Security of Cloud Computing

Fabrizio Baiardi
f.baiardi@unipi.it

F.Baiardi — Security of Cloud Computing — Supporting Tech

Syllabus

* Cloud Computing Introduction
* Security
* Supporting Technologies

* Scalable Computing = Elasticity
* Security

* New Threat Model

* New Attacks

* Countermeasures

F.Baiardi — Security of Cloud Computing — Supporting Tech

Virtualization

* What is virtualization?
* Traditional virtualization techniques.
* Overview of Software VMM.
 Overview of Hardware VMM.
* Evaluation of VMMs.

F.Baiardi — Security of Cloud Computing — Supporting Tech

Overview

Fundamental idea — abstract hardware of a single computer into
several different execution environments
~ Similar to layered approach
. But layer creates virtual system (virtual machine, or VM) on
which operation systems or applications can run
Several components
. Host — underlying hardware system
A~ Virtual machine manager (VMM) or hypervisor — creates and
runs virtual machines by providing interface that is identical to
the host
» (Except in the case of paravirtualization)
L Guest — process provided with virtual copy of the host
» Usually an operating system
Single physical machine can run multiple operating systems

concurrently, each in its own virtual machine

4
F.Baiardi — Security of Cloud Computing — Supporting Tech

processes

kernel

hardware

e

(a) Nonvirtual machine

System Models

programming/
interface

F.Baiardi — Security of Cloud Computing — Supporting Tech

processes
processes
processes
kernel kernel kernel
VM1 VM2 VM3
virtual machine
manager
hardware

(b) Virtual machine

Implementation of VMMs

Vary greatly, with options including:

~ Type 0 hypervisors - Hardware-based solutions that provide support
for virtual machine creation and management via firmware

» IBM LPARs and Oracle LDOMs are examples

>

Type 1 hypervisors - Operating-system-like software built to provide
virtualization

» Including VMware ESX, Joyent SmartOS, and Citrix XenServer

L Type 1 hypervisors — Also includes general-purpose operating
systems that provide standard functions as well as vMM functions

» Including Microsoft Windows Server with HyperV and RedHat Linux with KVM

L Type 2 hypervisors - Applications that run on standard operating
systems but provide vMM features to guest operating systems

» VMware Workstation and Fusion, Parallels Desktop, and Oracle VirtualBox

6
F.Baiardi — Security of Cloud Computing — Supporting Tech

Classification

System Virtualization

‘Hhhhhﬁﬁﬁﬁﬁ““ﬁﬁ

High-Level Language

- Java
» Microsoft NET / Mono
« Smalltalk

/

Hardware Level

N

Bare-Metal/ Hosted
Hypervisor » Microsoft Virtual Server
+ HP Integrity VM » Microsoft Virtual PC
. IBM zSeries z/\VM . Emﬂeia ,E[ESHUF’
- VMware ESX Se » VMware Player
, Ker:u =e V. VMware Workstation OS Level Emulators
» VMware Server FreeBSD Jai . Bochs
: Hﬁ%ecureaﬁesﬂume » Microsoft VPC for Mac
Para-virtualization Partitions -QEMU
Virtual | + Sun Solaris Zones » Virtutech Simics
) v'rm";a Hm-.ﬂl » SWsoft Virtuozzo
. Xen are . User-Mode Linux

F.Baiardi — Security of Cloud Computing — Supporting Tech

Implementation of VMMSs (cont.)

Other variations include:

~ Paravirtualization - Technique in which the guest operating system is
modified to work in cooperation with the vMM to optimize performance

. Programming-environment virtualization - vMMs do not virtualize
real hardware but instead create an optimized virtual system

~ Emulators — Allow applications written for one hardware environment
to run on a different hardware environment, such as a different cpPu

. Application containment - Not virtualization at all but rather provides
virtualization-like features by segregating applications from the
operating system, making them more secure, manageable

» Including Oracle Solaris Zones, BSD Jails, and IBM AIX WPARs

Much variation due to breadth, depth and importance of virtualization in
modern computing

F.Baiardi — Security of Cloud Computing — Supporting Tech

Implementation of VMMSs (cont.)

The Linux Containers (LXC) feature |

* a lightweight virtualization mechanism that does not require you to set up a
virtual machine on an emulation of physical hardware.

* takes the cgroups resource management facilities as its basis and adds
POSIX file capabilities to implement process and network isolation.

* You can run

* asingle application within a container (an application container) whose
name space is isolated from the other processes on the system in a
similar manner to a chroot jail.

. a complete copy of the Linux operating system in a container (a system
container) without the overhead of running a level-2 hypervisor such as
VirtualBox.

* the container is sharing the kernel with the host system, so its processes
and file system are completely visible from the host. When you are logged

—010 the container _you only see its file system and process space

9
F.Baiardi — Security of Cloud Computing — Supporting Tech

Types of Virtual Machines and Implementations

Many variations as well as HW details
~ - Assume VMMs take advantage of HW features
» HW features can simplify implementation, improve performance
Whatever the type, a VM has a lifecycle
. Created by VMM

~ Resources assigned to it (number of cores, amount of memory,
networking details, storage details)

~ In type O hypervisor, resources usually dedicated
~ Other types dedicate or share resources, or a mix

~ When no longer needed, VM can be deleted, freeing resouces
simpler, faster than with a physical machine install

~ Can lead to virtual machine sprawl with lots of VMs, history and

—state difficult to track and manage _____

10
F.Baiardi — Security of Cloud Computing — Supporting Tech

Types of VMs — Type 0 Hypervisor

Old idea, under many names by HW manufacturers

L “partitions”, “domains”

~ - A HW feature implemented by firmware

. OS need to nothing special, VMM is in firmware
~ Smaller feature set than other types

~ Each guest has dedicated HW

I/O a challenge as difficult to have enough devices, controllers to dedicate
to each guest

Sometimes VMM implements a control partition running daemons that
other guests communicate with for shared 1/O

