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Abstract
We address the well-known problem of designing, imple-
menting and experimenting compressed data structures for
supporting rank and select queries over a dictionary of in-
tegers. This problem has been studied far and wide since
the end of the ‘80s with tons of important theoretical and
practical results.

Following a recent line of research on the so-called
learned data structures, we first show that this problem
has a surprising connection with the geometry of a set
of points in the Cartesian plane suitably derived from
the input integers. We then build upon some classical
results in computational geometry to introduce the first
“learned” scheme for implementing a compressed rank/select
dictionary. We prove theoretical bounds on its time and
space performance both in the worst case and in the case of
input distributions with finite mean and variance.

We corroborate these theoretical results with a large set
of experiments over datasets originating from a variety of
sources and applications (Web, DNA sequencing, informa-
tion retrieval and natural language processing), and we show
that a carefully engineered version of our approach provides
new interesting space-time trade-offs with respect to sev-
eral well-established implementations of Elias-Fano, RRR-
vector, and random-access vectors of Elias γ/δ-coded gaps.

1 Introduction

We consider the classical problem of representing, in
compressed form, an ordered dictionary S of n elements
over the integer universe [u] = {0, . . . , u − 1} while
supporting the following operations:

• rank(x). Given x ∈ [u], return the number of
elements in S which are less than or equal to x;

• select(i). Given i ∈ {1, . . . , n}, return the ith
smallest element in S.

Despite their simple definitions, rank and select are
powerful enough to solve the ubiquitous predecessor
problem, which asks for the largest y ∈ S smaller than
a given element x ∈ [u]. Indeed, it suffices to execute
y = select(rank(x− 1)).
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Another way of looking at these operations is via
the indexing of a binary array BS of length u which is
the characteristic bitvector of S over the universe [u].
This way, rank(x) counts the number of bits set to 1 in
BS [0 . . x], and select(i) finds the position of the ith bit
set to 1 in BS . This interpretation allows generalising
the above operations to count and locate symbols in
non-binary arrays [23, 26, 39], which are frequently at
the core of text mining and indexing problems.

It is therefore unsurprising that rank and select have
been studied far and wide since the end of the ‘80s [29],
with tons of important theoretical and practical results,
which we review in Section 1.1. Currently, they are the
building blocks of many compact data structures [38]
used for designing compressed text indexes [15, 26, 39],
succinct trees and graphs [36, 49], monotone minimal
perfect hashing [5], sparse hash tables [51], and per-
mutations [4]. Consequently, they have countless ap-
plications in bioinformatics [13, 32], information re-
trieval [37], and databases [1], just to mention a few.

In this paper, we show that the problem above has
a surprising connection with the geometry of a set of
points in the Cartesian plane suitably derived from the
integers in S. We thus build upon some classical results
in computational geometry to introduce a novel data-
aware compressed storage and indexing scheme for S
that deploys linear approximations of the distribution of
these points to “learn” a compact encoding of the input
data via linear approximations. We prove theoretical
bounds on its time and space performance both in
the worst case and in the case of input distributions
with finite mean and variance. We corroborate these
theoretical results with a large set of experiments over
a variety of datasets and well-established approaches.

Overall, our theoretical and practical achievements
are particularly interesting not only for novel space-
time trade-offs, which add themselves to this highly-
productive algorithmic field active since 1989 [38]; but
also because, we argue, they introduce a new way of
designing compact rank/select data structures which
deploy computational geometry tools to “learn” the
distribution of the input data. As such, we foresee
that this novel data-aware design may offer research
opportunities and stimulate new results of which many
applications will hopefully benefit.
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1.1 Related work. We assume the standard
word RAM model of computation with word size
w = Θ(log u) and w = Ω(log n). Existing rank/select
dictionaries differ by the way they encode S and how
they use redundancy to support fast operations.

In the most basic case, S is represented via its
characteristic bitvector BS , namely a bitvector of length
u such that BS [i] = 1 if i ∈ S, and BS [i] = 0 otherwise,
for 0 ≤ i < u. Then, rank(x) is the number of 1s in
BS [0 . . x], and select(i) is the position of the ith 1 in
BS . One can also be interested in rank0 and select0,
which look instead for the 0s in the bitvector, but it
holds rank0(i) = i−rank(i), while select0 can be reduced
to select via other known reductions [48].

It is long known that u+ o(u) bits are sufficient to
have constant-time rank and select [8, 35]. Provided
that we keep BS in plain form (i.e. read-only) and
look for constant-time operations, the best that we can
aim for the redundancy term o(u) is Θ(u log log u/ log u)
bits [22]. Later, optimal trade-offs were also given in
terms of the density of 1s in BS [24] or for the cell-probe
model [47, 56]. Practical implementations of rank/select
on plain bitvectors have also been extensively studied
and experimented [20, 21, 25, 40, 41, 53].

If S is sparse, i.e. BS contains few 0s or few 1s,
then it may be convenient to switch to compressed
representations. The information-theoretic minimum
space to store S is B = dlog

(
u
n

)
e, which may be

much smaller than u.1 The best upper bound on the
redundancy was attained by [45], whose solution takes
B+u/( log u

t )t+O(u3/4 log u) bits and supports both rank
and select in O(t) time, that is, constant-time operations
in B+O(u/poly log u) bits. This essentially matches the
lower bounds provided in [47]. A widely known solution
for sparse S is the RRR encoding [49], which supports
constant-time rank and select in B+O(u log log u/ log u)
bits of space. We will experimentally compare our
proposal with its practical implementations by [9, 21].

