
The design of learning-based
compressed data structures

Giorgio Vinciguerra
PhD Student in CS

pages.di.unipi.it/vinciguerra

Joint work with Antonio Boffa, Paolo Ferragina, Fabrizio Lillo

LADSIOS @ VLDB 2021
August 16, 2021

Outline

• Two classical problems in data structure & DBMS design:
• Data indexing
• Data compression & access

• Reframe them as a problem of approximating the distribution of
the input data

• Show solutions that learn the input data regularities and
guarantee efficient space-time complexity bounds

2

Problem 1

Data indexing

The predecessor search problem

• Given 𝑛 sorted input keys, implement:
𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑥 = “largest key ≤ 𝑥”

• Range queries in DBs, conjunctive queries in search engines,
IP routing…
• Traditionally solved by tree- or trie-based data structures

𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 36 = 36

𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 50 = 48

2 11 13 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95

1 𝑛

4

The idea: input data as pairs (𝑘𝑒𝑦, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)

po
sit

io
ns

keys

2 11 13 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95

1 𝑛

Ao et al. [VLDB 2011] 5

The idea: input data as pairs (𝑘𝑒𝑦, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)

po
sit

io
ns

keys

2 11 13 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95

1 𝑛2 3 4

2 11 13 15

1

2

3

4

Ao et al. [VLDB 2011] 6

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

po
sit
io
ns

keys

The idea: learning a mapping 𝑘𝑒𝑦𝑠 → 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠

𝑒𝑟𝑟𝑜𝑟

2 11 13 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

𝑒𝑟𝑟𝑜𝑟

7

Learned indexes

Ao et al. [VLDB 2011], Kraska et al. [SIGMOD 2018]

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑘𝑒𝑦

Often we need more complex
models than linear ones

Binary search in
[𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑒𝑟𝑟𝑜𝑟, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑒𝑟𝑟𝑜𝑟]

(approximate)
po

sit
io
ns

keys

2 11 13 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95

1 𝑛

Query latency = time to output a position
+ time to “fix the error” via binary search

How to strike a good balance between the model
complexity and the query latency?

8

Introducing the PGM-index

Fixed model “error” ε
Control the size of the search range

(like the page size in a B-tree)

Piecewise linear ε-approx.
Fast to construct and space-optimal
(number of segments is minimised)

Recursive design
Adapt to the memory hierarchy

and enable query-time guarantees

9Ferragina and Vinciguerra [VLDB 2020]

PGM-index construction

Step 1. Compute the
optimal piecewise linear

𝜀-approximation
in 𝒪(𝑛) time

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123 128 140 145 146

1 𝑛
10

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123 128 140 145 146

PGM-index construction

Step 1. Compute the
optimal piecewise linear

𝜀-approximation
in 𝒪(𝑛) time

Step 2. Store the
segments as triples

𝑠! = 𝑘𝑒𝑦, 𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

1 𝑛
11

Partial memory layout of the PGM-index

Segments (2, sl, ic) (23, sl, ic) (31, sl, ic) (48, sl, ic) (71, sl, ic) (88, sl, ic) (122, sl, ic) (145, sl, ic)

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123 128 140 145 146

1 𝑛

Each segment indexes a variable and potentially large sequence of keys
while guaranteeing a search range size of 2𝜀 + 1

Binary search in
[𝑝𝑜𝑠 − 𝜀, 𝑝𝑜𝑠 + 𝜀]

