
Theory and practice of
learning-based

compressed data structures

Giorgio Vinciguerra
PhD Student in CS

pages.di.unipi.it/vinciguerra

March 19, 2021
Links seminar @ Université de Lille and Inria

Outline
• Revisit two classical problems in data structure design:
• Predecessor search
• Rank/select dictionary problem

• Exploit a new kind of data regularity based on geometric
considerations: approximate linearity
• Introduce two theoretically and practically efficient solutions for

the problems above:
• PGM-index
• LA-vector

• Discuss the theoretical grounds on the “power” of the
approximate linearity concept

2

Problem 1

Predecessor search

The predecessor search problem

• Given 𝑛 sorted input keys (e.g. integers), implement
𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑥 = “largest key ≤ 𝑥”
• Range queries in DBs, conjunctive queries in search engines,

IP routing…
• Lookups alone are much easier; just use Cuckoo hashing for

lookups at most 2 memory accesses (without sorting data!)

𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 36 = 36

𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 50 = 48

2 11 13 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95

1 𝑛

4

Indexes

2 11 13 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95

1 𝑛

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 11

𝑘𝑒𝑦 = 36

B-tree

(values associated to keys are not shown) 5

Input data as pairs (𝑘𝑒𝑦, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)

po
sit

io
ns

keys

2 11 13 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95

1 𝑛

Ao et al. [VLDB 2011] 6

Input data as pairs (𝑘𝑒𝑦, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)

po
sit

io
ns

keys

2 11 13 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95

1 𝑛2 3 4

2 11 13 15

1

2

3

4

Ao et al. [VLDB 2011] 7

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

po
sit
io
ns

keys

Learning the mapping keys → positions

𝑒𝑟𝑟𝑜𝑟

2 11 13 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

𝑒𝑟𝑟𝑜𝑟

8

Learned indexes

Ao et al. [VLDB 2011], Kraska et al. [SIGMOD 2018]

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑘𝑒𝑦

Model trained on a dataset of pairs (key, pos)
𝒟 = { 2,1 , 11,2 , … , (95, 𝑛)}

Binary search in
[𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑒𝑟𝑟𝑜𝑟, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑒𝑟𝑟𝑜𝑟]

(approximate)
po

sit
io
ns

keys

2 11 13 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95

1 𝑛

Query latency = time to output a
position + time to “fix the error” via

binary search

How to strike a good balance between the
model complexity and the query latency?

9

The problem with learned indexes

Fast query time and excellent
space usage in practice,

but no worst-case guarantees

Very slow
to train

Vulnerable to
adversarial inputs

and queries

Must be tuned for
each new dataset

Too much I/O when
data is on disk

Unscalable
to big data

Unpredictable
latency

Blind to the
query distribution

10

Introducing the PGM-index

Fast query time and excellent
space usage in practice,

and guaranteed worst-case bounds

Predictable
latency

Resistant to
adversarial inputs

and queries

Scalable
to big data

Very fast
to build

Constant I/O when
data is on disk

No additional
tuning needed

Query distribution
aware

11

Ingredients of the PGM-index

Fixed model “error” ε
Control the size of the search range

(like the page size in a B-tree)

Opt. piecewise linear ε-approx.
Fast to construct, best space usage for linear

learned indexes

Recursive design
Adapt to the memory hierarchy

and enable query-time guarantees

12

PGM-index construction

Step 1. Compute the
optimal piecewise linear

𝜀-approximation
in Ο(𝑛) time

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123 128 140 145 146

1 𝑛
13

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123 128 140 145 146

PGM-index construction

Step 1. Compute the
optimal piecewise linear

𝜀-approximation
in Ο(𝑛) time

Step 2. Store the
segments as triples

𝑠! = 𝑘𝑒𝑦, 𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

1 𝑛
14

Partial memory layout of the PGM-index

Segments (2, sl, ic) (23, sl, ic) (31, sl, ic) (48, sl, ic) (71, sl, ic) (88, sl, ic) (122, sl, ic) (145, sl, ic)

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123 128 140 145 146

1 𝑛

Each segment indexes a variable and potentially large sequence of keys
while guaranteeing a search range size of 2𝜀 + 1

Binary search in
[𝑝𝑜𝑠 − 𝜀, 𝑝𝑜𝑠 + 𝜀]

