the rank/select dictionary problem

» Studied the theoretical grounds of the structures that use
approximate linearity

Ongoing and future research work

* Apply these ideas to string indexing and compression, and
possibly other problems

 Study and experiment more sophisticate models (i.e. nonlinear)
while retaining the same theoretical guarantees on the error

* Integrate these structures into a real data system

» Study the relation between approximate linearity and existing
compressibility measures such as Shannon’s entropy

Extra slides

Sketch of the fully-dynamic PGM

 Define b = 0(log n) PGM-indexes either empty or of sizes 2°, 2%, ..., 2P
* Aninsert merges the first j — 1 full levels into the first free level j

\

_

S

Sketch of the fully-dynamic PGM

 Define b = 0(log n) PGM-indexes either empty or of sizes 2°, 2%, ..., 2P
* An insert merges the first j — 1 full levels into the first free level j

i - \ Herge in O(Zj) time
(B}v { Em ;, = DI
I

Sketch of the fully-dynamic PGM

 Define b = 0(log n) PGM-indexes either empty or of sizes 2°, 2%, ..., 2P
* Aninsert merges the first j — 1 full levels into the first free level j