12

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123 128 140 145 146

PGM-index construction

Step 1. Compute the
optimal piecewise linear

𝜀-approximation
in 𝒪(𝑛) time

Step 2. Store the
segments as triples

𝑠! = 𝑘𝑒𝑦, 𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

Step 3. Keep only 𝑠!. 𝑘𝑒𝑦

1 𝑛
13

PGM-index construction

Step 1. Compute the
optimal piecewise linear

𝜀-approximation
in 𝒪(𝑛) time

Step 2. Store the
segments as triples

𝑠! = 𝑘𝑒𝑦, 𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

Step 3. Keep only 𝑠!. 𝑘𝑒𝑦

2 23 31 48 71 88 122 145
14

PGM-index construction

Step 1. Compute the
optimal piecewise linear

𝜀-approximation
in 𝒪(𝑛) time

Step 2. Store the
segments as triples

𝑠! = 𝑘𝑒𝑦, 𝑠𝑙𝑜𝑝𝑒, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

Step 3. Keep only 𝑠!. 𝑘𝑒𝑦 Step 4. Repeat recursively

2 23 31 48 71 88 122 145
15

Memory layout of the PGM-index

(2, sl, ic) (31, sl, ic) (88, sl, ic) (145, sl, ic)

(2, sl, ic)

(2, sl, ic) (23, sl, ic) (31, sl, ic) (48, sl, ic) (71, sl, ic) (88, sl, ic) (122, sl, ic) (145, sl, ic)

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123 128 140 145 146

1 𝑛

16

(2, •, •) (23, •, •) (31, •, •) (48, •, •) (71, •, •) (88, •, •) (122, •, •) (145, •, •)

(2, •, •) (31, •, •) (88, •, •) (145, •, •)

(2, sl, ic)

Predecessor search with a PGM-index

(2, sl, ic)

(31, sl, ic)

(48, sl, ic)

2 11 12 15 18 23 24 29 31 34 36 44 47 48 55 59 60 71 73 74 76 88 95 99 102 115 122 123 128 140 145 146

1 𝑛

If 𝐵 = disk page-size,
set 𝜀 = Θ 𝐵 for

queries in 𝒪(log" 𝑛) I/Os
in 𝒪(𝑛/𝐵) space

The PGM-index is never
worse in time and space

than a B-tree

2𝜀 + 1

2𝜀 + 1

2𝜀 + 1

In ICML 20, we showed that
the space is 𝒪(𝑛/𝐵=) w.h.p.

17

Experiments

Static-scenario: experimental settings

• The majority of papers test learned indexes on positive lookups

• An index must answer correctly and efficiently also when the
query keys are not in the input (training) data

• Here we test each index on 10M random predecessor queries

• In-memory data with 8-byte keys, 8-byte payload

19

= locate the predecessor of a key

Static-scenario: experiments
Linear RMI and PGM have the same size

Linear RMI implementation and datasets from Marcus et al. [VLDB 2021]

PGM is often better than Linear RMI and CSS-tree

20

Static-scenario: experiments with Hybrid RMI
(RMI with non-linear models,

tuned via grid search)

Tuned Hybrid RMI implementation and datasets from Marcus et al. [VLDB 2021]

Hybrid RMI is often better than PGM, but...

21

Why worst-case bounds are important?

Tuned Hybrid RMI implementation and datasets from Marcus et al. [VLDB 2021]

Adversarial
query workload

22

Dynamic-scenario: experimental settings

• Many papers show only the index/model size and disregard other
design choices, e.g. half-empty nodes

Here we show the overall data structure size

• We test PGM, B-tree, B+tree, Y-fast trie, ALEX, ART
For the first four, we vary the page-size and show the fastest configuration

• Extract batch of 100M query+insert ops from dataset with 800M keys

• Use the remaining keys to bulk load each structure
8-byte keys, 8-byte payload

23

Bulk loading +700M records

24

Dynamic-scenario: latency over 100M ops

25

• PGM is faster for write-heavy workloads (0% to 25%)
• PGM and ART are faster for balanced workloads (50%)
• ART is faster for read-heavy workloads (75%)
• PGM, ART and ALEX are faster for read-only workloads (100%)

Dynamic-scenario: overall memory usage

• PGM is the most memory-efficient (12.9 GB)

• B-tree is the second-best (16.5 GB)

• ART is the most memory-hungry (34.6 GB)

• Some learned indexes can be larger than traditional ones
(ALEX is +15% than B-tree, +47% than PGM)

26

Dynamic-scenario: range queries
• Small range sizes (10 results)