To further reduce the space, one has to give up
the constant time for both operations. An example is
given by the Elias-Fano representation [10, 11], which
supports select in O(1) time and rank in O(log(u/n))
time while taking n log(u/n) + 2n + o(n) = B + O(n)
bits of space. Its implementations and refinements
proved to be very effective in a variety of real-world
contexts [41, 43, 44, 53, 54]. We will compare our
proposal with the best implementations to date [21, 43]
and theoretical results [38].

Another compressed representation for S is based
on gap encoding. In this case, instead of B or the

1B is related to the zero-order entropy of BS , H0(BS), defined
as uH0(BS) = n log u

n
+(u−n) log u

u−n
. In fact, B = uH0(BS)−

O(log u). We can further bound uH0(BS) ≤ n log u
n

+ 1.44n [38].

zero-order entropy, it is common to use more data-
aware measures [3, 19, 27, 33, 50]. Consider the gaps
gi between consecutive integers in S taken in sorted
order, i.e. gi = select(i) − select(i − 1), and suppose
we could store each gi in dlog(gi + 1)e bits. Then the
gap measure is defined as gap(S) =

∑
idlog(gi+1)e. An

example of data-aware structure whose space occupancy
is bounded in terms of gap is presented in [27], which
takes gap(S)(1 + o(1)) bits while supporting select
in O(log log n) time and rank in time matching the
predecessor search bounds [46]. Another example is
given in [33] taking gap(S) + O(n) + o(u) bits and
supporting constant-time operations. An important
ingredient of these gap-based data-aware structures are
self-delimiting codes such as Elias γ- and δ-codes [55].
To provide a complete comparison with our proposal,
we will experiment with some of these approaches
implemented in the sdsl library [21].

Recent work [3] explored further interesting data-
aware measures for bounding the space occupancy of
rank/select dictionaries that take into account runs
of consecutive integers in S. They introduced data
structures supporting constant-time rank and select in
a space close to the information-theoretic minimum.
The proposal is mainly theoretic, and indeed authors
evaluated only its space occupancy.

1.2 Our contribution. Following a recent line of
research on the so-called learned data structures (see
e.g. [17, 28, 30, 34]), we provide the first “learned”
scheme for implementing a rank/select dictionary that
builds upon some results of [18, 2] and extends them to
deal with rank and select operations over compressed
space. In particular, we introduce a novel lossless
compressed storage scheme for the input dictionary S
which turns this problem into the one of approximating
a set of points in the Cartesian plane via segments, so
that the storage of S can be defined by means of a
compressed encoding of these segments and the “errors”
they do in approximating the input integers (Section 2).
Proper algorithms and data structures are then added
to this compressed storage scheme to support fast rank
and select operations (Sections 3 and 4).

Our study shows that our data-aware approach is
asymptotically efficient in time and space, with worst-
case bounds that relate its performance with the number
` of segments approximating S and their (controlled)
errors ε. In particular, Theorems 2.1 and 2.2 state
some interesting space bounds which are proven to
be superior to the ones achievable by well-established
Elias-Fano approaches for proper (and widely satisfied)
conditions among n, ` and ε. We extend these studies
also to the case of input sequences drawn from a
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Table 1: Summary of main notations used in the paper.

Symbol Definition

S Input set of integer elements
n Number of integer elements in S

u Size of the integer universe

BS Characteristic bitvector of S of size u and n 1s
C Array of n corrections values, of c bits each

c Bits allotted to each correction
ε Maximum absolute correction value (= 2c−1 − 1)

` Number of segments (Definition 2.1)

sj The jth segment
rj Rank of the first element compressed by segment sj
αj Slope of segment sj
βj Intercept of segment sj
fj Linear function implemented by segment sj

distribution with finite mean and variance (Section 5);
in this case, it turns out that our scheme is competitive
with Elias-Fano approaches for ε = ω(

√
log n), which

is a condition easily satisfied in the practical setting
[18]. Our final theoretical contribution is the design
of a greedy algorithm that computes a provably-good
approximation of the optimal set of segments which
minimises the space occupancy of our compression
scheme (Theorem 6.1 in Section 6).

We corroborate these theoretical results with a large
set of experiments over datasets originating from a vari-
ety of sources and applications (the Web, DNA sequenc-
ing, information retrieval and natural language process-
ing), and we show in Section 7 that our data-aware
approach provides new interesting space-time trade-offs
with respect to several other well-established implemen-
tations of Elias-Fano [20, 43], RRR-vector [9, 20], and
random-access vectors of Elias γ/δ-coded gaps [21]. Our
select is the fastest, whereas our rank is on the Pareto
curve of the Elias-Fano approaches.

For the sake of presentation, we summarise in
Table 1 the main notation used throughout the paper.

2 Compressing via linear approximations

We map each element xi ∈ S to a point (i, xi) in the
Cartesian plane, for i = 1, 2, . . . , n. It is easy to see that
any function f that passes through all the points in this
plane can be thought of as an encoding of S because we
can recover xi by querying f(i). However, points might
not be aligned, so that we seek for an encoding f which
is fast to be computed and compressed in space.

In this paper, we aim at implementing f via a se-
quence of segments. Segments capture certain data pat-
terns naturally. Any run of consecutive and increasing
integers, for example, can be encoded by a segment with
slope 1. Generalising, any run of integers with a con-
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Figure 1: The encoding of S = {3, 6, 10, 15, 18, 22, 40,
43, 47, 53} for c = 3 is given by the two segments
s1, s2 and the array C. A segment sj = (rj , αj , βj)
approximates the value of an item with rank i via
fj(i) = (i− rj) ·αj +βj , and C corrects the approxima-
tion. For example, x5 = bf1(5)c + C[5] = 20 − 2 = 18
and x8 = bf2(8)c+ C[8] = 42 + 0 = 42.

stant gap g can be encoded by a segment with slope
g. Slight deviations from these data patterns can still
be captured if we allow a segment to make some errors
in approximating xi at position i, provided that we fix
these errors by storing some additional information.

