
Idea: input data as pairs (𝒌𝒆𝒚, 𝒑𝒐𝒔)

Learning-based compressed data structures
Paolo Ferragina, Giorgio Vinciguerra

o The deluge of data has made the use of compressed data structures indispensable
o These structures build on two sources of compressibility: statistical properties and repetitiveness of the data
o But there is a new promising kind of regularity to be studied: approximate linearity

The predecessor search problem

Given 𝑛 sorted keys implement
𝑝𝑟𝑒𝑑(𝑥) = “largest key ≤ 𝑥” 

Why do we care? Range queries and joins in DBs, 
conjunctive queries in search engines, IP routing, ...

3 6 6 8 16 19 24 29 35 35 38 38
1 2 3 4 5 6 7 8 9 10 11 12

The PGM-index

Features
• Optimal time and space complexity guarantees
• Never worse than traditional indexes such as B-trees
• Resistant to adversarial inputs and queries
• Supports multidimensional data and queries
• Auto-tunable to the desired memory usage or query time

Fixed model 
error ε

Control the size of 
the search range

Optimal piecewise 
linear ε-approx

Fast to construct, 
captures non-linearities

Recursive 
design

Adapt to the memory 
hierarchy

[1] P. Ferragina and G. Vinciguerra. The PGM-index: a fully-dynamic compressed learned index with provable worst-case bounds. VLDB, 2020.
[2] P. Ferragina, F. Lillo, and G. Vinciguerra. Why are learned indexes so effective? ICML, 2020.
[3] A. Boffa, P. Ferragina, and G. Vinciguerra. A “learned” approach to quicken and compress rank/select dictionaries. SIAM ALENEX, 2021.

Rank/Select dictionaries

Store an integer set 𝑆 in compressed form, support
𝑟𝑎𝑛𝑘(𝑥) = “# elements≤ 𝑥 in 𝑆”
𝑠𝑒𝑙𝑒𝑐𝑡(𝑖) = “𝑖th smallest element in 𝑆”

Why do we care? Building block of compressed 
data structures for texts, genomes, graphs, ...

Experimental results

• As fast as static B-tree, 83× more compressed
• Up to 3× faster than a dynamic B-tree and 

1000× more compressed on 109 integers
• About 3 seconds to construct on 109 integers

Idea: data = segments + corrections

pgm.di.unipi.it

The LA-vector

Orchestrate piecewise linear 𝜀-approximations, 
corrections and indexing. Faster 𝑠𝑒𝑙𝑒𝑐𝑡 and 
competitive 𝑟𝑎𝑛𝑘 wrt well-engineered solutions

3 6 10 15 18 22 40 43 47 53
1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

3
6

10
15
18
22

40
43
47

53

𝑓1(𝑥) = 5𝑥 − 5

𝑓2(𝑥) = 6𝑥 − 5

position

va
lu
e 3 1 0 0 ‐2 ‐3 3 0 ‐2 ‐2

1 2 3 4 5 6 7 8 9 10
𝐶

⌈log(2𝜀 + 1)⌉ bit

3 6 8 16 19 24 29 35 38

1
2
3
4
5
6
7
8
9

10
11
12

𝑓(𝑥) = 0.3𝑥 + 1

𝑒𝑟𝑟𝑜𝑟

key

po
siti

on

𝑆 (not stored)

𝑒𝑟𝑟𝑜𝑟

If one line is too 
imprecise, use a 
piecewise linear 
model


