
1

F.Baiardi – Security of Cloud Computing – Supporting Tech

Security of Cloud Computing

Fabrizio Baiardi
f.baiardi@unipi.it

2

F.Baiardi – Security of Cloud Computing – Supporting Tech

Syllabus

• Cloud Computing Introduction
• Security
• Supporting Technologies

• Virtualization Technology
• Scalable Computing = Elasticity

• Security
• New Threat Model
• New Attacks
• Countermeasures

3

F.Baiardi – Security of Cloud Computing – Supporting Tech

Virtualization

• What is virtualization?
• Traditional virtualization techniques.
• Overview of Software VMM.
• Overview of Hardware VMM.
• Evaluation of VMMs.

4

F.Baiardi – Security of Cloud Computing – Supporting Tech

Overview

Fundamental idea – abstract hardware of a single computer into
several different execution environments

 Similar to layered approach
 But layer creates virtual system (virtual machine, or VM) on

which operation systems or applications can run
Several components

 Host – underlying hardware system
 Virtual machine manager (VMM) or hypervisor – creates and

runs virtual machines by providing interface that is identical to
the host
 (Except in the case of paravirtualization)

 Guest – process provided with virtual copy of the host
 Usually an operating system

Single physical machine can run multiple operating systems
concurrently, each in its own virtual machine

5

F.Baiardi – Security of Cloud Computing – Supporting Tech

System Models

(a) Nonvirtual machine (b) Virtual machine

6

F.Baiardi – Security of Cloud Computing – Supporting Tech

Implementation of VMMs

Vary greatly, with options including:

 Type 0 hypervisors - Hardware-based solutions that provide support
for virtual machine creation and management via firmware
 IBM LPARs and Oracle LDOMs are examples

 Type 1 hypervisors - Operating-system-like software built to provide
virtualization
 Including VMware ESX, Joyent SmartOS, and Citrix XenServer

 Type 1 hypervisors – Also includes general-purpose operating
systems that provide standard functions as well as VMM functions
 Including Microsoft Windows Server with HyperV and RedHat Linux with KVM

 Type 2 hypervisors - Applications that run on standard operating
systems but provide VMM features to guest operating systems
 VMware Workstation and Fusion, Parallels Desktop, and Oracle VirtualBox

7

F.Baiardi – Security of Cloud Computing – Supporting Tech

Classification

8

F.Baiardi – Security of Cloud Computing – Supporting Tech

Implementation of VMMs (cont.)

Other variations include:

 Paravirtualization - Technique in which the guest operating system is
modified to work in cooperation with the VMM to optimize performance

 Programming-environment virtualization - VMMs do not virtualize
real hardware but instead create an optimized virtual system

 Emulators – Allow applications written for one hardware environment
to run on a different hardware environment, such as a different CPU

 Application containment - Not virtualization at all but rather provides
virtualization-like features by segregating applications from the
operating system, making them more secure, manageable
 Including Oracle Solaris Zones, BSD Jails, and IBM AIX WPARs

Much variation due to breadth, depth and importance of virtualization in
modern computing

9

F.Baiardi – Security of Cloud Computing – Supporting Tech

Implementation of VMMs (cont.)

The Linux Containers (LXC) feature I
● a lightweight virtualization mechanism that does not require you to set up a

virtual machine on an emulation of physical hardware.
● takes the cgroups resource management facilities as its basis and adds

POSIX file capabilities to implement process and network isolation.
● You can run

● a single application within a container (an application container) whose
name space is isolated from the other processes on the system in a
similar manner to a chroot jail.

● a complete copy of the Linux operating system in a container (a system
container) without the overhead of running a level-2 hypervisor such as
VirtualBox.

● the container is sharing the kernel with the host system, so its processes
and file system are completely visible from the host. When you are logged
into the container, you only see its file system and process space.