• All data structures take from 2 to 4 µs
• ALEX is the fastest

• Medium range sizes (1K results)
• Y-fast trie is the fastest, 7 µs
• PGM is the second-fastest, +51%
• ALEX is the third-fastest, +7✕ wrt Y-fast trie

• Large range sizes (100K results)
• Y-fast trie is still the fastest, 605 µs
• PGM is still the second-fastest, +1% wrt Y-fast trie
• ALEX is still the third-fastest, +7✕ wrt Y-fast trie

27

More structures in the PGM library

28

pgm.di.unipi.it
MultidimensionalPGM
• Orthogonal range queries
• k-NN queries (thanks DBlab @ Nagoya Univ.)

Variants of the PGM
• CompressedPGM
• EliasFanoPGM
• BucketingPGM

Problem 2

Data compression & access

1 2 3 4 5 6 7 8 9 10

3
6

10
15
18
22

40
43
47

53

position

va
lu
e

The idea

3 6 10 15 18 22 40 43 47 53
1 2 3 4 5 6 7 8 9 10

30

1 2 3 4 5 6 7 8 9 10

3
6

10
15
18
22

40
43
47

53

𝑓1(𝑥) = 5𝑥 − 5

𝑓2(𝑥) = 6𝑥 − 5

position

va
lu
e

The idea: data = segments

3 6 10 15 18 22 40 43 47 53
1 2 3 4 5 6 7 8 9 10

Represent integers with
an information loss of 𝜀

31

The idea: data = segments + corrections

3 6 10 15 18 22 40 43 47 53
1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

3
6

10
15
18
22

40
43
47

53

𝑓1(𝑥) = 5𝑥 − 5

𝑓2(𝑥) = 6𝑥 − 5

position

va
lu
e 3 1 0 0 ‐2 ‐3 3 0 ‐2 ‐2

1 2 3 4 5 6 7 8 9 10
𝐶

⌈log(2𝜀 + 1)⌉ bit

Complement the
approximations to

recover the original set

𝑥! = 𝑓(𝑖) + 𝐶[𝑖]

Represent integers with
an information loss of 𝜀

32

LA-vector: a compressed
array supporting efficient
random access and other
query operations

Experiments on LA-vector, in brief

• Tested on DNA, 5Gram, URLs, and inverted lists

• Fast random access and competitive queries wrt
well-engineered compressed data structures

• Space occupancy close to the most compressed (but less
query-efficient) approaches

33

Boffa, Ferragina, Vinciguerra: A “learned” approach to quicken and compress rank/select dictionaries.

Code available at github.com/gvinciguerra/la_vector

Conclusions

Wrap up

• Introduced data structures that learn the input data regularities,
without giving up worst-case bounds:
• The PGM-index for data indexing
• The LA-vector for compressing and indexing data

• Practical performance on par with or orders of magnitude better
than traditional data structures

• Libraries are open-source, we invite users and contributors
We are extending the PGM to big integers (up to 256 bytes)

35

robust; resistant to adversarial queries

exploit new compression opportunities

Open questions

1. Can we further improve the performance of Dynamic PGM
over read-heavy workloads?

2. Can we learn 𝜀-approximate nonlinear models efficiently?

3. Do these models improve the 𝒪 𝑛/𝜀2 space bound of the
piecewise-linear model adopted by PGM?

36

References

• P. Ferragina and G. Vinciguerra. The PGM-index: a fully-dynamic compressed
learned index with provable worst-case bounds. PVLDB, 13(8): 1162-1175,
2020.
• P. Ferragina, F. Lillo, and G. Vinciguerra. Why are learned indexes so

effective? In: Proc. 37th International Conference on Machine Learning
(ICML 2020).
• P. Ferragina, F. Lillo, and G. Vinciguerra. On the performance of learned data

structures. Theoretical Computer Science, 871: 107-120, 2021.
• A. Boffa, P. Ferragina, and G. Vinciguerra. A “learned” approach to quicken

and compress rank/select dictionaries. In: Proc. 23rd SIAM Symposium on
Algorithm Engineering and Experiments (ALENEX 2021).

37