Can provide virtualization-within-virtualization (guest itself can be a VMM
with guests

O I ffieLlty doing b

11
F.Baiardi — Security of Cloud Computing — Supporting Tech

Type 0 Hypervisor

Guest | Guest | Guest Guest | Guest
Guest 1 Guest 2 Guest 3 Guest 4
CPUs CPUs CPUs CPUs
memory memory memory memory

Hypervisor (in firmware)

F.Baiardi — Security of Cloud Computing — Supporting Tech

/O

12

Types of VMs — Type 1 Hypervisor

Commonly found in company datacenters
. In a sense becoming “datacenter operating systems”

» Datacenter managers control and manage OSes in new, sophisticated ways
by controlling the Type 1 hypervisor

» Consolidation of multiple OSes and apps onto less HW
» Move guests between systems to balance performance
» Snapshots and cloning
Special purpose operating systems that run natively on HW
~ Rather than providing system call interface, create run and manage guest OSes
A Can run on Type 0 hypervisors but not on other Type 1s
% Run in kernel mode
~ Guests generally don’t know they are running in a VM
~ Implement device drivers for host HW because no other component can
» Also provide other traditional OS services like CPU and memory management

13
F.Baiardi — Security of Cloud Computing — Supporting Tech

Types of VMs — Type 1 Hypervisor (cont.)

Another variation is a general purpose OS that also provides VMM functionality
» RedHat Enterprise Linux with KVM, Windows with Hyper-V, Oracle Solaris
» Perform normal duties as well as VMM duties
. Typically less feature rich than dedicated Type 1 hypervisors

In many ways, treat guests OSes as just another process
~ Albeit with special handling when guest tries to execute special instructions

14
F.Baiardi — Security of Cloud Computing — Supporting Tech

Types of VMs — Type 2 Hypervisor

Less interesting from an OS perspective
% Very little OS involvement in virtualization
~ VMM is simply another process, run and managed by host
» Even the host doesn’t know they are a VMM running guests

. Tend to have poorer overall performance because can’t take
advantage of some HW features

. But also a benefit because require no changes to host OS

» Student could have Type 2 hypervisor on native host, run multiple
guests, all on standard host OS such as Windows, Linux, MacOS

15
F.Baiardi — Security of Cloud Computing — Supporting Tech

Types of VMs — Paravirtualization

Does not fit the definition of virtualization — VMM not presenting an
exact duplication of underlying hardware

A But still useful!
~ VMM provides services that guest must be modified to use
. Leads to increased performance
~ Less needed as hardware support for VMs grows
Xen, leader in paravirtualized space, adds several techniques

L For example, clean and simple device abstractions
» Efficient I/O
» Good communication between guest and VMM about device I/O

» Each device has circular buffer shared by guest and VMM via shared
memory

16
F.Baiardi — Security of Cloud Computing — Supporting Tech

Xen I/O via Shared Circular Buffer

Request Consumer Request Producer
Private pointer Shared pointer
in Xen updated by guest OS

Response Producer
Shared pointer Response Consumer
updated by Private pointer

Xen in guest OS

Request queue - Descriptors queued by the VM but not yet accepted by Xen

] Outstanding descriptors - Descriptor slots awaiting a response from Xen

Unused descriptors

F.Baiardi — Security of Cloud Computing — Supporting Tech

Response queue - Descriptors returned by Xen in response to serviced requests

Benefits and Features

Host system protected from VMs, VMs protected from each other
~l.e. A virus less likely to spread

~ Sharing is provided though via shared file system volume,
network communication

Freeze, suspend, running VM
A Then can move or copy somewhere else and resume

» Snapshot of a given state, able to restore back to that state
» Some VMMs allow multiple snapshots per VM

~ Clone by creating copy and running both original and copy
Great for OS research, better system development efficiency
Run multiple, different OSes on a single machine

. Consolidation, app dev, ...

18
F.Baiardi — Security of Cloud Computing — Supporting Tech

Benefits and Features (cont.)

Templating — create an OS + application VM, provide it to customers,
use it to create multiple instances of that combination

Live migration — move a running VM from one host to another!
~ No interruption of user access

All those features taken together -> cloud computing

L Using APIs, programs tell cloud infrastructure (servers,
networking, storage) to create new guests, VMSs, virtual desktops

19
F.Baiardi — Security of Cloud Computing — Supporting Tech

Origins - Principles

Fig., 1. The wvirtual machine monitor.

WA R

rraraware Formal Requirements
for Virtualizable

, Third Generation

. Architectures

Gerald J. Popek
University of California, Los Angeles

d
“an efficient, isolated duplicate of the real machine” Ell{nobert P. Goldberg
. Honeywell Information Systems and
EfflClency Harvard University
Innocuous instructions should execute
directly on the hardware
Resource control i .Virtual machine -systems haf'e been implemented on a
imited number of third generation computer systems, e.g.
Executed programs may not affect the system Sriies, I is Known that ceriain tkird gensration computer
resources systems, e.g. the DEC PDP-10, cannot support a virtual
. machine system. In this paper, model of a third-
Eq u |Va|ence generatio:-like compute? s];stem is developed. Form:‘al
The behavior of a program executing under e
e sSnou e lhe same as | e machines.
program were executed directly on the o
hardware (except pOSS'ny for tlmlng and Communications of the ACM, vol 17, no 7, 1974, pp.412-421

resource availability)

20
F.Baiardi — Security of Cloud Computing — Supporting Tech

History

First appeared in IBM mainframes in 1972
Allowed multiple users to share a batch-oriented system
Formal definition of virtualization helped move it beyond IBM

1. A VMM provides an environment for programs that is essentially
identical to the original machine

2. Programs running within that environment show only minor
performance decreases

3. The vMM is in complete control of system resources

In late 1990s Intel CPUs fast enough for researchers to try virtualizing
on general purpose PCs

~ Xen and VMware created technologies, still used today
~ Virtualization has expanded to many OSes, CPUs, VMMs

21
F.Baiardi — Security of Cloud Computing — Supporting Tech

Origins - Principles

Instruction types (security some time ago :-D))
Privileged vs unpriviledge instructions and modes
an instruction traps in unprivileged (user) mode but not in privileged
(supervisor) mode.
Sensitive
- Control sensitive —
attempts to change the memory allocation or privilege mode
* Behavior sensitive
* Location sensitive — execution behavior depends on memory location
* Mode sensitive — execution behavior depends on privilege mode
Innocuous — an instruction that is not sensitive

Theorem

For any conventional computer, a virtual machine monitor may be built if the
set of sensitive instructions for that computer is a subset of the set of privileged
instructions.