This is the main idea behind our proposal. Namely,
we reduce the problem of compressing S to the one of
“learning” the mapping select : {1, . . . , n} → S, which
is in turn reduced to the problem of approximating
the set of points {(i, xi)}i=1,...,n via a Piecewise Linear
Approximation (PLA). This PLA is a succinct and
lossy representation of the input set S that, together
with some additional information and algorithms, can
be used to reconstruct S and return exact answers to
rank/select queries.

To capture the aforementioned non-linear patterns,
we search for a sequence of segments such that every
point (i, xi) is vertically far from one of these segments
by an integer value ε, to be fixed later. In some
sense, the sequence of segments introduces on the set
of integers in S an “information loss” of ε. Among
all such sequences of segments (i.e. PLAs), we further
aim for the most succinct one, namely the one with
the least amount of segments. This is a classical
computational geometry problem that admits an O(n)-
time algorithm [42]. This algorithm processes each
point (i, xi) left-to-right, hence i = 1, . . . , n, while
shrinking a convex polygon in the parameter space
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of slopes-intercepts. Any coordinate (α, β) inside the
polygon represents a line with slope α and intercept
β that approximates with error ε the current set of
processed points. When the kth point causes the
polygon to be empty, a segment (α, β) is chosen inside
the previous polygon and returned, and a new polygon
is started from (k, xk).

We represent the jth output of the algorithm above
as the segment sj = (rj , αj , βj), where αj is the slope,
βj is the intercept, and rj is the abscissa of the point
that started the segment. If ` is the number of segments,
we set r`+1 = n and observe that r1 = 1. Thus the rjs
partition the universe [u] in ` ranges so that, for any
integer i between rj and rj+1 (non-inclusive), we use
the segment sj to approximate the value xi as follows:

fj(i) = (i− rj) · αj + βj .

Now, we complement the inexact approximations com-
puted by fj with an array C[1 . . n] of integers whose
modulo is bounded above by ε. Precisely, each C[i] rep-
resents the small “correction value” xi − bfj(i)c, which
belongs to the set {−ε,−ε + 1, . . . ,−1, 0, 1, . . . , ε}. If
we allocate c ≥ 2 bits for each correction in C, then our
PLA is allowed to err by at most ε = 2c−1 − 1.

The vector C completes our encoding (depicted in
Figure 1). Recovering the original sequence S is as
simple as scanning the segments sj of the PLA and
writing the value bfj(i)c + C[i] = xi to the output, for
j = 1, . . . , ` and for i = rj , . . . , rj+1 − 1.

Recovering integer xi requires first the identification
of the segment sj , which includes position i, and then
the evaluation of bfj(i)c+C[i]. A binary search over the
starting positions rj of the segments in the PLA would
be enough and takes O(log `) time, but we will aim for
something more sophisticated in terms of algorithmic
design and engineering to squeeze the most from this
novel approach, as commented in the following sections.

For completeness, we observe that the PGM-
index [18] might appear similar to this idea because it
uses PLAs and supports predecessor queries. However,
the PGM-index does not compress the input keys but
only the index, and it is tailored to the external-memory
model, as B-trees.

On the compression effectiveness. Two counter-
poising factors influence the effectiveness of our new
compression method:

1. How the integers in S map on the Cartesian plane,
and thus how many segments they require for a
lossy ε-approximation. The larger is ε, the smaller
is “expected” to be the number ` of segments.

2. The value of the parameter c ≥ 2 which determines
the space occupancy of the array C, having size nc

bits. From above, we know that ε = 2c−1 − 1, so
the smaller is c, the smaller is the space occupancy
of C, but the larger is “expected” to be the size `
of the PLA built for S.

We say “expected” because ` depends on the distribu-
tion of the points (i, xi) over the Cartesian plane. In
the best scenario, the points lie on one line, so ` = 1
and we can set c = 0. The more these points follow a
linear trend, the smaller c can be chosen and, in turn,
the smaller is the number ` of segments approximating
these points with error ε. Although in the worst case it
holds ` ≤ min{u/(2ε), n/2}, because of a simple adap-
tation of Lemma 2 in [18], we will show in Section 5
that for sequences drawn from a distribution with finite
mean and variance there are more stringent bounds on
`. This leads us to argue that the combination of the
PLA and the array C is an interesting algorithmic tool
to design novel compressed rank/select dictionaries.

At this point, it is useful to formally define the
interplay among S, c and `. We argue in this paper
that the number ` of segments of the optimal PLA can
be thought of as a new compressibility measure for the
information present in S, possibly giving some insights
(such as the degree of linearity of the data) that the
classical entropy measures do not explicitly capture.2

Definition 2.1. Let S = {x1, x2, . . . , xn} be a set of
n integers drawn from the universe [u]. Given an
integer parameter c ∈ {2, . . . , log u}, we define ` as the
number of segments which constitute the optimal PLA
of maximum error ε = 2c−1 − 1 computed on the set of
points {(i, xi) | i = 1, . . . , n}.

Now, we are ready to compute the space taken by
our new encoding. As far as the representation of a
segment sj = (rj , αj , βj) is concerned, we note that:
(i) the value rj is an abscissa in the Cartesian plane, thus
it can be represented in log n bits;3 (ii) the slope αj can
be encoded into a memory word of w bits as a floating-
point value; (iii) the intercept βj is an ordinate in the
plane, thus it can be represented in log u bits. Therefore,
the overall cost of the PLA is ` (log n+ log u+ w) bits.
Summing the nc bits taken by C gives our first result.

Theorem 2.1. Let S = {x1, . . . , xn} be a set of n
integers drawn from the universe [u]. Given an integer
parameter c ∈ {2, . . . , log u}, there exists a compressed
representation of S that takes nc+ ` (log n+ log u+w)
bits of space, where ` is the number of segments in the
optimal PLA for S of maximum error ε = 2c−1 − 1.

