

CHAPTER 12
Symmetric Key
Cryptography

Slides adapted from "Foundations of Security: What Every Programmer
Needs To Know" by Neil Daswani, Christoph Kern, and Anita Kesavan
(ISBN 1590597842; http://www.foundationsofsecurity.com). Except as
otherwise noted, the content of this presentation is licensed under the
Creative Commons 3.0 License.

12.1. Introduction to
Cryptography
 Goal: Confidentiality

 Message “sent in clear”: Eve can overhear
 Encryption unintelligible to Eve; only Bob can

decipher with his secret key (shared w/ Alice)

Alice Bob

“My account number is 485853
and my PIN is 4984”

Eve

12.1. Introduction to
Cryptography
 Goal: Confidentiality

 Message “sent in clear”: Eve can overhear
 Encryption unintelligible to Eve; only Bob can

decipher with his secret key (shared w/ Alice)

Alice Bob

“My account number is 485853
and my PIN is 4984”

Eve

12.1.1. Substitution Ciphers

 Plaintext: meet me at central park
 Ciphertext: phhw ph dw fhqwudo sdun

 Plain: abcdefghijklmnopqrstuvwxyz
 Cipher: defghijklmnopqrstuvwxyzabc

 Key is 3, i.e. shift letter right by 3
 Easy to break due to frequency of letters
 Good encryption algorithm produces output that

looks random: equal probability any bit is 0 or 1

12.1.2. Notation & Terminology

 m = message (plaintext), c = ciphertext
 F = encryption function
 F-1 = decryption function
 k = key (secret number)

 c = F(m,k) = Fk(m) = encrypted message

 m = F-1(c,k) = F-1
k(c) = decrypted message

 Symmetric cipher: F-1(F(m,k), k) = m, same key

Cipher

Symmetric Encryption

 Alice encrypts a message with the same key
that Bob uses to decrypt.

 Eve can see c, but cannot compute m because k
is only known to Alice and Bob

Alice Bob
1. Construct m
2. Compute c= F(m,k)
3. Send c to Bob

c
4. Receive c from Alice
5. Compute d=F-1(c,k)
6. m = d

12.1.3. Block Ciphers

 Blocks of bits (e.g. 256) encrypted at a time

 Examples of several algorithms:
 Data Encryption Standard (DES)
 Triple DES
 Advanced Encryption Standard (AES) or Rijndael

 Internal Data Encryption Algorithm (IDEA),
Blowfish, Skipjack, many more… (c.f. Schneier)

12.1.3. DES

 Adopted in 1977 by NIST

 Input: 64-bit plaintext, 56-bit key (64 w/ parity)
 Parity Bits: redundancy to detect corrupted keys
 Output: 64-bit ciphertext
 Susceptible to Brute-Force (try all 256 keys)

 1998: machine Deep Crack breaks it in 56 hours
 Subsequently been able to break even faster
 Key size should be at least 128 bits to be safe

12.1.3. Triple DES

 Do DES thrice w/ 3 different keys (slower)
 c = F(F-1(F(m ,k1),k2),k3) where F = DES

Why decrypt with k2?

Backwards compatible w/ DES, easy upgrade

 Keying Options: Key Size (w/ Parity)
k1 ≠ k2 ≠ k3 : 168-bit (192-bit)

k1 = k3 ≠ k2 : 112-bit (128-bit)

k1 = k2 = k3 : 56-bit (64-bit) (DES)

12.1.3. AES (Rijndael)

 Invented by 2 Belgian cryptographers
 Selected by NIST from 15 competitors after

three years of conferences vetting proposals
 Selection Criteria:

 Security, Cost (Speed/Memory)
 Implementation Considerations (Hardware/Software)

 Key size & Block size: 128, 192, or 256 bits
(much larger than DES)

 Rely on algorithmic properties for security, not
obscurity

12.1.4. Security by Obscurity:
Recap
 Design of DES, Triple DES algorithms public

 Security not dependent on secrecy of implementation
 But rather on secrecy of key

 Benefits of Keys:
 Easy to replace if compromised
 Increasing size by one bit, doubles attacker’s work

 If invent own algorithm, make it public! Rely on
algorithmic properties (math), not obscurity.