10

F.Baiardi – Security of Cloud Computing – Supporting Tech

Types of Virtual Machines and Implementations

Many variations as well as HW details

 Assume VMMs take advantage of HW features
 HW features can simplify implementation, improve performance

Whatever the type, a VM has a lifecycle

 Created by VMM

 Resources assigned to it (number of cores, amount of memory,
networking details, storage details)

 In type 0 hypervisor, resources usually dedicated

 Other types dedicate or share resources, or a mix

 When no longer needed, VM can be deleted, freeing resouces
simpler, faster than with a physical machine install

 Can lead to virtual machine sprawl with lots of VMs, history and
state difficult to track and manage

11

F.Baiardi – Security of Cloud Computing – Supporting Tech

Types of VMs – Type 0 Hypervisor

Old idea, under many names by HW manufacturers

 “partitions”, “domains”

 A HW feature implemented by firmware

 OS need to nothing special, VMM is in firmware

 Smaller feature set than other types

 Each guest has dedicated HW

I/O a challenge as difficult to have enough devices, controllers to dedicate
to each guest

Sometimes VMM implements a control partition running daemons that
other guests communicate with for shared I/O

Can provide virtualization-within-virtualization (guest itself can be a VMM
with guests

 Other types have difficulty doing this

12

F.Baiardi – Security of Cloud Computing – Supporting Tech

Type 0 Hypervisor

13

F.Baiardi – Security of Cloud Computing – Supporting Tech

Types of VMs – Type 1 Hypervisor

Commonly found in company datacenters

 In a sense becoming “datacenter operating systems”

 Datacenter managers control and manage OSes in new, sophisticated ways
by controlling the Type 1 hypervisor

 Consolidation of multiple OSes and apps onto less HW

 Move guests between systems to balance performance

 Snapshots and cloning

Special purpose operating systems that run natively on HW

 Rather than providing system call interface, create run and manage guest OSes

 Can run on Type 0 hypervisors but not on other Type 1s

 Run in kernel mode

 Guests generally don’t know they are running in a VM

 Implement device drivers for host HW because no other component can

 Also provide other traditional OS services like CPU and memory management

14

F.Baiardi – Security of Cloud Computing – Supporting Tech

Types of VMs – Type 1 Hypervisor (cont.)

Another variation is a general purpose OS that also provides VMM functionality

 RedHat Enterprise Linux with KVM, Windows with Hyper-V, Oracle Solaris

 Perform normal duties as well as VMM duties

 Typically less feature rich than dedicated Type 1 hypervisors

In many ways, treat guests OSes as just another process

 Albeit with special handling when guest tries to execute special instructions

15

F.Baiardi – Security of Cloud Computing – Supporting Tech

Types of VMs – Type 2 Hypervisor

Less interesting from an OS perspective

 Very little OS involvement in virtualization

 VMM is simply another process, run and managed by host
 Even the host doesn’t know they are a VMM running guests

 Tend to have poorer overall performance because can’t take
advantage of some HW features

 But also a benefit because require no changes to host OS
 Student could have Type 2 hypervisor on native host, run multiple

guests, all on standard host OS such as Windows, Linux, MacOS

16

F.Baiardi – Security of Cloud Computing – Supporting Tech

Types of VMs – Paravirtualization

Does not fit the definition of virtualization – VMM not presenting an
exact duplication of underlying hardware

 But still useful!

 VMM provides services that guest must be modified to use

 Leads to increased performance

 Less needed as hardware support for VMs grows

Xen, leader in paravirtualized space, adds several techniques

 For example, clean and simple device abstractions
 Efficient I/O

 Good communication between guest and VMM about device I/O

 Each device has circular buffer shared by guest and VMM via shared
memory

17

F.Baiardi – Security of Cloud Computing – Supporting Tech

Xen I/O via Shared Circular Buffer

18

F.Baiardi – Security of Cloud Computing – Supporting Tech

Benefits and Features

Host system protected from VMs, VMs protected from each other

 I.e. A virus less likely to spread

 Sharing is provided though via shared file system volume,
network communication

Freeze, suspend, running VM

 Then can move or copy somewhere else and resume

 Snapshot of a given state, able to restore back to that state
 Some VMMs allow multiple snapshots per VM

 Clone by creating copy and running both original and copy

Great for OS research, better system development efficiency

Run multiple, different OSes on a single machine

 Consolidation, app dev, …

19

F.Baiardi – Security of Cloud Computing – Supporting Tech

Benefits and Features (cont.)