Significance = The IA-32/x86 architecture is not virtualizable.

22
F.Baiardi — Security of Cloud Computing — Supporting Tech

Origins - Technology

VM/370—a study of multiplicity and usefulness
by L. H. Seawright and R. A. MacKinnon

The productivity of data processing professionals and other pro-
fessionals can be enhanced through the use of interactive and
time-sharing systems. Similarly, system programmers can bene-
fit from the use of system testing tools. A systems solution to
both areas can be the virtual machine concept, which provides
multiple software replicas of real computing systems on one real
processor. Each virtual machine has a full complement of input/
output devices and provides functions similar to those of a real
machine. One system that implements virtual machines is 1BM’s
Virtual Machine Facility/370 (vM/370)."

IBM Systems Journal, vol. 18, no. 1, 1979, pp. 4-17.

Figure 1 A VM/370 environment
Concurrent execution of multiple OSes

Testing and development of experimental systems
Adoption of new systems with continued use of legacy systems
Ability to accommodate applications requiring special-purpose OS

Introduced notions of “handshake” = transparency and “virtual-
equaés-real mode” to allow sharing of resource control information
with CP

Leveraged ability to co-design hardware, VMM, and guestOS

CMS | CTMS | CMS JDOS/AVSE VSAL |DOS/VE
BATCH | TEST CICS

P

23
F.Baiardi — Security of Cloud Computing — Supporting Tech

VMMs Rediscovered

, _______ \ _______ \ _______
"A_p |cat|gn" '\A_p |cat|gn" '\A_p |cat|gn’
PRIIC 1 PRIIC l PRIIC .
‘\\ ~Gt.1§§t_£|>sf / '\\ ~Gu§§t_£75* g ‘\\ ~Gy§s_t_£|>& ; App || App || App || App || App
« Virtua ’ Virtua ’ Virtua ,
~<Machine-’ o -Machine-~ o -Machine -’
S mmmmmmmmmmm T T Operating Operating Operating
< VMM > system system system

| Virtual machine monitor |

: Real
L. Machine _

Hardware

Server/workload consolidation (reduces “server sprawl”)

Compatible with evolving multi-core architectures

Simplifies software distributions for complex environments

“Whole system” (workload) migration

Improved data-center management and efficiency

Additional services (workload isolation) added “underneath” the OS
security (intrusion detection, sandboxing,...)
fault-tolerance (checkpointing, roll-back/recovery)

24
F.Baiardi — Security of Cloud Computing — Supporting Tech

Architecture & Interfaces

Architecture: formal specification of a system’s interface and the logical
behavior of its visible resources.

| Applications
Libraries System | Calls
ABI - %
Operating
System
ISA
System ISA User ISA
Hardware
u — application programming interface

B ABI — application binary interface
B [SA — instruction set architecture

F.Baiardi — Security of Cloud Computing — Supporting Tech

Our focus on system VMs

App App || App WM, VM,
[rw] [e] - [3] [w] (o] - []
Operating System Guesl 05, Cuest0S

=10 Device A new
= --- [Dirivers | f - e - rren

- cofero | G EE O 2, B O
Physical Host Hardw D-S = [hiﬂ Q—? = [ﬁ‘t

-, N
. -, . T VMM
OCESSOrS =
;I_? — Physical Host Hardware
M etwork _-su-; ¥eykoard | Mouse % ﬁ D D{;@ ﬁ
Without VMs: Single OS5 owns With VMs: Multiple OSes
all hardware resources share hardware resources

A new software layer 1s introduced that honors the existing ISA to
create distinct physical machines

26
F.Baiardi — Security of Cloud Computing — Supporting Tech

Basic Capabilities

Workload Isolation

App, App, App;, App,
oS ‘ 0S, 0s,
HW | VMM
| HW
Workload Migration
App App
oS oS

=

VMM VMM VMM VMM

L Hw, | [Hw, |

L Hw, | [Hw, |

F.Baiardi — Security of Cloud Computing — Supporting Tech

Workload Aggregation
App, App, App; App;
0S, oS, oS, oS,
| HW, | | Hw, | VMM |
HW |
|'.‘.‘j
Workload Embedding p<
App, App1 Appz
0s, - oS, 0S,
VMM
HW |

27

Basic VMM requirements

o A VMM must be able to:

Protect itself from guest software
|solate guest software stacks (OS + Apps) from one another
Present a (virtual) platform interface to guest software

0 To achieve this, VMM must control access to:
CPUs, Memory and |/O Devices

o Ways that a VMM can share resources between VMs

Time multiplexing
Resource partitioning

Mediating hardware interfaces

28
F.Baiardi — Security of Cloud Computing — Supporting Tech

Time Multiplexing

VM,

UM,

VMM

0o VM is allowed direct access to resource for a period of time
before being context switched to another VM (e.g., CPU resource)

F.Baiardi — Security of Cloud Computing — Supporting Tech

Processor

Resource Partitioning

VM,

VM,

VMM

\

/

Remap / Protection Mechanism

a2 VMM allocates “ownership” of phys resources to VMs
Typically involves some remapping and protection mechanism
Examples: physical memory, disk partitions, graphical display

Storage

!