12.1.5. Electronic Code Book

 Encrypting more data: ECB encrypt blocks of
data in a large document

 Leaks info about structure of document (e.g.
repeated plaintext blocks)

DES

P1

K

C1

DES

P2

K

C2

DES

Pn

K

Cn

…

12.1.5. Review of XOR

 Exclusive OR (either
x or y but not both)

 Special Properties:
 x XOR y = z
 z XOR y = x
 x XOR z = y

x y x XOR y

0 0 0

0 1 1

1 0 1

1 1 0

12.1.5. Cipher Block Chaining

 CBC: uses XOR, no patterns leaked!
 Each ciphertext block depends on prev block

DES

P1

K

C1

DES

P2

K

C2

DES

Pn

K

Cn

…

+ ++

IV

12.1.5. Output Feedback (OFB)

 Makes block cipher into stream cipher
 Like CBC, but do XOR with plaintext after

encryption

AES

P1

K

C1

AESK

C2

AESK

Cn

…

+

IV

+P2
+Pn

12.2. Stream Ciphers

 Much faster than block ciphers

 Encrypts one byte of plaintext at a time

 Keystream: infinite sequence (never reused) of
random bits used as key

 Approximates theoretical scheme: one-time pad,
trying to make it practical with finite keys

12.2.1 One-Time Pad

 Key as long as plaintext, random stream of bits
 Ciphertext = Key XOR Plaintext
 Only use key once!

 Impractical having key the same size as
plaintext (too long, incurs too much overhead)

 Theoretical Significance: “perfect secrecy”
(Shannon) if key is random.
 Under brute-force, every decryption equally likely
 Ciphertext yields no info about plaintext (attacker’s a

priori belief state about plaintext is unchanged)

12.2.2. RC4

 Most popular stream cipher: 10x faster than DES

 Fixed-size key “seed” to generate infinite stream

 State Table S that changes to create stream
 40/256-bit key used to seed table (fill it)

RC4 implementation
Table initialization

 for i = 0 to 255

S[i] = i

j = 0

for i = 0 to 255

 j = (j + S[i] + key[i mod kl])
 mod 256

 swap (S[i], S[j])

 kl=keylength

Encrypt/decrypt
 i = 0

 j = 0

 for l = 0 to len(input)

 i = (i + 1) mod 256

 j = (j + S[i]) mod 256

 swap (S[i], S[j])

 output[l] =

 S[(S[i] + S[j]) mod 256]

 XOR input[l]

12.2.2. RC4 Pitfalls

 Never use the same key more than once!

 Clients & servers should use different RC4 keys!
 C  S: P XOR k [Eve captures P XOR k]
 S  C: Q XOR k [Eve captures Q XOR k]
 Eve: (P XOR k) XOR (Q XOR k) = P XOR Q!!!
 If Eve knows either P or Q, can figure out the other

 Ex: Simple Mail Transfer Protocol (SMTP)
 First string client sends server is HELO
 Then Eve could decipher first few bytes of response

12.2.2. More RC4 Pitfalls

 Initial bytes of key stream are “weak”
 Ex: WEP protocol in 802.11 wireless standard is

broken because of this
 Discard first 256-512 bytes of stream

 Active Eavesdropper
 Could flip bit without detection
 Can solve by including MAC to protect integrity of

ciphertext

12.3. Steganography

 All ciphers transform plaintext to random bits

 Eve can tell Alice is sending sensitive info to Bob

 Conceal existence of secret message

 Use of a “covert channel” to send a message.