Templating – create an OS + application VM, provide it to customers,
use it to create multiple instances of that combination

Live migration – move a running VM from one host to another!

 No interruption of user access

All those features taken together -> cloud computing

 Using APIs, programs tell cloud infrastructure (servers,
networking, storage) to create new guests, VMs, virtual desktops

20

F.Baiardi – Security of Cloud Computing – Supporting Tech

Origins - Principles

Efficiency
 Innocuous instructions should execute
 directly on the hardware

Resource control
 Executed programs may not affect the system
 resources

Equivalence
 The behavior of a program executing under
 the VMM should be the same as if the
 program were executed directly on the
 hardware (except possibly for timing and
 resource availability)

Communications of the ACM, vol 17, no 7, 1974, pp.412-421

“an efficient, isolated duplicate of the real machine”

21

F.Baiardi – Security of Cloud Computing – Supporting Tech

History

First appeared in IBM mainframes in 1972

Allowed multiple users to share a batch-oriented system

Formal definition of virtualization helped move it beyond IBM

1. A VMM provides an environment for programs that is essentially
identical to the original machine

2. Programs running within that environment show only minor
performance decreases

3. The VMM is in complete control of system resources

In late 1990s Intel CPUs fast enough for researchers to try virtualizing
on general purpose PCs

 Xen and VMware created technologies, still used today

 Virtualization has expanded to many OSes, CPUs, VMMs

22

F.Baiardi – Security of Cloud Computing – Supporting Tech

Origins - Principles

Instruction types (security some time ago :-D))
Privileged vs unpriviledge instructions and modes

an instruction traps in unprivileged (user) mode but not in privileged
 (supervisor) mode.

Sensitive
 Control sensitive –

attempts to change the memory allocation or privilege mode
 Behavior sensitive

 Location sensitive – execution behavior depends on memory location
 Mode sensitive – execution behavior depends on privilege mode

Innocuous – an instruction that is not sensitive

Theorem
For any conventional computer, a virtual machine monitor may be built if the
set of sensitive instructions for that computer is a subset of the set of privileged
instructions.

Significance = The IA-32/x86 architecture is not virtualizable.

23

F.Baiardi – Security of Cloud Computing – Supporting Tech

Origins - Technology

Concurrent execution of multiple OSes
Testing and development of experimental systems
Adoption of new systems with continued use of legacy systems
Ability to accommodate applications requiring special-purpose OS
Introduced notions of “handshake” = transparency and “virtual-
equals-real mode” to allow sharing of resource control information
with CP
Leveraged ability to co-design hardware, VMM, and guestOS

IBM Systems Journal, vol. 18, no. 1, 1979, pp. 4-17.

24

F.Baiardi – Security of Cloud Computing – Supporting Tech

VMMs Rediscovered

Server/workload consolidation (reduces “server sprawl”)
Compatible with evolving multi-core architectures
Simplifies software distributions for complex environments
“Whole system” (workload) migration
Improved data-center management and efficiency
Additional services (workload isolation) added “underneath” the OS

security (intrusion detection, sandboxing,…)
fault-tolerance (checkpointing, roll-back/recovery)

VMM

Virtual Virtual
MachineMachine

Guest OS

Application

Virtual Virtual
MachineMachine

Guest OS

Application

Virtual Virtual
MachineMachine

Guest OS

Application

Real
Machine

25

F.Baiardi – Security of Cloud Computing – Supporting Tech

Architecture & Interfaces

Architecture: formal specification of a system’s interface and the logical
behavior of its visible resources.