Memory

-

Display

F.Baiardi — Security of Cloud Computing — Supporting Tech

Mediating Access to Physical Resources

VM, VM,

VMM

-

Network Keyboard / Mouse

a2 VMM retains direct ownership of physical resource
VMM hosts device driver as well as a virtualized device interface
Virtual interface can be same as or different than physical device

31
F.Baiardi — Security of Cloud Computing — Supporting Tech

All together ...

VM, VM, VM, VM,

VMM

=

Processor Storage Network Memaory Keyboard / Mouse Display

LLTTTT

a VMM applies all 3 sharing methods, as needed, to
create illusion of platform ownership to each guest OS

32
F.Baiardi — Security of Cloud Computing — Supporting Tech

Alternative Options

Hypervisor Architecture Hosted Architecture
VMu VM1 VMn User-level VMM VMn
VM,
Guest 0OS Guest OS .| |GuestOs 0 ,JT| Device
ser
and Apps and Apps and Apps AppS Models Guest OS
l and Apps

Hypervisor \ Host OS

[™ I
Device Models (Top) H Device l Ring-0 VMM I
Device Drivers (Bottom) Drivers ! ‘Kernel” !

_______ ——
Host HW Host HW
o Hypervisor architecture 0 Hosted architecture
provides its own device leverages device drivers
drivers and services and services of a “host 0OS”

F.Baiardi — Security of Cloud Computing — Supporting Tech

CPU Virtualization

VM, VM,

m Processor

a To virtualize a CPU, a VMM must retain control over:
Accesses to privileged state (control regs, debug regs, etc.)
Exceptions (page faults, machine-check exceptions, etc.)
Interrupts and interrupt masking

Address translation (via page tables)
CPU access to I/O (via I/O ports or MMIO)

VMM

34
F.Baiardi — Security of Cloud Computing — Supporting Tech

Virtualization: Implementation Strategies

35
F.Baiardi — Security of Cloud Computing — Supporting Tech

|A-32

0 IA-32 Provides 4 Privilege Levels (Rings)

0 Segment-based Protections
Distinguish between all 4 rings

a0 Page-based Protections

Separate only User and Supervisor modes
User mode: Code running in ring 3
Supervisor mode: Code running in rings 0, 1, or 2

F.Baiardi — Security of Cloud Computing — Supporting Tech

36

Memory Management on |A32

Logical Address
(or Far Pointer)

Segment l

Base Address™

Segment ___/4

‘— Segmentation

Linear Address

—| Dir |

Page Directory

Selector Offset Linear Address
| | [Space
Global Descriptor
Table (GDT)
Segment
Segment
Descriptor
L1 || ===
_!-» Lin. Addr.

Entry

T—— Page

Table | Offset | Physical
Address
Space
Page Table | Page
* Phy. Addr.
> Entry |—F—————-
Paging

F.Baiardi — Security of Cloud Computing — Supporting Tech

37

Segment descriptor

15 0
| Seq. Selector |

Logical
Address

Descriptor Table

31(63) 0
| Offset (Effective Address) |

Y
Base Address
Segment -
_r Desgﬂriplor = ~
Privilege
31(63) 0
| Linear Address | le.VCl
(ring
31 242322212019 1615 141312 11 8§ 7 0919293) /
v D A Seg /D\ /
Base 31:24 Gl/|L|v| Limit |P) P\ pe Base 23:16
B| |L| 19:16 L/T
31 16 15\ /
Base Address 15:00 Segment Limit 15:00
38

F.Baiardi — Security of Cloud Computing — Supporting Tech

Multi segments

Segment
Registers

Segment
Descriptors

Linear Address Space
(or Physical Memory)

Access | Lirnit
Base Address . Stack
Access | Limit __\
Base Address \:\: e
.,
Access | Limit \\\
Base Address N ™ Code
Access | Lirnit) N, \\
Base Address \'\ - X
T— Data
Access | Lirnit \--.\ -
~.
Base Address \\\ N Data
-~
Access | Lirnit N -
Base Address N o
_ "__\‘\ Data
Access | Limit by \‘
Base Address . N
e
Access | Limit >a\--) M,
Base Address Y Ay
— T, Dat
Access | Limit — \ b | o
Base Address N
Access | Limit N Y
Base Address T .

F.Baiardi — Security of Cloud Computing — Supporting Tech

39

Challenges of running a VMM

1) OS and Apps in a VM don’t know that the VMM exists or that they
share CPU resources with other VMs.

2) VMM should isolate Guest SW stacks from one another.
3) VMM should run protected from all Guest software

4) VMM should present a virtual platform interface to Guest SW.

40
F.Baiardi — Security of Cloud Computing — Supporting Tech

Classical solution

Trap and Emulate
« Run guest operating system deprivileged
« All privileged instructions trap into VMM

« VMM emulates instructions against virtual state
e.g. disable virtual interrupts, not physical interrupts

+ Resume direct execution from next guest instruction

Implementation Technique
« This is just one technique
 Popek and Goldberg criteria permit others

41
F.Baiardi — Security of Cloud Computing — Supporting Tech

Without Ring
Deprivileging

Applications

OS Kernel

Some Options

0 Each option has certain
pros / cons

0 Will explore in the coming
foils...

Guest Apps Ring 3
Guest OS Ring 1
VMM Ring 0

The
“0/1/3”
Model

With Ring Deprivileging

Guest Apps
Ring 3
Guest OS
VMM Ring O

F.Baiardi — Security of Cloud Computing — Supporting Tech

The
HO/S”
Model

42

Solution for IA-32 arch

Ring Deprivileging =
all guest software should be run at a privilege level greater than 0.