2We assume c ≤ log u to avoid the case in which nc exceeds

the O(n log u) bits needed by an explicit representation of S.
3For ease of exposition, we assume that logarithms hide their

ceiling and thus return integers.
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We can further improve the space taken by the seg-
ments as follows. The rjs form an increasing sequence
of ` integers bounded by n. The βjs form an increasing
sequence of ` integers bounded by u.4 Using the Elias-
Fano representation [10, 11], we reduce the space of the
two sequences to ` log(n/`) + ` log(u/`) + 4` + o(`) =
` (log(un/`2) + 4 + o(1)) bits. Then, accessing rj or βj
amounts to call the constant-time select(j) on the cor-
responding Elias-Fano compressed sequence.

Theorem 2.2. Let S be a set of n integers over the uni-
verse [u]. Given an integer parameter c ∈ {2, . . . , log u},
there exists a compressed representation of S that takes
nc + ` (log un

`2 + w + 4 + o(1)) bits of space, where ` is
the number of segments in the optimal PLA for S of
maximum error ε = 2c−1 − 1.

Note that one can avoid the floating-point representa-
tion and remove the dependence from w by implement-
ing the algorithm of [42] with integer arithmetic and by
encoding each slope as a rational number with a numer-
ator of log u bits and a denominator of log n bits.

3 Supporting select

To answer select(i) on the representation of Theorem 2.1
(or Theorem 2.2), we build a predecessor structure D on
the set R = {rj | 1 ≤ j ≤ `}, and proceed in three steps.
First, we use D to retrieve the segment sj in which i falls
into via j = pred(i). Second, we compute fj(i), i.e. the
approximate value of xi given by the segment sj . Third,
we read C[i] and return the value bfj(i)c + C[i] as the
answer to select(i). The last two steps take O(1) time.
Treating D as a black box yields the following result.

Lemma 3.1. The compressed representation of Theo-
rem 2.1 supports select queries in t + O(1) time and
b bits of additional space, where t is the query time and
b is the occupied space of a predecessor structure D con-
structed on a set of ` integers over the universe [n].

If D is represented as the characteristic bitvector of
R ⊆ [n] augmented with a data structure supporting
constant-time predecessor queries (or rank queries, as
termed in the case of bitvectors [38]), then we achieve
constant-time select by using only n + o(n) additional
bits, i.e. about one bit per integer of S more than what
Theorem 2.1 requires. Note that this bitvector encodes
R, so that the ` log n bits required in Theorem 2.1 for
the representation of the rjs can be dropped.

4This is because βj is the ordinate where sj starts, i.e. βj =
fj(rj) (see Figure 1 and the definition of fj). In the text, we

referred to βj as the “intercept”, but this is improper because βj
is not the ordinate of the intersection between fj and the y-axis.

Corollary 3.1. Let S be a set of n integers over
the universe [u]. Given an integer parameter c ∈
{2, . . . , log u}, there exists a compressed representation
for S that takes n(c + 1 + o(1)) + ` (log u + w) bits of
space while supporting select in O(1) time. Here, ` is
the number of segments in the optimal PLA for S of
maximum error ε = 2c−1 − 1.

Let us compare the space occupancy of Corol-
lary 3.1 to the one of Elias-Fano, namely n(log(u/n) +
2) + o(n) bits, as both solutions support constant-time
select. The inequality turns out to be

` ≤ n (log(1/d) + o(1))

log(n/d) + w
= O

(
n

log n

)
,

where d = n/u denotes the density of 1s in BS .

4 Supporting rank

We can implement rank(x) via a binary search on [n] to
find the largest i such that select(i) ≤ x. This näıve
implementation takes O(t log n) time, because of the
implementation of select in O(t) time by Theorem 2.1.

We can easily improve this solution to O(log ` +
log n) time as follows. First, we binary search on the
set of ` segments to find the segment sj that contain x
or its predecessor. Formally, we binary search on the
interval [1, `] to find the largest j such that select(rj) =
bfj(rj)c + C[rj ] ≤ x. Second, we binary search on the
rj+1 − rj ≤ n integers compressed by sj to find the
largest i such that bfj(i)c+C[i] ≤ x. Finally, we return
i as the answer to rank(x).

Surprisingly, we can further speed up rank queries
without adding any redundancy on top of the encoding
of Theorem 2.1. The key idea is to narrow the second
binary search to a subset of the elements covered by sj
(i.e. a subset of the ones in positions [rj , rj+1 − 1]),
which is determined by exploiting the fact that sj
approximates all these elements by up to an additive
term ε. Technically, we know that |fj(i)− xi| ≤ ε, and
we aim to find i such that xi ≤ x < xi+1. Hence we
can narrow the range to those i ∈ [rj , rj+1 − 1] such
that fj(i) − ε ≤ x < fj(i + 1) + ε. By expanding
fj(i) = (i − rj) · αj + βj , noting that f is linear and
increasing, we get all candidate i as the ones satisfying

(i− rj) · αj + βj − ε ≤ x < (i+ 1− rj) · αj + βj + ε.

By solving for i, we get

x− βj
αj

+ rj −
(
ε

αj
+ 1

)
< i ≤ x− βj

αj
+ rj +

ε

αj
.