15

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123 128 140 145 146

PGM-index construction

Step 1. Compute the
optimal piecewise linear

𝜀-approximation
in Ο(𝑛) time

Step 2. Store the
segments as triples

𝑠! = 𝑘𝑒𝑦, 𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

Step 3. Keep only 𝑠!. 𝑘𝑒𝑦

1 𝑛
16

PGM-index construction

Step 1. Compute the
optimal piecewise linear

𝜀-approximation
in Ο(𝑛) time

Step 2. Store the
segments as triples

𝑠! = 𝑘𝑒𝑦, 𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

Step 3. Keep only 𝑠!. 𝑘𝑒𝑦

2 23 31 48 71 88 122 145
17

PGM-index construction

Step 1. Compute the
optimal piecewise linear

𝜀-approximation
in Ο(𝑛) time

Step 2. Store the
segments as triples

𝑠! = 𝑘𝑒𝑦, 𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

Step 3. Keep only 𝑠!. 𝑘𝑒𝑦 Step 4. Repeat recursively

2 23 31 48 71 88 122 145
18

PGM-index construction

Step 1. Compute the
optimal piecewise linear

𝜀-approximation
in Ο(𝑛) time

Step 2. Store the
segments as triples

𝑠! = 𝑘𝑒𝑦, 𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

Step 3. Keep only 𝑠!. 𝑘𝑒𝑦 Step 4. Repeat recursively

2 31 88 145
19

Memory layout of the PGM-index

(2, sl, ic) (31, sl, ic) (88, sl, ic) (145, sl, ic)

(2, sl, ic)

(2, sl, ic) (23, sl, ic) (31, sl, ic) (48, sl, ic) (71, sl, ic) (88, sl, ic) (122, sl, ic) (145, sl, ic)

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123 128 140 145 146

1 𝑛

20

(2, •, •) (23, •, •) (31, •, •) (48, •, •) (71, •, •) (88, •, •) (122, •, •) (145, •, •)

(2, •, •) (31, •, •) (88, •, •) (145, •, •)

(2, sl, ic)

Predecessor search with 𝜀 = 1

𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 57 ?

(2, sl, ic)

(31, sl, ic)

(48, sl, ic)

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123 128 140 145 146

1 𝑛

𝐵 = disk page-size

Set 𝜀 = Θ 𝐵 for
queries in 𝑂(log! 𝑛) I/Os

𝑂(𝑛/𝜀) space

The PGM-index is never
worse in time and space

than a B-tree

2𝜀 + 1

2𝜀 + 1

2𝜀 + 1

Very pessimistic statement
We will see a stronger

bound later

21

Experiments

Experiments

Intel Xeon Gold 5118 CPU @ 2.30GHz, data held in main memory

Fastest CSS-tree
128-byte pages

≈350 MB

Matched by PGM with
2ε set to 256
≈4 MB (−83×)

Page size

2ε

Avg search range

23

New experiments with tuned Linear RMI
• 8-byte keys, 8-byte payload
• Tuned Linear RMI and PGM have the same size
• 10M predecessor searches, uniform query workload

New tuned Linear RMI implementation and datasets from Marcus et al. [VLDB 2021]

PGM improved the empirical
performance of a tuned Linear RMI

Each PGM took about 2 seconds to construct
RMI took 30× more!

24

New experiments with tuned Hybrid RMI
• 8-byte keys, 8-byte payload
• RMI with non-linear models, tuned via grid search
• 10M predecessor searches, uniform query workload

New tuned Linear RMI implementation and datasets from Marcus et al. [VLDB 2021]

Each PGM took about 2 seconds to construct
Hybrid RMI took 40× (90× with tuning) more!

Avg search range 28

Max search range 28

Avg 215

Max 229

25

New experiments
• 8-byte keys, 8-byte payload
• RMI with non-linear models, tuned via grid search
• 10M predecessor searches

New tuned Linear RMI implementation and datasets from Marcus et al. [VLDB 2021]

Adversarial
query workload

About adversarial data inputs, see Kornaropoulos et al., 2020 [arXiv:2008.00297]

26

Experiments on updates

Intel Xeon Gold 5118 CPU @ 2.30GHz, data held in main memory 27

Experiments on updates

3891×

2051×

1140×

611×

B+-tree page size Index size

128-byte 5.65 GB
256-byte 2.98 GB
512-byte 1.66 GB
1024-byte 0.89 GB

Dynamic PGM-index: 1.45 MB

Intel Xeon Gold 5118 CPU @ 2.30GHz, data held in main memory 28

Paolo Ferragina and Giorgio Vinciguerra. The PGM-index: a fully-
dynamic compressed learned index with provable worst-case bounds.

PVLDB, 13(8): 1162-1175, 2020.