. privileged instructions generate faults = VMM runs in Ring-0 as a collection of fault handlers.
. the guest OS should not be able to update the VMM

e The VMM interprets in software privileged
instructions that would be executed by an OS.

e Any non privileged instruction issued by an OS
or Application Environment is executed directly
by the machine.

e A guest OS could be deprivileged in two
distinct ways:

* it could run either at privilege level 1 (the
0/1/3 model) or ,

Platform Hardware * |t could run at privilege level 3 (the 0/3/3
model).

VM Monitor

43
F.Baiardi — Security of Cloud Computing — Supporting Tech

Virtualization challenges

Ring Aliasing
Problems if software is run at a privilege level other than the privilege level for
which it was written.

* The CS register points to the code segment.

+ If the PUSH is executed with the CS register, the register content (with the current
privilege level) is pushed on the stack

A guest OS could easily determine that it is not running at privilege level O.
Address-Space Compression

OSs expect to have access to the processor’s full virtual address space (in |A-
32. linear address space)

 The VMM could run entirely within the guest’s virtual-address space but it would use a
substantial amount of the guest’s virtual address space.

 The VMM could run in a separate address space, but it must use a minimal amount of the
guest’s virtual address space to manage transitions between guest software and the VMM
(IDT and GDT for |1A-32)

To preserve its integrity, the VMM must prevent guest access to those
portions of the guest’s virtual address space that it is using.

44
F.Baiardi — Security of Cloud Computing — Supporting Tech

Virtualization challenges

Excessive Faulting

Ring deprivileging interferes with the effectiveness of facilities in the 1A-32 architecture
that accelerate the delivery and handling of transitions to OS software.

* The IA-32 SYSENTER and SYSEXIT instructions support low-latency
system calls.

 SYSENTER always effects a transition to privilege level 0, and SYSEXIT
faults if executed outside that ring

—> With VMM it does traps to the OS but to the VMM that emulates every
execution of SYSENTER and SYSEXIT to implement interactions with
the OS causing serious performance problems.

Non-Trapping Instructions
Some instructions access privileged state and do not fault when executed with
insufficient privilege.

* the IA-32 registers GDTR, IDTR, LDTR, and TR contain pointers to data
structures that control CPU operation. Software can execute the
instructions that read, or store, from these registers at any privilege level.

45
F.Baiardi — Security of Cloud Computing — Supporting Tech

Virtualization challenges

Interrupt Virtualization
— The mechanisms of masking external interrupts for preventing their delivery when
the OS is not ready for them is a big challenge for the VMM design.

— The VMM must manage the interrupt masking in order to prevent an OS from
masking the external interrupts because this prevents any guest OS to receive
interrupts.

* |A-32 uses the interrupt flag (IF) in EFLAGS register to control interrupt
masking. IF= 0 interrupts are masked.

Access to Hidden State

— Some components of the processor state are not represented in any software-
accessible register.

* the IA-32 has the hidden descriptor caches for segment registers. A
segment-register load copies of the GDT and LDT into this cache,
which is not modified if software later writes to the descriptor tables.

46
F.Baiardi — Security of Cloud Computing — Supporting Tech

Virtualization challenges

Ring Compression

Ring deprivileging uses privilege-based mechanisms to protect the VMM from guest
software. |IA-32 includes two mechanisms: segment limits and paging:

* Segment limits do not apply in 64-bit mode.
* Paging must be used.
— Problem: 1A-32 paging does not distinguish privilege levels 0-2.
» The guest OS must run at privilege level 3 (the 0/3/3 model).
» The guest OS is not protected from the guest applications.

Frequent Access to Privileged Resources

The performance is compromised if the privileged resources are accessed too many times
generating too many faults that must be intercepted by the VMM.
* For example: the task-priority register (TPR), in IA-32 located in the advanced
programmable interrupt controller (APIC), is accessed with very high frequency
by some OSs.

47
F.Baiardi — Security of Cloud Computing — Supporting Tech

Alternative solutions

Interpretation
» Problem — too inefficient
« x86 decoding slow

Code Patching

* Problem — not transparent
» Guest can inspect its own code

Binary Translation (BT)

» Approach pioneered by VMware
» Run any unmodified x86 OS in VM

Extend x86 Architecture

F.Baiardi — Security of Cloud Computing — Supporting Tech

48

Software VMM

Traps, Interrupts, and

gystam calls
ﬁ-

Application Code Operating System Code

Diract Bxacution Virtuzlized |nstructions
{near-native spead) Ap——— {overhead varias)

Wirtual machine enters
unprivileged mode

Direct execute unprivileged guest application code
« Will run at full speed until it traps, we get an interrupt, etc.

“Binary translate” all guest kernel code, run it unprivileged

+ Since x86 has non-virtualizable instructions,
proactively transfer control to the VMM (no need for traps)

« Safe instructions are emitted without change
= For “unsafe” instructions, emit a controlled emulation sequence
« VMM translation cache for good performance

49
F.Baiardi — Security of Cloud Computing — Supporting Tech

Solution adopted by VMware

Binary — input is x86 “hex”, not source

Dynamic — interleave translation and execution

On Demand - translate only what about to execute (lazy)
System Level — makes no assumptions about guest code
Subsetting — full x86 to safe subset

Adaptive — adjust translations based on guest behavior

F.Baiardi — Security of Cloud Computing — Supporting Tech

50

Binary Translation

SIMULATE(d)

sensitive

IDENT(ical)

Characteristics

Binary — input is machine-level code

Dynamic — occurs at runtime

On demand - code translated when needed for execution

System level — makes no assumption about guest code

Subsetting — translates from full instruction set to safe subset
Adaptive — adjust code based on guest behavior to achieve efficiency

51
F.Baiardi — Security of Cloud Computing — Supporting Tech

Hash Table

Binary Translation

PC > [x] -] +> Binary Translator

(Ix], [yD)

Translation Cache

4

> [y]€----- A a ----- execute

CCF

TU: translation unit (usually a basic block)

CCF: compiled code fragment
G4 continuation

% translation

Few cache hits

Working set captured

Running time

F.Baiardi — Security of Cloud Computing — Supporting Tech

52

Eliminating faults/traps

Expensive traps/faults can be avoided

Example: Pentium privileged instruction
(rdtsc)