Hardware

System ISA User ISA

Operating
System

System Calls
Libraries

Applications

ISA

ABI

API

 API – application programming interface
 ABI – application binary interface
 ISA – instruction set architecture

26

F.Baiardi – Security of Cloud Computing – Supporting Tech

Our focus on system VMs

A new software layer is introduced that honors the existing ISA to
create distinct physical machines

27

F.Baiardi – Security of Cloud Computing – Supporting Tech

Basic Capabilities

28

F.Baiardi – Security of Cloud Computing – Supporting Tech

Basic VMM requirements

29

F.Baiardi – Security of Cloud Computing – Supporting Tech

Time Multiplexing

30

F.Baiardi – Security of Cloud Computing – Supporting Tech

Resource Partitioning

31

F.Baiardi – Security of Cloud Computing – Supporting Tech

 Mediating Access to Physical Resources

32

F.Baiardi – Security of Cloud Computing – Supporting Tech

All together …

33

F.Baiardi – Security of Cloud Computing – Supporting Tech

Alternative Options

34

F.Baiardi – Security of Cloud Computing – Supporting Tech

CPU Virtualization

35

F.Baiardi – Security of Cloud Computing – Supporting Tech

Virtualization: Implementation Strategies

36

F.Baiardi – Security of Cloud Computing – Supporting Tech

IA-32

37

F.Baiardi – Security of Cloud Computing – Supporting Tech

Memory Management on IA32

38

F.Baiardi – Security of Cloud Computing – Supporting Tech

Privilege
level
(ring

0,1,2,3)

Segment descriptor

39

F.Baiardi – Security of Cloud Computing – Supporting Tech

Multi segments

40

F.Baiardi – Security of Cloud Computing – Supporting Tech

Challenges of running a VMM

1) OS and Apps in a VM don’t know that the VMM exists or that they
share CPU resources with other VMs.

2) VMM should isolate Guest SW stacks from one another.

3) VMM should run protected from all Guest software

4) VMM should present a virtual platform interface to Guest SW.

41

F.Baiardi – Security of Cloud Computing – Supporting Tech

Classical solution

42

F.Baiardi – Security of Cloud Computing – Supporting Tech

Some Options

43

F.Baiardi – Security of Cloud Computing – Supporting Tech

 Solution for IA-32 arch

Ring Deprivileging =
• all guest software should be run at a privilege level greater than 0.

• privileged instructions generate faults = VMM runs in Ring-0 as a collection of fault handlers.

• the guest OS should not be able to update the VMM

VM0

Guest OS0

VM1

Guest OS1...

Platform Hardware

VM Monitor

App App...AppApp App...App

 Ring
0

Ring 1

Ring 3• The VMM interprets in software privileged
instructions that would be executed by an OS.

• Any non privileged instruction issued by an OS
or Application Environment is executed directly
by the machine.

• A guest OS could be deprivileged in two
distinct ways:

• it could run either at privilege level 1 (the
0/1/3 model) or ,

• It could run at privilege level 3 (the 0/3/3
model).

44

F.Baiardi – Security of Cloud Computing – Supporting Tech

Virtualization challenges

Ring Aliasing
Problems if software is run at a privilege level other than the privilege level for
which it was written.

• The CS register points to the code segment.
• If the PUSH is executed with the CS register, the register content (with the current

privilege level) is pushed on the stack
A guest OS could easily determine that it is not running at privilege level 0.

Address-Space Compression
OSs expect to have access to the processor’s full virtual address space (in IA-
32. linear address space)

• The VMM could run entirely within the guest’s virtual-address space but it would use a
substantial amount of the guest’s virtual address space.

• The VMM could run in a separate address space, but it must use a minimal amount of the
guest’s virtual address space to manage transitions between guest software and the VMM
(IDT and GDT for IA-32)

To preserve its integrity, the VMM must prevent guest access to those
portions of the guest’s virtual address space that it is using.

45

F.Baiardi – Security of Cloud Computing – Supporting Tech

Excessive Faulting
Ring deprivileging interferes with the effectiveness of facilities in the IA-32 architecture
that accelerate the delivery and handling of transitions to OS software.

• The IA-32 SYSENTER and SYSEXIT instructions support low-latency
system calls.

