
Idea: input data as pairs (𝒌𝒆𝒚, 𝒑𝒐𝒔)
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o The deluge of data has made the use of compressed data structures indispensable
o These structures build on two sources of compressibility: statistical properties and repetitiveness of the data
o But there is a new promising kind of regularity to be studied: approximate linearity

The predecessor search problem

Given 𝑛 sorted keys implement
𝑝𝑟𝑒𝑑(𝑥) = “largest key ≤ 𝑥” 

Why do we care? Range queries and joins in DBs, 
conjunctive queries in search engines, IP routing, ...
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The PGM-index

Features
• Optimal time and space complexity guarantees
• Never worse than traditional indexes such as B-trees
• Resistant to adversarial inputs and queries
• Supports multidimensional data and queries
• Auto-tunable to the desired memory usage or query time

Fixed model 
error ε

Control the size of 
the search range

Optimal piecewise 
linear ε-approx

Fast to construct, 
captures non-linearities

Recursive 
design

Adapt to the memory 
hierarchy
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Rank/Select dictionaries

Store an integer set 𝑆 in compressed form, support
𝑟𝑎𝑛𝑘(𝑥) = “# elements≤ 𝑥 in 𝑆”
𝑠𝑒𝑙𝑒𝑐𝑡(𝑖) = “𝑖th smallest element in 𝑆”

Why do we care? Building block of compressed 
data structures for texts, genomes, graphs, ...

Experimental results

• As fast as static B-tree, 83× more compressed
• Up to 3× faster than a dynamic B-tree and 

1000× more compressed on 109 integers
• About 3 seconds to construct on 109 integers

Idea: data = segments + corrections

pgm.di.unipi.it

The LA-vector

Orchestrate piecewise linear 𝜀-approximations, 
corrections and indexing. Faster 𝑠𝑒𝑙𝑒𝑐𝑡 and 
competitive 𝑟𝑎𝑛𝑘 wrt well-engineered solutions
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If one line is too 
imprecise, use a 
piecewise linear 
model