— Trap-and-emulate: 2030 cycles

— Callout-and-emulate: 1254 cycles

— In-TC emulation: 216 cycles

Process
— Privileged instructions — eliminated by
simple binary translation (BT) i | v 1
— Non-privileged instructions — eliminated by et | e |
adaptive BT @l ety el | | cef3 SIMU-
* (a) detect a CCF containing an B\ >< pais
instruction that trap frequently N . o
* (b) generate a new translation of || | =]
the CCF to avoid the trap (perhaps
inserting a call-out to an N e

interpreter), and patch the original
translation to execute the new
translation

53
F.Baiardi — Security of Cloud Computing — Supporting Tech

Binary Translation Process

Input: BB
55 £f 33 o7 03 ... Each Translator Invocation
» Consume a basic block (BB])

» Produce a compiled code fragment (CCF)

' Store CCF in Translation Cache

» Future reuse

translator :
« Capture working set of guest kernel
' » Amortize translation costs
‘ + Not “patching in place”
Output: CCF At most 12 instructions

55 ¥ 33 ol B3 . ..

F.Baiardi — Security of Cloud Computing — Supporting Tech

54

80304a69
80403a6a
280403a6c
80403a72
804032a74
80403a7a
80403a7b

—80403a7d eall 30460bad

Binary Translation Process

push
push
mov
mov
mov
push
mov

%ebp

(¥ebx)

(¥ebx), ffffffff
*edx, %esp

tesp, 8lc(%ebx)
kYedx

¥ebp, %eax

BB

F.Baiardi — Security of Cloud Computing — Supporting Tech

25555b0 push %ebp

25555b3 mov
25555b%9 mov Sedx,
25555bb mov %esp,
25555¢cl push %edx
25555¢c2 mov %ebp,

25555¢c9% int 3a

CCF

25555bl1 push (%ebx)
(vebx), fLffffff

~25555c4d push 80403382

Yesp
8lc (%ebx)

keax

25555¢cbh data: B0460bad

25555c4: push return address
25555¢9: invoke translator on callee

Adaptive Binary Translation Process

-
Translation

e Translated Code Is Fast
= Mostly IDENT translations
= Runs “at speed”
Except Writes to Traced Memory
= Page fault (shown as ")
* Decode and interpret instruction

= Fire trace callbacks
» Resume execution

= Can take 1000's of cycles

Invoke Translator

Cache tables are protected

Detect instructions that trap frequently — trace memory

Adapt the translation of these instructions =
* Re-translate to avoid trapping.
* Jump directly to translation.
Adaptive Binary Translation tries to eliminate more and more traps over time.

56
F.Baiardi — Security of Cloud Computing — Supporting Tech

Trace Memory

Shadow Page Table
+ Derived from primary page table in guest
« VMM must keep primary and shadow coherent

Trace = Coherency Mechanism
« Write-protect primary page table
* Trap guest writes to primary
« Update or invalidate corresponding shadow
« Transparent to guest

F.Baiardi — Security of Cloud Computing — Supporting Tech

57

Shadow Page Table

* Shadow page tables are used by the hypervisor to keep track of
the state in which the guest "thinks" 1ts page tables should be.

* The guest can't be allowed access to the hardware page tables
because then 1t would essentially have control of the machine

* The hypervisor keeps
* the "real" mappings guest virtual — host physical in the
hardware when the relevant guest 1s executing
* a representation of the page tables that the guest thinks it's
using "in the shadows," they are not used by the hardware

58
F.Baiardi — Security of Cloud Computing — Supporting Tech

Shadow structures

Traditional VMM Approach

Extra Level of Indirection Built incrementally
uest * Virtual — “Physical” .
2 shadow Guest maps VPN to PPN at hidden faults
5 page table using primary page tables
PPN « “Physical” — Machine
L, i VMM maps PPN to MPN
oo Shadow Page Table
T « Composite of two mappings
M PN » For ordinary memory references

Hardware maps VPN to MPN
« Cached by physical TLB

A shadow structure records the state of the emulated machine
VPN= virtual page number,
PPN=physical page number
MPN= machine page number
True fault = faults in the emulated machine
Hidden fault = due to the shadow page table

59
F.Baiardi — Security of Cloud Computing — Supporting Tech

VMM memory management

* VMMs tend to have simple hardware memory allocation policies
 Static: VM gets 512 MB of hardware memory for life

* No dynamic adjustment based on load because OSes not
designed to handle changes in physical memory...

* No swapping to disk
* Balloon driver runs inside OS to consume hardware page:

“ESX Server controls a balloon module running within the guest directing it
to allocate guest pages and pin them in “"physical" memory.The machine
pages backing this memory can then be reclaimed by ESX Server. Inflating
the balloon increases memory pressure, forcing the guest OS to invoke its
own memory management algorithms. Deflating the balloon decreases
pressure, freeing guest memory.”

* |dentify identical physical pages (e.g., all zeroes) and map those
pages copy-on-write across VMs

60
F.Baiardi — Security of Cloud Computing — Supporting Tech

Adaptive Binary Translation Process

Detect and Track Trace Faults
Splice in TRACE Translation

» Execute memory access in software
» Avoid page fault

» No re-decoding

» Faster resumption

Faster Traces
+ 10x performance improvement
« Adapts to runtime behavior

F.Baiardi — Security of Cloud Computing — Supporting Tech

61

Expected Performance for Hardware
Solutions

Native Speed Except for Traps
» No overhead in direct execution
» Overhead = trap frequency x average trap cost

Trap Sources
« Most frequent: Guest page table traces
* Privileged instructions
« Memory-mapped device traces

F.Baiardi — Security of Cloud Computing — Supporting Tech

62

Hardware Solution =
Intel® Virtualization Technology

e VT-x: Support for IA-32 processor virtualization

e VT-i: Support for Itanium processor virtualization

F.Baiardi — Security of Cloud Computing — Supporting Tech

63

Hardware VMM

Recent x86 Extension
« 1998 — 2005: Software-only VMMs using binary translation
+ 2005: Intel and AMD start extending x86 to support virtualization

First-Generation Hardware
» Enables classical trap-and-emulate VYMMs

« Intel VT, aka “Vanderpool Technology”
« AMD SVM, aka “Pacifica”

Performance

» VT/SVM help avoid BT, but not MMU ops (actually slower!)

