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Outline

 Revisit two classical problems in data structure design:
» Predecessor search
* Rank/select dictionary problem

* Exploit a new kind of data regularity based on geometric
considerations: approximate linearity

 Introduce two theoretically and practically efficient solutions for
the problems above:
 PGM-index

e LA-vector

 Discuss the theoretical grounds on the “power” of the
approximate linearity concept




Problem 1

Predecessor search



The predecessor search problem

* Given n sorted input keys (e.g. integers), implement
predecessor(x) = “largest key < x”

* Range queries in DBs, conjunctive queries in search engines,
P routing...

* Lookups alone are much easier; just use Cuckoo hashing for
ookups at most 2 memory accesses (without sorting data!)

predecessor(36) = 36
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Input data as pairs (key, position)
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Input data as pairs (key, position)
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Learning the mapping keys » positions
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Query latency = time to output a

Learned indexes position + time to “fix the error” via

binary search
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Ao et al. [VLDB 2011], Kraska et al. [SIGMOD 2018]




The problem with learned indexes

PN,
A

Too much I/O when

Unpredictable . :
latency data is on disk @
Very slow
. to trai
Fast query time and excellent  ™™"
% space usage in practice,
NS
Unscalable bUt
to big data él&
G2 | 2]
\ Must be tuned for
\ Vulnerable tO each new dataset
Blind to the adversarial inputs
query distribution and queries



Introducing the PGM-index
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Ingredients of the PGM-index

e & 1

Opt. piecewise linear s-approx. Fixed model “error” € Recursive design

Fast to construct, best space usage for linear Control the size of the search range Adapt to the memory hierarchy
learned indexes (like the page size in a B-tree) and enable query-time guarantees




PGM-index construction

Step 1. Compute the 311
optimal piecewise linear 28 .
g-approximation 25 L
in O(n) time 22 o
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PGM-index construction

Step 1. Compute the 31 . Step 2. Store the
optimal piecewise linear  2: . segments as triples
g-approximation 25 1 . s; = (k&y, slope, intercept)
in O(n) time 22 ¢
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Partial memory layout of the PGM-index

Each segment indexes a variable and potentially large sequence of keys
while guaranteeing a search range size of

Segments | (2,sl,ic) | (23, sl,ic) | (31, sl,ic) | (48, sl,ic) | (71, sl, ic) | (22, sl ic) |(122, sl, ic)|(145, sl, ic)
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PGM-index construction

Step 1. Compute the i Step 2. Store the
optimal piecewise linear 2] segments as triples
g-approximation gg s; = (kéy, slope, intercept)
in O(n) time 22
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PGM-index construction

Step 1. Compute the
optimal piecewise linear
g-approximation
in O(n) time
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Step 2. Store the
segments as triples
s; = (key, slope, intercept)



PGM-index construction

Step 1. Compute the a1 o Step 2. Store the
optimal piecewise linear 2| segments as triples

g-approximation gg / s; = (Kéy, slope, intercept)
in O(n) time 2

position

Step 3. Keep only s;. kéy 3 Step 4. Repeat recursively
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PGM-index construction

Step 1. Compute the
optimal piecewise linear
g-approximation
in O(n) time
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Step 3. Keep only s;. kéy
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Memory layout of the PGM-Index

(2, sl, ic)
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Predecessor search with « = 1
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Experiments



Experiments
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New experiments with tuned Linear RMI

Index size (bytes)

8-byte keys, 8-byte payload

Tuned Linear RMI and PGM have the same size
10M predecessor searches, uniform query workload
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New experiments with tuned Hybrid RMI

« 8-byte keys, 8-byte payload
* RMI with non-linear models, tuned via grid search
« 10M predecessor searches, uniform query workload
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New experiments

« 8-byte keys, 8-byte payload
* RMI with non-linear models, tuned via grid search
* 10M predecessor searches
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Experiments on updates

1 billion uniform key-value pairs, 8-byte keys, 8-byte values
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Experiments on updates

1 billion uniform key-value pairs, 8-byte keys, 8-byte values
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Also in the paper:
» Compression of segments
* Query distribution awareness

LETH INTERMNATIANAL CANFERENCE AN VERY LARGE DATA BHASES

Paolo Ferragina and Giorgio Vinciguerra. The PGM-index: a fully-
dynamic compressed learned index with provable worst-case bounds.
PVLDB, 13(8): 1162-1175, 2020.



Website and libraries

Website: https://pgm.di.unipi.it

Library (C++17): https://github.com/gvinciguerra/PGM-index {\
Library (Python): https://github.com/gvinciguerra/PyGM

New feafures
v" Indexing data on disk
The PGM-index v' Multidimensional data

v Cinterface

The PGM-index

The Piecewise Geometric Model index (PGM-index) is a data
structure that enables fast lookup, predecessor, range searches
and updates in arrays of billions of items using orders of
magnitude less space than traditional indexes while providing the
same worst-case query time guarantees.