• SYSENTER always effects a transition to privilege level 0, and SYSEXIT
faults if executed outside that ring

 With VMM it does traps to the OS but to the VMM that emulates every
 execution of SYSENTER and SYSEXIT to implement interactions with

 the OS causing serious performance problems.

Non-Trapping Instructions
Some instructions access privileged state and do not fault when executed with
insufficient privilege.

• the IA-32 registers GDTR, IDTR, LDTR, and TR contain pointers to data
structures that control CPU operation. Software can execute the
instructions that read, or store, from these registers at any privilege level.

Virtualization challenges

46

F.Baiardi – Security of Cloud Computing – Supporting Tech

Interrupt Virtualization
– The mechanisms of masking external interrupts for preventing their delivery when

the OS is not ready for them is a big challenge for the VMM design.
– The VMM must manage the interrupt masking in order to prevent an OS from

masking the external interrupts because this prevents any guest OS to receive
interrupts.

• IA-32 uses the interrupt flag (IF) in EFLAGS register to control interrupt
masking. IF= 0 interrupts are masked.

Access to Hidden State
– Some components of the processor state are not represented in any software-

accessible register.

• the IA-32 has the hidden descriptor caches for segment registers. A
segment-register load copies of the GDT and LDT into this cache,
which is not modified if software later writes to the descriptor tables.

Virtualization challenges

47

F.Baiardi – Security of Cloud Computing – Supporting Tech

Ring Compression
Ring deprivileging uses privilege-based mechanisms to protect the VMM from guest
software. IA-32 includes two mechanisms: segment limits and paging:

• Segment limits do not apply in 64-bit mode.
• Paging must be used.

– Problem: IA-32 paging does not distinguish privilege levels 0-2.
» The guest OS must run at privilege level 3 (the 0/3/3 model).
» The guest OS is not protected from the guest applications.

Frequent Access to Privileged Resources
The performance is compromised if the privileged resources are accessed too many times
generating too many faults that must be intercepted by the VMM.

• For example: the task-priority register (TPR), in IA-32 located in the advanced
programmable interrupt controller (APIC), is accessed with very high frequency
by some OSs.

Virtualization challenges

48

F.Baiardi – Security of Cloud Computing – Supporting Tech

Alternative solutions

49

F.Baiardi – Security of Cloud Computing – Supporting Tech

Software VMM

50

F.Baiardi – Security of Cloud Computing – Supporting Tech

Solution adopted by VMware

51

F.Baiardi – Security of Cloud Computing – Supporting Tech

Binary Translation

Characteristics
Binary – input is machine-level code
Dynamic – occurs at runtime
On demand – code translated when needed for execution
System level – makes no assumption about guest code
Subsetting – translates from full instruction set to safe subset
Adaptive – adjust code based on guest behavior to achieve efficiency

innocuousinnocuous

sensitive

IDENT(ical)

SIMULATE(d)

52

F.Baiardi – Security of Cloud Computing – Supporting Tech

Binary Translation

TU: translation unit (usually a basic block)
CCF: compiled code fragment

: continuation

TU

Binary Translator

Translation Cache

CCF

PC [x] [y]

([x], [y])

Hash Table

execute1

5

3

2 4

Running time

%
 t

ra
ns

la
ti

on

Few cache hits

Working set captured

53

F.Baiardi – Security of Cloud Computing – Supporting Tech

Eliminating faults/traps

Expensive traps/faults can be avoided
Example: Pentium privileged instruction
(rdtsc)

– Trap-and-emulate: 2030 cycles
– Callout-and-emulate: 1254 cycles
– In-TC emulation: 216 cycles

Process
– Privileged instructions – eliminated by

simple binary translation (BT)
– Non-privileged instructions – eliminated by

adaptive BT
• (a) detect a CCF containing an

instruction that trap frequently
• (b) generate a new translation of

the CCF to avoid the trap (perhaps
inserting a call-out to an
interpreter), and patch the original
translation to execute the new
translation

54

F.Baiardi – Security of Cloud Computing – Supporting Tech

Binary Translation Process

At most 12 instructions

55

F.Baiardi – Security of Cloud Computing – Supporting Tech

Binary Translation Process

56

F.Baiardi – Security of Cloud Computing – Supporting Tech

Adaptive Binary Translation Process

Detect instructions that trap frequently
Adapt the translation of these instructions =

• Re-translate to avoid trapping.
• Jump directly to translation.