Since i is an integer, we can round the left and the
right side of the last inequality, and then we set
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Algorithm 1 Rank implementation by Lemma 4.1

Input: x, PLA {s1, s2, . . . , s`}, corrections C[1 . . n]
Output: Returns rank(x)

1: Find max j ∈ [1, `] such that bfj(rj)c + C[rj ] ≤ x
by binary search

2: pos ← b(x− βj)/αjc+ rj
3: err ← dε/αje, where ε = max{0, 2c−1 − 1}
4: lo ← max{pos − err , rj}
5: hi ← min{pos + err , rj+1}
6: Find max i ∈ [lo, hi ] such that bfj(i)c+C[i] ≤ x by

binary search
7: return i

pos = b(x− βj)/αjc+ rj and err = dε/αje, so that the
searched position i falls in [pos − err , pos + err ].

The pseudocode of Algorithm 1 exploits these ideas
to perform a binary search on the first integers com-
pressed by the segments (Line 1), to compute the ap-
proximate rank and the corresponding approximation
error (Lines 2–3), and finally to binary search on the
restricted range specified above (Lines 4–6). As a final
note, we observe that αj ≥ 1 for every j, because xi ∈ S
are increasing, and thus the segments have slope at least
1. Consequently, ε/αj ≤ ε and the range on which we
perform the second binary search has size 2ε < 2c, thus
that binary search takes O(log(ε/αj)) = O(c) time.

Lemma 4.1. The compressed representation of Theo-
rem 2.1 supports rank queries in O(log ` + c) time and
no additional space.

Note that Lemma 4.1 enables the rank operation
with the same time bound also on: (i) the compressed
representation described in Theorem 2.2 (the one that
compresses βjs and rjs), (ii) the representation provided
in Lemma 3.1 (the one supporting select in parametric
time t), and (iii) the representation provided in Corol-
lary 3.1 (the one supporting select in constant time).
Again, the space occupancy of the solution above is the
same commented in the previous section, and thus it
results better than Elias-Fano if ` = O(n/ log n).

We can improve the bound of Lemma 4.1 by replac-
ing the binary search of Line 1 of Algorithm 1 with the
following predecessor data structure.

Lemma 4.2. ([46]) Given a set Q of q integers over
a universe of size u, let us define a = log s log u

q , where
s log u is the space usage in bits chosen at building time.
Then, the optimal predecessor search time is

PT(u, q, a) = Θ(min{ log q/ log log u,

log log(u/q)
a ,

log log u
a

/
log( a

log q · log log u
a ),

log log u
a

/
log(log log u

a

/
log log q

a )}).

Let T = {select(rj) | 1 ≤ j ≤ `} be the subset of
S containing the first integer covered by each segment.
We sample one element of T out of Θ(2c) and insert
the samples into the predecessor data structure of
Lemma 4.2 so that s = q = `/2c and thus a =
log log u. Then, we replace Line 1 of Algorithm 1 with a
predecessor search followed by aO(c)-time binary search
in-between two samples.

Corollary 4.1. The compressed representa-
tion of Theorem 2.1 supports rank queries in
PT(u, `/2c, log log u) + O(c) time and O((`/2c) log u)
bits of additional space.

We can restrict our attention to the first two
branches of the PT term, as the latter two are relevant
for universe sizes that are super-polynomial in q, i.e.
log u = ω(log q). The time complexity of rank in Corol-
lary 4.1 then becomesO(min{logw(`/2c), log log(u/`)}+
c), where w = Ω(log u) is the word size of the machine
and c is a constant which, we recall, denotes the bits
reserved to encode the errors in C.

5 Special sequences

For sequences drawn from a distribution with finite
mean and variance, there exist bounds on the number
of segments ` as stated in the following theorem.

Theorem 5.1. ([14]) Let S be a set of n integers
over the universe [u], and let c ≥ 2 be an integer.
Suppose that the gaps between consecutive integers in
S are a realisation of a random process consisting of
positive, independent and identically distributed random
variables with mean µ and variance σ2. If ε = 2c−1 − 1
is sufficiently larger than σ/µ, then ` = nσ2/(µε)2 with
high probability.

Plugging this result into the constant-time select of
Corollary 3.1 and rank implementation of Corollary 4.1,
we obtain the following result.

Theorem 5.2. Under the assumptions of Theo-
rem 5.1, there exists a compressed representation
of S that supports select in O(1) time and rank

in PT(u, nσ2

µ223c−2 , log log u) + O(c) time within

n[c + 1 + o(1) + ((1 + 1/2c) log u + w) σ2

µ222c−2 ] bits

of space with high probability, where c ∈ {2, . . . , log u}
is a given integer parameter.

We stress that the data structure of Theorem 5.2 is
deterministic. The randomness is over the gaps between
consecutive integers of the input data, and the result
holds for any probability distribution as long as its mean
and variance are finite. Moreover, according to the
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experiments in [14], the hypotheses of Theorem 5.1 are
very realistic in several application scenarios.

Said this, we observe that the hypothesis “ε =
2c−1 − 1 is sufficiently larger than σ/µ” implies that
the ratio σ/(µ2c−1) is much smaller than 1. Hence,
it is reasonable to assume that the space bound in
Theorem 5.2 is dominated by n(c+1) bits which results
“almost” independent of the universe size while still
ensuring constant time select and fast rank operations.

As a final remark, and following the practice of
the previous sections, we compare our encoding against
Elias-Fano encoding. The space comparison between
the factor c + 1 and the Elias-Fano factor log(u/n) is
in favour of our encoding as much as the dataset is
sparse with respect to the universe size. On the other
hand, the time complexity of select is constant time in
both cases, whereas the one of rank is better in our
case whenever log(nσ/µ) is asymptotically smaller than
log(u/n), which is indeed u = ω(n2σ/µ).

We also mention that some results of the previous
sections, such as Corollary 3.1 and Lemma 4.1, showed
that our proposal is better than Elias-Fano whenever
` = O(n/ log n). Since Theorem 5.2 showed that ` =
Θ(n/ε2), we can conclude that our solutions is better
than Elias-Fano iff ε = ω(

√
log n), and this holds with

high probability under the hypotheses of Theorem 5.2.