Also in the paper:
• Compression of segments
• Query distribution awareness

29

Website and libraries
Website: https://pgm.di.unipi.it
Library (C++17): https://github.com/gvinciguerra/PGM-index
Library (Python): https://github.com/gvinciguerra/PyGM New features

ü Indexing data on disk
ü Multidimensional data
ü C interface

30

https://pgm.di.unipi.it/
https://github.com/gvinciguerra/PGM-index
https://github.com/gvinciguerra/PyGM

Intermezzo

Theoretical grounds of
learning-based data structures

The knowledge gap

Practice
Same query time of

traditional tree-based
indexes

Space improvements of
orders of magnitude,
from GBs to few MBs

Theory
Same asymptotic query

time of traditional
tree-based indexes

Same asymptotic space
occupancy of traditional

tree-based indexes 👎

vs
👍

vs

32

What is the space of learned indexes?

• Space occupancy ∝ Number segments
• The number of segments depends on
• The size of the input dataset
• How the points (𝑘𝑒𝑦, 𝑝𝑜𝑠) map to the plane
• The value 𝜀, i.e. how much the approximation is precise

po
si

tio
ns

keys

po
si

tio
ns

keys

po
si

tio
ns

keys

𝜀" 𝜀# ≪ 𝜀"

33

Model and assumptions

• Consider gaps 𝑔+ = 𝑘+,- − 𝑘+ between consecutive input keys
• Model the gaps as positive iid rvs that follow a distribution with

finite mean 𝜇 and variance 𝜎.

po
si

tio
ns

keys

𝑔"
𝑔#

𝑔$
𝑔%1

2

3

4

5

𝑘! 𝑘" 𝑘# 𝑘$ 𝑘%

34

The result

Theorem. Consider iid gaps between consecutive input keys with
finite mean 𝜇 and variance 𝜎..
If 𝜀 is sufficiently large, the number of segments (≈ the space of a
PGM) on 𝑛 input keys converges to

𝜎.

𝜇.
𝑛
𝜀.

Corollary. Under the assumption above, the PGM-index with
𝜀 = Θ(𝐵) improves the space of a B-tree from 𝛩(𝑛/𝐵) to 𝑂(𝑛/𝐵.)

35

Sketch of the proof

1. Consider a segment on the stream of random gaps and the two
parallel lines at distance 𝜀

2. How many steps before a new segment is needed?

Start a new
segment

from here

po
si

tio
ns

keys

𝜀

𝜀

36

Sketch of the proof (2)

3. A discrete-time random walk, iid increments with mean 𝜇
4. Compute the expectation of

𝑖∗ = min 𝑖 ∈ ℕ 𝑘H, 𝑖 is outside the red strip
i.e. the Mean Exit Time (MET) of the random walk

5. Show that the slope 𝑚 = 1/𝜇 maximises 𝐸[𝑖∗], giving 𝐸[𝑖∗] = 𝜇I/𝜎I 𝜀I

po
si

tio
ns

keys

𝜀

𝜀

Start a new
segment

from here

(𝑘𝑒𝑦!∗ , 𝑖∗)

ra
nd

om
 w

al
ke

r l
oc

at
io

n

time

Start a new
segment

from here

𝑖∗

𝜀
𝑚

𝜀
𝑚

37

Paolo Ferragina, Fabrizio Lillo, and Giorgio Vinciguerra.
Why are learned indexes so effective? In: Proc. 37th Intl.

Conference on Machine Learning (ICML), 2020.

Code available at github.com/gvinciguerra/Learned-indexes-effectiveness

38

Problem 2

Rank/select dictionaries

Rank/select dictionaries

• Given a set 𝑆 of 𝑛 elements over an integer universe 0,1, … , 𝑢
1. Store them in compressed form
2. Implement 𝑟𝑎𝑛𝑘(𝑥): number of elements in 𝑆 which are ≤ 𝑥
3. Implement 𝑠𝑒𝑙𝑒𝑐𝑡(𝑖): return the 𝑖th smallest element in 𝑆

• Building block of succinct data structures for texts, genomes,
graphs, etc. Very mature field

𝑟𝑎𝑛𝑘 12 = 3

𝑠𝑒𝑙𝑒𝑐𝑡 7 = 40

Stored in
compressed form3 6 10 15 18 22 40 43 47 53

1 2 3 4 5 6 7 8 9 10

40

1 2 3 4 5 6 7 8 9 10

3
6

10
15
18
22

40
43
47

53

position

va
lu
e

The idea

3 6 10 15 18 22 40 43 47 53
1 2 3 4 5 6 7 8 9 10

41

1 2 3 4 5 6 7 8 9 10

3
6

10
15
18
22

40
43
47

53

𝑓1(𝑥) = 5𝑥 − 5

𝑓2(𝑥) = 6𝑥 − 5

position

va
lu
e

The idea: data = segments

3 6 10 15 18 22 40 43 47 53
1 2 3 4 5 6 7 8 9 10

Represent integers with
an information loss of 𝜀

42

The idea: data = segments + corrections

3 6 10 15 18 22 40 43 47 53
1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