Adaptive Binary Translation tries to eliminate more and more traps over time.

Cache tables are protected
= trace memory

57

F.Baiardi – Security of Cloud Computing – Supporting Tech

Trace Memory

58

F.Baiardi – Security of Cloud Computing – Supporting Tech

Shadow Page Table

● Shadow page tables are used by the hypervisor to keep track of
the state in which the guest "thinks" its page tables should be.

● The guest can't be allowed access to the hardware page tables
because then it would essentially have control of the machine

● The hypervisor keeps
● the "real" mappings guest virtual host physical in the

hardware when the relevant guest is executing
● a representation of the page tables that the guest thinks it's

using "in the shadows," they are not used by the hardware

59

F.Baiardi – Security of Cloud Computing – Supporting Tech

Shadow structures

A shadow structure records the state of the emulated machine
VPN= virtual page number,
PPN=physical page number
MPN= machine page number
True fault = faults in the emulated machine
Hidden fault = due to the shadow page table

Built incrementally
at hidden faults

60

F.Baiardi – Security of Cloud Computing – Supporting Tech

VMM memory management

● VMMs tend to have simple hardware memory allocation policies
● Static: VM gets 512 MB of hardware memory for life
● No dynamic adjustment based on load because OSes not

designed to handle changes in physical memory…
● No swapping to disk

● Balloon driver runs inside OS to consume hardware page:
 “ESX Server controls a balloon module running within the guest directing it

to allocate guest pages and pin them in ``physical'' memory.The machine
pages backing this memory can then be reclaimed by ESX Server. Inflating
the balloon increases memory pressure, forcing the guest OS to invoke its
own memory management algorithms. Deflating the balloon decreases
pressure, freeing guest memory.”

● Identify identical physical pages (e.g., all zeroes) and map those
pages copy-on-write across VMs

61

F.Baiardi – Security of Cloud Computing – Supporting Tech

Adaptive Binary Translation Process

62

F.Baiardi – Security of Cloud Computing – Supporting Tech

 Expected Performance for Hardware
Solutions

63

F.Baiardi – Security of Cloud Computing – Supporting Tech

Hardware Solution =
Intel® Virtualization Technology

• VT-x: Support for IA-32 processor virtualization

• VT-i: Support for Itanium processor virtualization

64

F.Baiardi – Security of Cloud Computing – Supporting Tech

Hardware VMM

BT=binary translation

65

F.Baiardi – Security of Cloud Computing – Supporting Tech

VT-x Modes

VMX root operation:

Full privileged, intended for Virtual Machine Monitor

VMX non-root operation:

Not fully privileged, intended for guest software

 Both forms of operation support all four privilege levels from 0 to 3

66

F.Baiardi – Security of Cloud Computing – Supporting Tech

x86 Architecture Extensions

Four rings
For each mode

• VM Exit -> trap to hypervisor (enter host mode)
• VM run -> run the guest OS (enter guest mode)

67

F.Baiardi – Security of Cloud Computing – Supporting Tech

Hardware VMM

Trap sensible instruction, VM exit

68

F.Baiardi – Security of Cloud Computing – Supporting Tech

Virtual Machine Control Structure (VMCS)

1. Data structure to manages VM entries and VM exits.

2. VMCS is logically divided into:

1. Guest-state area=info on the VM CPU

2. Host-state area.

3. VM-execution control fields

4. VM-exit control fields

5. VM-entry control fields

6. VM-exit information fields

3. VM entries = load processor state from the guest-state area.

4. VM exits = 1) save processor state to the guest-state area
 and the exit reason,

 2) load processor state from the host-state area.

69

F.Baiardi – Security of Cloud Computing – Supporting Tech

VT-x New instructions

VMXON, VMXOFF : To enter and exit VMX-root mode.