6 On optimal partitioning to improve the space

So far, we assumed a fixed number of bits c for correcting
each of the n elements in S, which is equivalent to say
that the ` segments in the PLA guarantee the same
error ε = 2c−1 − 1 over all the integers in S. However,
the input set may exhibit a variety of regularities that
allow to compress it further if we use a different c
for different partitions of S. The idea of partitioning
data to improve its compression has been studied in the
past [6, 16, 43, 52, 55], and it will be specialised in this
section to our scenario.

We reduce the problem of minimising the space of
our rank/select dictionary to a single-source shortest
path problem over a properly defined weighted Directed
Acyclic Graph (DAG) G defined as follows. The graph
has n vertices, one for each element in S, plus one
sink vertex denoting the end of the sequence. An edge
(i, j) of weight w(i, j, c) indicates that there exists a
segment compressing the integers xi, xi+1, . . . , xj−1 of
S by using w(i, j, c) = (j − i) c+ b bits of space, where
c is the bit-size of the corrections, and b is the space
taken by the segment in bits (e.g. using the plain
encoding of Theorem 2.1 or the compressed encoding
of Theorem 2.2). We consider all the possible values
of c except c = 1, because one bit is not enough
to distinguish corrections in {−1, 0, 1}. Namely, we

consider c1 = 0, c2 = 2, c3 = 3, . . . , cm = m, where
m = O(log u) is defined as the minimum correction
value that produces one single segment on S. Since
each vertex is the source of at most O(log u) edges, one
for each possible value of c, the total number of edges in
G is O(n log u). It is not difficult to prove the following:

Fact 6.1. The shortest path from vertex 1 to vertex
n+ 1 in the weighted DAG G defined above corresponds
to the PLA for S whose cost is the minimum among the
PLAs that use a different error ε on different segments.

Such PLA provides a solution to the rank/select dic-
tionary problem which minimises the space occupancy
of the approaches stated in Theorems 2.1 and 2.2.

Since G is a DAG, the shortest path can be com-
puted in O(n log u) time by taking the vertices in the
topological order and by relaxing their outgoing edges.
However, one cannot approach the construction of G in a
brute-force manner because this could take O(n2 log u)
time and O(n log u) space, as each of the O(n log u)
edges requires computing a segment in O(j− i) = O(n)
time with the algorithm of [42].

To avoid this prohibitive cost, we now propose a
greedy algorithm that computes the shortest path on-
the-fly by working on a properly defined sub-graph of G,
taking O(n log u) time and O(n) space. This reduction
in both time and space complexity is crucial to make
the approach feasible in practice because the graph has
one vertex per integer to be compressed.

Consider an edge (i, j) of cost w(i, j, c) in the full
graph G. We recall that edge (i, j) corresponds to a
segment compressing the integers xi, xi+1, . . . , xj−1 of
S by using w(i, j, c) bits of space. Hence, any “suffix-
edge” (i + k, j) of (i, j), with k = 1, . . . , j − i − 1,
corresponds to a shorter segment that compresses the
(suffix-)sequence of integers xi+k, xi+k+1, . . . , xj−1, still
using a correction size of c bits per integer. We call
subsumed edge of (i, j) any suffix-edge (i + k, j) and
define its cost as w(i + k, j, c) = (j − i − k) c + b, for
1 ≤ k < j − i. Note that (i+ k, j) may not be an edge
of the full graph G because a segment computed from
position i + k with correction size c could end past j,
thus including more integers on its right.

Given these definitions, we now describe our greedy
algorithm that processes the vertices of G from left to
right while maintaining the following invariant: each
visited vertex i is covered by one segment (i, j) for each
value of c, and all these segments form the frontier set
J . The segment starting at i is either a “full” segment
with the appropriate value of c (computed by using
the algorithm of [42]), or it is a subsumed edge with
correction size c (derived from a longer edge that crossed
i and had that correction size). The former edges are
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the “best” among the ones starting from i and with
correction size c, but they are costly to be computed;
the latter edges are “sub-optimal” but can be derived
in constant time. The goal next is to show how to work
with full and subsumed edges in a way that the resulting
shortest-path algorithm is fast and still computes a path
which is (provably) not much longer than the shortest
path of the whole graph G.

To show this, we begin from vertex i = 1 and
compute the m segments that start from i and have
correction sizes c1, c2, . . . , cm. We set J as the set
of ending positions of those segments: i.e. J =
{j1, j2, . . . , jm}. As in the classic step of the shortest
path algorithm for DAGs, we relax all the edges (i, j)
for j ∈ J . This completes the first iteration.

The next iteration picks the smallest vertex in J ,
say i′. By the invariant on J , we know that it exists the
edge (i, i′), whose correction size is e.g. c′. This edge is
added to the shortest path under computation, and we
set J ′ = J \{i′}. We then repeat the computation above
to insert in J ′ an edge with bit-correction c′. Hence, we
determine the longest segment from i′ having correction-
size c′ by using the algorithm of [42]. By construction,
this new segment (i′, j′) is an edge of the full graph G;
we add j′ to J ′, and then we relax all edges (i′, j) with
j ∈ J ′. We notice that among those edges we have
the just-inserted edge (i′, j′), plus all subsumed edges
(i′, j) which crossed i′ and ended in j. This completes
the second iteration, and the algorithm continues in this
way for all vertices 2, . . . , n + 1. It stops when all the
edges ending in the sink vertex n+ 1 are relaxed.