@ source [l @ pyoM [l ® pocs [ O PAPERS



https://pgm.di.unipi.it/
https://github.com/gvinciguerra/PGM-index
https://github.com/gvinciguerra/PyGM

Intermezzo

Theoretical grounds of
learning-based data structures



The knowledge gap
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What is the space of learned indexes?

e Space occupancy « Number segments

* The
T
.
T

number of segments depends on
he size of the input dataset
ow the points (key, pos) map to the plane

he value ¢, i.e. how much the approximation is precise
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Model and assumptions

« Consider gaps g; = k;,, — k; between consecutive input keys

* Model the gaps as positive iid rvs that follow a distribution with
finite mean u and variance ¢*

positions
= \S] w B Ul
o




The result

Theorem. Consider iid gaps between consecutive input keys with
finite mean u and variance .

If £ is sufficiently large, the number of segments (= the space of a
PGM) on n input keys converges to

Corollary. Under the assumption above, the PGM-index with
¢ = O(B) improves the space of a B-tree from @(n/B) to 0(n/B*)



Sketch of the proof

1. Consider a on the stream of random gaps and the
at distance ¢

2. How many steps before a new segment is needed?
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Sketch of the proof (2)

3. Adiscrete-time random walk, iid increments with mean u

4. Compute the expectation of
i* = min{i € N | (k;,1) is outside the red strip}
i.e. the Mean Exit Time (MET) of the random walk

5. Show that the slope m = 1/u maximises E[i*], giving E[i*] = (u?/c?) &2
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o3 ICML

International Conference
On Machine Learning

Paolo Ferragina, Fabrizio Lillo, and Giorgio Vinciguerra.
Why are learned indexes so effective? In: Proc. 37th Intl.

Conference on Machine Learning (ICML), 2020.

Code available at github.com/gvinciguerra/Learned-indexes-effectiveness



Problem 2

Rank/select dictionaries



Rank/select dictionaries

* Given a set S of n elements over an integer universe 0,1, ..., u
1. Store them in compressed form
2. Implement rank(x): number of elements in S which are < x
3. Implement select(i): return the ith smallest elementin S

* Building block of succinct data structures for texts, genomes,
graphs, etc. Very mature field
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The idea
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The 1dea: data = segments
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The idea: data = segments + corrections
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The LA-vector

Given c bits for the corrections (i.e. allow an error of e = 2¢=1 — 1) :
* Space O(¥) + nc bits, where ¢ is the number of segments

* Select in O(1) time, in additional n + o(n) bits

* Rank in O(loglog(u/?) + c) time, in additional O((#/2¢ )logu) bits
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How to minimise the space?

* Space O0(¥) + nc bits. How to choose ¢ without increasing £?

 Partition the input according to its linearities, choose a different ¢ for
each chunk, minimise the overall space

1 segment 1 segment 1 segment 1 segment 1 segment
with ¢ = 1 bits with ¢ = 0 bits with ¢ = 2 bits with ¢ = 4 bits with ¢ = 0 bits

A A A A A
4 N/ A4 N/ N/ \

1 n

* Reduction to the shortest path problem on ad hoc graphs
 Optimal takes 0(n?logu) time and O(nlogu) space
* Greedy takes O(nlogu) time and O(n) space
* We prove that the greedy adds a constant factor more space wrt the optimal




Experiments on LA-vector

 Tested on DNA, 5Gram, URLs, and inverted lists

« Compared to well-engineered rank-select structures (Elias-Fano,
RRR-vector, Gap-encoded vector) implemented in Gog’s SDSL

» Faster select and competitive rank
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v Symposium on
aldfm Algorithm Engineering
202 ]

and Experiments

Antonio Boffa, Paolo Ferragina, and Giorgio Vinciguerra.
A “learned” approach to quicken and compress rank/select dictionaries.
To appear in: Proc. SIAM Symposium on Algorithm Engineering and
Experiments (ALENEX), 2021.

Code available at github.com/gvinciguerra/la_vector



Conclusions



Wrap up

 New way to look at the data based on geometric considerations

 Introduced two theoretically and practically efficient structures
that exploit the approximate linearity of the data
 The PGM-index for the predecessor search problem
* The LA-vector for the rank/select dictionary problem

» Studied the theoretical grounds of the structures that use
approximate linearity



Ongoing and future research work

* Apply these ideas to string indexing and compression, and
possibly other problems

 Study and experiment more sophisticate models (i.e. nonlinear)
while retaining the same theoretical guarantees on the error

* Integrate these structures into a real data system

» Study the relation between approximate linearity and existing
compressibility measures such as Shannon’s entropy



Extra slides



Sketch of the fully-dynamic PGM

 Define b = 0(log n) PGM-indexes either empty or of sizes 2°, 2%, ..., 2P
* Aninsert merges the first j — 1 full levels into the first free level j
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Sketch of the fully-dynamic PGM

 Define b = 0(log n) PGM-indexes either empty or of sizes 2°, 2%, ..., 2P
* An insert merges the first j — 1 full levels into the first free level j
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Sketch of the fully-dynamic PGM

 Define b = 0(log n) PGM-indexes either empty or of sizes 2°, 2%, ..., 2P
* Aninsert merges the first j — 1 full levels into the first free level j