VMLAUNCH : initial transition from VMM to Guest , Enters VMX non-
 root operation mode

VMRESUME : Used on subsequent entries

 Enters VMX non-root operation mode

 Loads Guest state and Exit criteria from VMCS

VMEXIT : Used on transition from Guest to VMM

 Enters VMX root operation mode

 Saves Guest state in VMCS

 Loads VMM state from VMCS

VMPTRST, VMPTRL: Read and Write the VMCS pointer.

VMREAD, VMWRITE, VMCLEAR : Read from, Write to and clear a VMCS.

70

F.Baiardi – Security of Cloud Computing – Supporting Tech

Solving Virtualization Challenges with VT-x

Address-Space Compression

With VT-x
– every transition between guest software and the VMM can change the linear-
 address space, allowing guest software full use of its own address space.

– VMX transitions are managed by the VMCS, which resides in the physical-

address space, not the linear address space.

Ring Aliasing and Ring Compression

VT-x allow VMM to run guest software at its intended privilege level, this fact:
• Eliminates ring aliasing problems: an instruction such as PUSH (of CS)

cannot reveal that software is running in a VM.

• Eliminates ring compression problems that arise when a guest OS
executes at the same privilege level as guest applications

71

F.Baiardi – Security of Cloud Computing – Supporting Tech

Solving Virtualization Challenges with VT-x

Nonfaulting Access to Privileged State

VT-x avoid this problem in two ways:
• Generating VMExits on each sensitive execution
• Provides configuration of interrupts and exceptions disposition

Guest System Calls

Problems occur with the IA-32 instructions SYSENTER and SYSEXIT when guest OS
run outside privilege level 0. This problem is solved because with VT-x, a guest OS
can run at privilege level 0.

72

F.Baiardi – Security of Cloud Computing – Supporting Tech

Solving Virtualization Challenges with VT-x

Interrupt Virtualization

VT-x provide explicit support for interrupt virtualization
• It includes an external-interrupt exiting VM-execution control.

– When this control is set to 1, a VMM prevents guest control of interrupt masking
without gaining control of every guest attempt to modify EFLAGS.IF.

• It includes an interrupt-window exiting VM-execution control.
– When this control is set to 1, a VM exit occurs whenever guest software is ready to

receive interrupts. A VMM can set this control when it has a virtual interrupt to
deliver to a guest.

Access to Hidden State

VT-x includes, in the guest-state area of the VMCS, fields corresponding
to CPU state not represented in any software-accessible register.

• The processor loads values from these VMCS fields on every VM
entry and saves into them on every VM exit.

73

F.Baiardi – Security of Cloud Computing – Supporting Tech

Solving Virtualization Challenges with VT-x

Frequent Access to Privileged Resources

VT-x allow a VMM to avoid the overhead of high-frequency guest access to
the TPR (task priority register):

• A VMM can configure the VMCS so that the VMM is invoked only
when required: when the value of the TPR shadow associated with
the VMCS drops below that of a TPR threshold in the VMCS.

74

F.Baiardi – Security of Cloud Computing – Supporting Tech

Qualitative Comparison

Software wins in…

Trap elimination via adaptive BT.
HW replaces traps w/ exits.

Emulation speed.
Translations and call-outs essentially jump to pre-

decoded emulation routines.

HW VMM must fetch VMCB and decode trapping
instructions before emulating.

75

F.Baiardi – Security of Cloud Computing – Supporting Tech

Qualitative Comparison

Hardware wins in…

Code density.
No translation = No replicated code segments

Precise exceptions.
BT approach must perform extra work to recover guest

state for faults and interrupts.

HW approach can just examine the VMCS.

System calls.
[Can] run w/o VMM intervention.

76

F.Baiardi – Security of Cloud Computing – Supporting Tech

Qualitative Comparison (Summary)

Hardware VMMs…

Native performance for things that avoid exits.

However exits are still costly (currently).
Strongly targeted towards “trap-and-emulate” style.