Figure 2 depicts a generic step. We have m = 5
possible correction costs because, in this example, we
assume that c5 is the minimum correction value that
produces one single segment. The currently examined
vertex is i, and the frontier of vertices to examine is
J = {j1, j2, j3, j4, j5}. The next vertex to process is
j3 = min J , so i′ = j3. We add (i, j3) to the shortest
path with its cost c3, and we relax the subsumed edges
starting from j3 and ending into {j1, j2, j4, j5} (showed
as dashed grey arrows). We also relax the new edge
(j3, j

′) which is computed via the algorithm of [42].
As far as the space is concerned, the algorithm

uses O(n + |J |) = O(n + log u) = O(n) space at each
iteration, since |J | = O(m) = O(log u). The running
time is O(|J |) = O(log u) per iteration, plus the cost of
computing the “full” segment for each extracted vertex
from J . This latter cost is O(n) for any given value of
c and over all n elements (namely, it is O(1) amortised
cost per processed element [42]), thus O(n log u) over
all values of c. In the full paper, we show that this
greedy algorithm finds a path containing at most twice
the number of edges of the shortest path of the full

i

i i′

i′ = min{j1, j2, j3, j4, j5} = j3

c5 n+ 1

c4 n+ 1

c3 n+ 1

c2 n+ 1

c1 n+ 1
j1

j2

j3

j4

j5

j′

Figure 2: The algorithm of Theorem 6.1 keeps one
segment (in orange) crossing the visited vertex i for
each value of c, and it relaxes the edges with source
i and target set to the end of each segment. The next
vertex i′ to visit is the minimum of the target vertices
from i, and its outgoing edges are shown in dashed grey.

graph G, and that the sum of the weights of this path
is at most (log u + log n + w) ` bits more than the cost
of the shortest path.

Theorem 6.1. There exists a greedy algorithm that in
O(n log u) time and O(n) space outputs a path of the
weighted DAG G whose cost is at most (log u + log n +
w) ` larger than its shortest path.

Given Fact 6.1, the PLA that corresponds to the
path computed by the algorithm above can be used
to design a rank/select dictionary which minimises the
space occupancy of the solutions based on the ap-
proaches of Theorems 2.1 and 2.2. Section 7 will exper-
iment with this approach in terms of space occupancy
and time efficiency of rank and select operations.

7 Experiments

7.1 Implementation notes. We store the segments
triples (rj , αj , βj) as an array of structures with
memory-aligned fields. This allows for better locality
and aligned memory accesses. We avoid complex struc-
tures on top of the rjs and the select(rj)s (as suggested
by Corollaries 3.1 and 4.1 to asymptotically speed up
select and rank, respectively), since in practice the seg-
ments are few (see Figure 3) and fit the last-level cache.

Nevertheless, to speed up rank and select, we intro-
duce two small tables of size 216 each that allow access-
ing in one hop either the segment including a given posi-
tion or a narrower range of segments to binary search on
(details in the full paper). Another algorithm engineer-
ing trick was introduced to speed up the binary search
over the array C by splitting it in two arrays: one con-
tains the corrections at multiple d positions, the other
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contains the rest of C’s corrections. Experimentally, we
found that the best performance is achieved when d is
set so that the latter binary search touches roughly four
cache lines of correction values (i.e. d = d4 · 512/ce).

The implementation of our rank/select dictionary,
which we name linear approximation vector (shortly,
la vector), was done in C++.5 We use the notation
la vector<c>, where c is the correction size; and use
la vector opt to denote our space-optimised dictio-
nary described in Section 6.

All our experiments were run on a machine with
40 GB of RAM and an Intel Xeon E5-2407v2 CPU with
a clock rate of 2.40 GHz.

7.2 Baselines. For the experimental comparison, we
used the following rank/select dictionaries from the
Succinct Data Structures Library (sdsl) [20]:

sd vector the Elias-Fano representation for increasing
integer sequences with constant-time select [41].

rrr vector<t> a practical implementation of the
H0-compressed bitvector of Raman, Raman and Rao
with blocks of t bits [9, 49].

enc vector<γ/δ, s> encodes the gaps between consec-
utive integers via either Elias γ- or δ-codes. Ran-
dom access is implemented in sdsl by storing, with
sampling rate s, an uncompressed integer and a bit-
pointer to the beginning of the code of the following
gap. We implemented rank via a binary search on
the samples, followed by the sequential decoding and
prefix sum of the gaps in-between two samples.

To widen our experimental comparison, we also used
the following rank/select dictionaries from the Data
Structures for Inverted Indexes (ds2i) library [43]:

uniform partitioned divides the input into fixed-
sized chunks and encodes each chunk with Elias-Fano.

opt partitioned divides the input into variable-sized
chunks and encodes each chunk with Elias-Fano. The
endpoints are computed by a dynamic programming
algorithm that minimises the overall space.6

In both structures above, endpoints and boundary
values of the chunks are stored in a separate Elias-Fano.

7.3 Datasets. We tested the software above on lists
of integers originating from different applications and

5The code of la vector and the benchmark to reproduce the

experiments are available at https://github.com/gvinciguerra/

la vector and https://github.com/aboffa/Learned-Rank-Select-
ALENEX21, respectively.

6For a fair comparison with our optimised variant, we disallow
hybrids encodings, e.g. chunks compressed with Elias-Fano and
others compressed with plain bitvectors.

datasets. We selected these lists so that their density
n/u varied significantly, viz. up to three orders of
magnitude. We built all the mentioned rank/select
dictionaries and our la vector from these integer lists,
and then we measured the bits per integer and the
time they took to perform 105 rank and select queries.
The universe size u never exceeds 232 − 1, because the
implementations in ds2i only support 32-bit integers.

Gov2 is an inverted index built on a collection of
about 25M .gov sites [43]. We encoded each list
in the index separately and averaged the space-time
performance over lists of lengths 100K–1M, 1M–10M
and >10M. This grouping of lists by length induced
average densities of 1.29%, 12.26% and 53.03%.