» Main problem is efficient virtualization of MMU and I/O,
Not executing the virtual instruction stream

BT=Dbinary translation

64
F.Baiardi — Security of Cloud Computing — Supporting Tech

VT-x Modes

VMX root operation:
Full privileged, intended for Virtual Machine Monitor

VMX non-root operation:
Not fully privileged, intended for guest software

» Both forms of operation support all four privilege levels from 0 to 3

65
F.Baiardi — Security of Cloud Computing — Supporting Tech

x86 Architecture Extensions

HOS5T Mode

WMRLUN Operation

GUEST Mode

H_/ Guest

VMM Updates \\
WMCE for
Guest /)

|

L

Operation Emulation

EXIT Opergtion

"’\\ Executing

)

Sensitive Oparation

W

/ Giuest Alters

WHAM examines \\
YVMCB -
inforrmation /)

\\ VMCB

)

e VM Exit
* VM run

-> frap

to hypervisor (enter host
-> runthe guest OS (enter guest mode)

Four rings
For each mode

mode)

F.Baiardi — Security of Cloud Computing — Supporting Tech

66

Hardware VMM

Trap sensible instruction, VM exit

Diagram
 Y-axis: old school x86 privilege (CPL)
» X-axis: virtualization privilege

Guest Mode

» Runs unmodified OS

» Sensitive operations “exit”
(trap out) to host mode

VMCB

| « Virtual Machine Control Block
Host - Guest » VMM-controlled, hardware-walked
. » Buffers simple exits

67
F.Baiardi — Security of Cloud Computing — Supporting Tech

Y ARTARY

Virtual Machine Control Structure (VMCS)

1. Data structure to manages VM entries and VM exits.
2. VMCS is logically divided into:
1. Guest-state area=info on the VM CPU
2. Host-state area.
3. VM-execution control fields
4. VM-exit control fields
5. VM-entry control fields
6. VM-exit information fields
3. VM entries = load processor state from the guest-state area.

4. VM exits = 1) save processor state to the guest-state area
and the exit reason,

2) load processor state from the host-state area.

F.Baiardi — Security of Cloud Computing — Supporting Tech

68

VT-x New instructions

VMXON, VMXOFF : To enter and exit VMX-root mode.

VMLAUNCH : initial transition from VMM to Guest , Enters VMX non-
root operation mode

VMRESUME : Used on subsequent entries
Enters VMX non-root operation mode
Loads Guest state and Exit criteria from VMCS
VMEXIT : Used on transition from Guest to VMM
Enters VMX root operation mode
Saves Guest state in VMCS
Loads VMM state from VMCS
VMPTRST, VMPTRL: Read and Write the VMCS pointer.
VMREAD, VMWRITE, VMCLEAR : Read from, Write to and clear a VMCS.

69
F.Baiardi — Security of Cloud Computing — Supporting Tech

Solving Virtualization Challenges with VT-x

Address-Space Compression
With VT-x

- every transition between guest software and the VMM can change the linear-
address space, allowing guest software full use of its own address space.

— VMX transitions are managed by the VMCS, which resides in the physical-
address space, not the linear address space.

Ring Aliasing and Ring Compression
VT-x allow VMM to run guest software at its intended privilege level, this fact:

* Eliminates ring aliasing problems: an instruction such as PUSH (of CS)
cannot reveal that software is running in a VM.

* Eliminates ring compression problems that arise when a guest OS
executes at the same privilege level as guest applications

70
F.Baiardi — Security of Cloud Computing — Supporting Tech

Solving Virtualization Challenges with VT-x

Nonfaulting Access to Privileged State
VT-x avoid this problem in two ways:
* Generating VMEXits on each sensitive execution
* Provides configuration of interrupts and exceptions disposition

Guest System Calls

Problems occur with the IA-32 instructions SYSENTER and SYSEXIT when guest OS
run outside privilege level 0. This problem is solved because with VT-x, a guest OS
can run at privilege level 0.

71
F.Baiardi — Security of Cloud Computing — Supporting Tech

g AT

Solving Virtualization Challenges with VT-x

Interrupt Virtualization

VT-x provide explicit support for interrupt virtualization

* ltincludes an external-interrupt exiting VM-execution control.

— When this control is set to 1, a VMM prevents guest control of interrupt masking
without gaining control of every guest attempt to modify EFLAGS.IF.

* Itincludes an interrupt-window exiting VM-execution control.

— When this control is set to 1, a VM exit occurs whenever guest software is ready to
receive interrupts. A VMM can set this control when it has a virtual interrupt to
deliver to a guest.

Access to Hidden State
VT-x includes, in the guest-state area of the VMCS, fields corresponding
to CPU state not represented in any software-accessible register.

* The processor loads values from these VMCS fields on every VM
entry and saves into them on every VM exit.

72
F.Baiardi — Security of Cloud Computing — Supporting Tech

Solving Virtualization Challenges with VT-x

Frequent Access to Privileged Resources
VT-x allow a VMM to avoid the overhead of high-frequency guest access to
the TPR (task priority register):

* A VMM can configure the VMCS so that the VMM is invoked only

when required: when the value of the TPR shadow associated with
the VMCS drops below that of a TPR threshold in the VMCS.

73
F.Baiardi — Security of Cloud Computing — Supporting Tech

Qualitative Comparison

Software wins in...