Software VMMs…

Carefully engineered to be efficient.

Flexible (because it isn’t HW).

77

F.Baiardi – Security of Cloud Computing – Supporting Tech

More Quantitative Comparison

K. Adams and O. Agesen (2006). A comparison of software and hardware
techniques for x86 virtualization. In Proceedings of the 12th international
Conference on Architectural Support For Programming Languages and Operating
Systems. ASPLOS-XII. ACM Press, New York, NY, 2-13.

• 3.8 GHz Intel Pentium 4.

• The contenders…

• Mature commercial Software VMM.

• Recently developed Hardware VMM.

78

F.Baiardi – Security of Cloud Computing – Supporting Tech

SPECint & SPECjbb

Primarily user-level computations.

Unaffected by VMMs

Therefore, performance should be near native.

Experimental results confirm this.

 4% average slowdown for Software VMM.

 5% average slowdown for Hardware VMM.

The cause is “host background activity”.

Windows test closer to native than Linux test.

79

F.Baiardi – Security of Cloud Computing – Supporting Tech

Benchmarks

a) A synthetic suite of microbenchmarks used to pinpoint various aspects of
workstation performance

– Large RAM test - exhausts memory to test paging capability

SW VMM wins.

– 2D Graphics test - hits system calls

HW VMM wins.“

b) Less” synthetic test = Compilation time of Linux Kernel, Apache, etc.

 SW VMM beats the HW VMM again.

Big compilation job w/ lots of files = Lots of page faults.

SW VMM is better at this than HW VMM.
 Compared to native speed…

SW VMM is ~60% as fast.

HW VMM is ~55% as fast.

80

F.Baiardi – Security of Cloud Computing – Supporting Tech

ForkWait Test

• Test to stress process creation/destruction.
– System calls, context switching, page table

modifications, page faults, context switching, etc.

• Native = 6.0 seconds.
• SW VMM = 36.9 seconds.
• HW VMM = 106.4 seconds.

81

F.Baiardi – Security of Cloud Computing – Supporting Tech

Conclusions

a) Hardware extensions now allow x86 to execute guests directly (trap-
and-emulate style).

b) Comparison of SW and HW VMMs…

 1) Both can execute computation-bound workloads at near native
speed.

 2) When I/O and process management is involved, SW prevails.

 3) When there are a lot of system calls, HW prevails.

c) SW VMM techniques are very mature and very flexible.
d) New x86 extensions are relatively immature and present a fixed

(inflexible) interface.
e) Future work on HW extensions promises to improve performance.
f) Hybrid SW/HW VMMs promise to provide benefits of both worlds.
g) There is no “clear” winner at this time.

82

F.Baiardi – Security of Cloud Computing – Supporting Tech

Paravirtualization

83

F.Baiardi – Security of Cloud Computing – Supporting Tech

Two Ways to Handle Non-virtualizable Instructions

Paravitualization
• Modify VMM interface to use instructions that can be virtualized

Xen, Denali
• Rewrite portions of the guest OS to delete this kind of

instruction; replace with other instructions that are virtualizable.
• It affects the guest OS, but not applications that run on it – the

API is unchanged

Binary Translation

Monitor execution of kernel code and dynamically replace non-
virtualizable instructions with other instructions

84

F.Baiardi – Security of Cloud Computing – Supporting Tech

Paravirtualization

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Overview
	System Models
	Implementation of VMMs
	Diapositiva 7
	Implementation of VMMs (cont.)
	Diapositiva 9
	Types of Virtual Machines and Implementations
	Types of VMs – Type 0 Hypervisor
	Type 0 Hypervisor
	Types of VMs – Type 1 Hypervisor
	Types of VMs – Type 1 Hypervisor (cont.)
	Types of VMs – Type 2 Hypervisor
	Types of VMs – Paravirtualization
	Xen I/O via Shared Circular Buffer
	Benefits and Features
	Benefits and Features (cont.)
	Diapositiva 20
	History
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Binary Translation
	Diapositiva 52
	Eliminating faults/traps
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84