URL is a text file of 1.03 GB containing URLs origi-
nating from three sources, namely a human-curated
web directory, global news, and journal articles’
DOIs.7 On this file, we first applied the Burrows-
Wheeler Transform (BWT), as implemented by [12],
and then we generated three integer lists by enumer-
ating the positions of the ith most frequent character.
The different list sizes (and densities) were achieved
by properly setting i, and they were 3.73M (0.36%),
13.56M (1.30%) and 57.98M (5.58%).

5gram is a text file of 1.4 GB containing 60M different
five-word sequences occurring in books indexed by
Google.8 As for URL, we first applied the BWT
and then we generated three integer lists of sizes
(densities): 11.21M (0.76%), 29.20M (1.98%) and
145.40M (9.85%).

DNA is the first GB of the human reference genome.9

We generated an integer list by enumerating the
positions of the A nucleobase. Different densities were
achieved by randomly deleting an A-occurrence with
a fixed probability. The list sizes (and densities) are
12M (1.20%), 60M (6.00%) and 300M (30.02%).

Figure 3 shows that the number of segments ` compos-
ing the optimal PLA of the various input datasets is
orders of magnitude smaller than the input size. These
figures make our approach very promising, as argued at
the beginning of this paper. In particular, the following
experiments will assume c ≥ 6, because smaller values of
c make the space occupied by the segments significantly
larger than the space taken by the correction array C.

7Available at https://kaggle.com/shawon10/url-classification-

dataset-dmoz, https://doi.org/10.7910/DVN/ILAT5B, and
https://archive.org/details/doi-urls, respectively.

8Available at https://storage.googleapis.com/books/ngrams/

books/datasetsv3.html.
9Available at https://www.ncbi.nlm.nih.gov/assembly/GCF

000001405.39.
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Figure 3: The ratio between the number of segments `
and the size n of the largest datasets from our experi-
ments at different correction sizes c.

7.4 Experiments on select. From Figure 4 we no-
tice that our la vector<c> variants consistently provide
the best time performance. This comes at the cost of re-
quiring c bits per integer, plus the cost of storing the seg-
ments. For very low densities (plots in the first column)
and low values of c, the overhead due to the segments
may exceed c (see e.g. 5gram and DNA, where the
Pareto frontier of la vector is U-shaped). This unlucky
situation is solved by la vector opt, which avoids the
tuning of c by computing the PLA that minimises the
overall space, possibly adopting different c for differ-
ent segments. Note that la vector opt is always faster
than the plain Elias-Fano encoding (i.e. sdsl::sd -

vector), except for large densities in DNA (i.e. 30%),
and it is also more compressed on the Gov2, 5gram
and URL datasets.

The other Elias-Fano encodings are generally
fast as well, with ds2i::uniform partitioned and
ds2i::opt partitioned being more compressed but
roughly 50 ns slower than sdsl::sd vector due to
the use of a two-level structure. In any case, our
la vector opt and la vector<c> variants are not dom-
inated by those advanced Elias-Fano variants over all
datasets, except for large densities in DNA.

For what concerns sdsl::enc vector and
sdsl::rrr vector, they are pretty slow although
offering very good compression ratios. The slow
performance of select in the latter is due to its imple-
mentation via a combination of a binary search on a
sampled vector of ranks plus a linear search in-between
two samples (see [38, §4.3]).

7.5 Experiments on rank. Figure 5 shows that
sdsl::rrr vector and sdsl::sd vector achieve the
best time performance with la vector following closely,
i.e. within 120 ns or less. However, at low densities (first
column of Figure 5), sdsl::rrr vector has a very poor
space performance, more than 10 bits per integer.

Not surprisingly, sdsl::enc vector< ·, s> provides
the slowest rank, because it performs a binary search on
a vector of n/s samples, followed by the linear decoding
and prefix sum of at most s gaps coded with γ or δ.

Note that for Gov2, URL and 5gram our
la vector opt falls on the Pareto curve of Elias-
Fano approaches thus offering an interesting space-time
trade-off also for rank.

7.6 Discussion. Overall, sdsl::rrr vector pro-
vides the fastest rank but the slowest select. Its space is
competitive with other implementations only for mod-
erate and large densities of 1s.

The Elias-Fano approaches provide fast rank and
moderately fast select in competitive space. In particu-
lar, the plain Elias-Fano (sdsl::sd vector) offers fast
operations but in a space competitive with other struc-
tures only on DNA; while the partitioned variants of
Elias-Fano implemented in ds2i offer the best compres-
sion but at the cost of slower rank and select.

sdsl::enc vector< ·, s> provides a smooth space-
time trade-off controlled by the s parameter, but it has
non-competitive rank and select operations.

Our la vector<c> offers the fastest select, compet-
itive rank, and a smooth space-time trade-off controlled
by the c parameter, where values of c ≥ 6 were found
to “balance” the cost of storing the corrections and
the cost of storing the segments. Our space-optimised
la vector opt in most cases (i) dominates the space-
time performance of la vector<c>; (ii) offers a select
which is faster than all the other tested approaches;
(iii) offers a rank which is on the Pareto curve of Elias-
Fano approaches.

8 Conclusions and future work

For space reasons, we refer the reader to the introduc-
tion for a summary of our contributions.

As future work, we plan to investigate the use of
vectorised decoding [31] to achieve effective compres-
sion and fast scanning of the corrections in C. More-
over, we will study the use of mixed compressors in
la vector opt, as in Partitioned Elias-Fano [43]. Fi-
nally, we argue that the greedy algorithm of Section 6
can be improved to be the optimal one by using [7] to
dynamically remove points from the beginning of a seg-
ment in O(1) amortised time.
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Figure 4: Space-time performance of the select query.
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Figure 5: Space-time performance of the rank query.
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