Trap elimination via adaptive BT.
HW replaces traps w/ exits.

Emulation speed.

Translations and call-outs essentially jump to pre-
decoded emulation routines.

HW VMM must fetch VMCB and decode trapping
instructions before emulating.

74
F.Baiardi — Security of Cloud Computing — Supporting Tech

Qualitative Comparison

Hardware wins in...
Code density.
No translation = No replicated code segments

Precise exceptions.

BT approach must perform extra work to recover guest
state for faults and interrupts.

HW approach can just examine the VMCS.
System calls.
[Can] run w/o VMM intervention.

75
F.Baiardi — Security of Cloud Computing — Supporting Tech

Qualitative Comparison (Summary)

Hardware VMMs...
Native performance for things that avoid exits.

However exits are still costly (currently).
Strongly targeted towards “trap-and-emulate” style.

Software VMMs...
Carefully engineered to be efficient.
Flexible (because itisn't HW).

76
F.Baiardi — Security of Cloud Computing — Supporting Tech

More Quantitative Comparison

K. Adams and O. Agesen (2006). A comparison of software and hardware
techniques for x86 virtualization. In Proceedings of the 12th international
Conference on Architectural Support For Programming Languages and Operating

Systems. ASPLOS-XII. ACM Press, New York, NY, 2-13.

3.8 GHz Intel Pentium 4.

* The contenders...
. Mature commercial Software VMM.

* Recently developed Hardware VMM.

77
F.Baiardi — Security of Cloud Computing — Supporting Tech

SPECint & SPECjbb

Primarily user-level computations.

Unaffected by VMMs
Therefore, performance should be near native.

Experimental results confirm this.
4% average slowdown for Software VMM.

5% average slowdown for Hardware VMM.

The cause is "host background activity”.

Windows test closer to native than Linux test.

F.Baiardi — Security of Cloud Computing — Supporting Tech

78

Benchmarks

a) A synthetic suite of microbenchmarks used to pinpoint various aspects of
workstation performance

— Large RAM test - exhausts memory to test paging capability
SW VMM wins.

— 2D Graphics test - hits system calls
HW VMM wins.”

b) Less” synthetic test = Compilation time of Linux Kernel, Apache, etc.

SW VMM beats the HW VMM again.
Big compilation job w/ lots of files = Lots of page faults.

SW VMM is better at this than HW VMM.
Compared to native speed...

SW VMM is ~60% as fast.
HW VMM is ~55% as fast.

79
F.Baiardi — Security of Cloud Computing — Supporting Tech

ForkWait Test

int main(int argc, char =argv[]) {

for (int i = 0; i < 40000; i++) 4
int pid = fork();
if (pid < 0) return -1;
if (pid == 0) return 0;
waitpid(pid);

}

return 0O;

}

* Test to stress process creation/destruction.

— System calls, context switching, page table
modifications, page faults, context switching, etc.

* Native = 6.0 seconds.
 SW VMM = 36.9 seconds.
 HW VMM = 106.4 seconds.

80
F.Baiardi — Security of Cloud Computing — Supporting Tech

Conclusions

a) Hardware extensions now allow x86 to execute guests directly (trap-
and-emulate style).

b) Comparison of SW and HW VMMs...

1) Both can execute computation-bound workloads at near native
speed.

2) When I/O and process management is involved, SW prevails.
3) When there are a lot of system calls, HW prevails.

c) SW VMM techniques are very mature and very flexible.

d) New x86 extensions are relatively immature and present a fixed
(inflexible) interface.

e) Future work on HW extensions promises to improve performance.
f) Hybrid SW/HW VMMs promise to provide benefits of both worlds.
g) There is no “clear” winner at this time.

81
F.Baiardi — Security of Cloud Computing — Supporting Tech

Paravirtualization

Full Virtualization
« No modifications to guest OS

« Excellent compatibility, good performance, but complex

Paravirtualization Exports Simpler Architecture
« Term coined by Denali project in ‘01, popularized by Xen
« Modify guest OS to be aware of virtualization layer
» Remove non-virtualizable parts of architecture
« Avoid rediscovery of knowledge in hypervisor
» Excellent performance and simple, but poor compatibility

Ongoing Linux Standards Work

« “Paravirt Ops” interface between guest and hypervisor
« Small team from VMware, Xen, IBM LTC, etc.

F.Baiardi — Security of Cloud Computing — Supporting Tech

82

Two Ways to Handle Non-virtualizable Instructions

Paravitualization
* Modify VMM interface to use instructions that can be virtualized
Xen, Denali

* Rewrite portions of the guest OS to delete this kind of
instruction; replace with other instructions that are virtualizable.

* |t affects the guest OS, but not applications that run on it — the
APl is unchanged

Binary Translation

Monitor execution of kernel code and dynamically replace non-
virtualizable instructions with other instructions

83
F.Baiardi — Security of Cloud Computing — Supporting Tech

Paravirtualization

Guest
0OS

Hypervisor

Hardware

Full Virtualization

System call
/ interface
(Guest
OS. |
_ji\ }/1\1 Hypercalls
)I((GOOD)
Hypervisor INOT GooD!
Hardware

Paravirtualization

F.Baiardi — Security of Cloud Computing — Supporting Tech

84

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Overview
	System Models
	Implementation of VMMs
	Diapositiva 7
	Implementation of VMMs (cont.)
	Diapositiva 9
	Types of Virtual Machines and Implementations
	Types of VMs – Type 0 Hypervisor
	Type 0 Hypervisor
	Types of VMs – Type 1 Hypervisor
	Types of VMs – Type 1 Hypervisor (cont.)
	Types of VMs – Type 2 Hypervisor
	Types of VMs – Paravirtualization
	Xen I/O via Shared Circular Buffer
	Benefits and Features
	Benefits and Features (cont.)
	Diapositiva 20
	History
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Binary Translation
	Diapositiva 52
	Eliminating faults/traps
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84