3
6

10
15
18
22

40
43
47

53

𝑓1(𝑥) = 5𝑥 − 5

𝑓2(𝑥) = 6𝑥 − 5

position

va
lu
e 3 1 0 0 ‐2 ‐3 3 0 ‐2 ‐2

1 2 3 4 5 6 7 8 9 10
𝐶

⌈log(2𝜀 + 1)⌉ bit

Complement the
approximations to

recover the original set

𝑥! = 𝛼 ⋅ 𝑖 + 𝛽 + 𝐶[𝑖]

43

Represent integers with
an information loss of 𝜀

The LA-vector

Given 𝑐 bits for the corrections (i.e. allow an error of 𝜀 = 2/0- − 1) :
• Space 𝑂 ℓ + 𝑛𝑐 bits, where ℓ is the number of segments
• Select in 𝑂(1) time, in additional 𝑛 + 𝑜 𝑛 bits
• Rank in 𝑂(log log(𝑢/ℓ) + 𝑐) time, in additional 𝑂((ℓ/2/)log 𝑢) bits

1 2 3 4 5 6 7 8 9 10

3
6

10
15
18
22

40
43
47

53

𝑓1(𝑥) = 5𝑥 − 5

𝑓2(𝑥) = 6𝑥 − 5

position

va
lu
e 3 1 0 0 ‐2 ‐3 3 0 ‐2 ‐2

1 2 3 4 5 6 7 8 9 10
𝐶

⌈log(2𝜀 + 1)⌉ bit

44

How to minimise the space?
• Space 𝑂 ℓ + 𝑛𝑐 bits. How to choose 𝑐 without increasing ℓ?
• Partition the input according to its linearities, choose a different 𝑐 for

each chunk, minimise the overall space

• Reduction to the shortest path problem on ad hoc graphs
• Optimal takes 𝑂(𝑛. log 𝑢) time and 𝑂(𝑛 log 𝑢) space
• Greedy takes 𝑂(𝑛 log 𝑢) time and 𝑂(𝑛) space
• We prove that the greedy adds a constant factor more space wrt the optimal

45

1 𝑛

1 segment
with 𝑐 = 2 bits

1 segment
with 𝑐 = 0 bits

1 segment
with 𝑐 = 1 bits

1 segment
with 𝑐 = 4 bits

1 segment
with 𝑐 = 0 bits

Experiments on LA-vector

• Tested on DNA, 5Gram, URLs, and inverted lists
• Compared to well-engineered rank-select structures (Elias-Fano,

RRR-vector, Gap-encoded vector) implemented in Gog’s SDSL
• Faster select and competitive rank

Sp
ac

e
(b

its
 p

er
 in

te
ge

r)

Select time (ns) Rank time (ns)
46

Antonio Boffa, Paolo Ferragina, and Giorgio Vinciguerra.
A “learned” approach to quicken and compress rank/select dictionaries.
To appear in: Proc. SIAM Symposium on Algorithm Engineering and

Experiments (ALENEX), 2021.

Code available at github.com/gvinciguerra/la_vector

47

Conclusions

Wrap up

• New way to look at the data based on geometric considerations
• Introduced two theoretically and practically efficient structures

that exploit the approximate linearity of the data
• The PGM-index for the predecessor search problem
• The LA-vector for the rank/select dictionary problem

• Studied the theoretical grounds of the structures that use
approximate linearity

49

Ongoing and future research work

• Apply these ideas to string indexing and compression, and
possibly other problems
• Study and experiment more sophisticate models (i.e. nonlinear)

while retaining the same theoretical guarantees on the error
• Integrate these structures into a real data system
• Study the relation between approximate linearity and existing

compressibility measures such as Shannon’s entropy

50

Extra slides

Sketch of the fully-dynamic PGM

• Define 𝑏 = O(log 𝑛) PGM-indexes either empty or of sizes 2$, 2", … , 2%

• An insert merges the first 𝑗 − 1 full levels into the first free level 𝑗

52

Sketch of the fully-dynamic PGM

• Define 𝑏 = O(log 𝑛) PGM-indexes either empty or of sizes 2$, 2", … , 2%

• An insert merges the first 𝑗 − 1 full levels into the first free level 𝑗

Merge in Ο 2& time

53

Sketch of the fully-dynamic PGM

• Define 𝑏 = O(log 𝑛) PGM-indexes either empty or of sizes 2$, 2", … , 2%

• An insert merges the first 𝑗 − 1 full levels into the first free level 𝑗

54