12.3.1. What is Steganography?

 Study of techniques to send sensitive info and
hide the fact that sensitive info is being sent

 Ex: “All the tools are carefully kept” -> Attack
 Other Examples: Invisible ink, Hidden in Images

 Least significant bit of image pixels
 Modifications to image not noticeable by an observer
 Recipient can check for modifications to get message

Red Green Blue
00000000 00000000 00000000

00000001 00000000 00000001 101

12.3.2. Steganography vs.
Cryptography
 Key Advantage: when Alice & Bob don’t want

Eve to know that they’re communicating secrets

 Traffic Analysis can return useful information

 Disadvantages compared to encryption
 Essentially relying on security by obscurity
 Useless once covert channel is discovered
 High overhead (ratio of plain bits/secret bits high)

 Can be used together with encryption, but even
more overhead (additional computation for both)

CHAPTER 13
Asymmetric Key
Cryptography

Slides adapted from "Foundations of Security: What Every Programmer
Needs To Know" by Neil Daswani, Christoph Kern, and Anita Kesavan
(ISBN 1590597842; http://www.foundationsofsecurity.com). Except as
otherwise noted, the content of this presentation is licensed under the
Creative Commons 3.0 License.

13.1. Why Asymmetric Key
Cryptography?
 So two strangers can talk privately on Internet

 Ex: Bob wants to talk to Alice & Carol secretly
 Instead of sharing different pairs of secret keys with

each (as in symmetric key crypto)
 Bob has 2 keys: public key and private (or secret) key

 Alice and Carol can send secrets to Bob
encrypted with his public key

 Only Bob (with his secret key) can read them

13.1. Public Key System

Bob

Alice

Carol

Denise

Directory

13.1. The Public Key Treasure
Chest
 Public key = Chest with open lock
 Private key = Key to chest
 Treasure = Message
 Encrypting with public key

 Find chest with open lock
 Put a message in it
 Lock the chest

 Decrypting with private key
 Unlock lock with key
 Take contents out of the chest

http://www.fortcroghan.org/images/Scavanger%20Hunt.doc

13.1. Asymmetric Encryption

 Alice encrypts a message with different key
than Bob uses to decrypt

 Bob has a public key, kp, and a secret key, ks.
Bob’s public key is known to Alice.

 Asymmetric Cipher: F-1(F(m,kp),ks) = m
Alice Bob

1. Construct m

2. Compute c= F(m,kp)

3. Send c to Bob
c

4. Receive c from Alice
5. Compute d=F-1(c,ks)
6. m = d

13.2. RSA (1)

 Invented by Rivest/Shamir/Adelman (1978)
 First asymmetric encryption algorithm
 Most widely known public key cryptosystem

 Used in many protocols (e.g., SSL, PGP, …)

 Number theoretic algorithm: security based on
difficulty of factoring large prime numbers

 1024, 2048, 4096-bit keys common

13.2. RSA (2)

 Public Key Parameters:
 Large composite number n with two prime factors
 Encryption exponent e coprime (no common factor) to
(n) = (p-1)(q-1)

 Private Key:
 Factors of n: p, q (n = pq)
 Decryption exponent d such that ed *1 (mod (n))

 Encryption: Alice sends c = me mod n
 Decryption: Bob computes m = cd mod n

Key generation and proof :-)
 Choose two distinct prime p and q and compute n = pq.

 n is used as the modulus for both the public and private keys

 Compute φ(n) = (p – 1)(q – 1), where φ is Euler's totient
function.

 Choose an integer e where 1 < e < φ(n) and gcd of (e, φ(n)) =
1

 e is released as the public key exponent.

 Determine d = e–1 mod φ(n); i.e., d is the multiplicative
inverse of e mod φ(n) = solve for d given (de) mod φ(n) = 1.

 d is kept as the private key exponent.

Fermat little theorem

13.3. Elliptic CurveCryptography

 Invented by N. Koblitz & V. Miller (1985)

 Based on hardness of elliptic curve discrete log
problem

 Standardized by NIST, ANSI, IEEE for
government, financial use

 Certicom, Inc. currently holds patent

 Small keys: 163 bits (<< 1024-bit RSA keys)

13.3: RSA vs. ECC

 RSA Advantages:
 Has been around longer; math well-understood
 Patent expired; royalty free
 Faster encryption

 ECC Advantages:
 Shorter key size
 Fast key generation (no primality testing)
 Faster decryption

13.4. Symmetric vs. Asymmetric
Key Cryptography
 Symmetric-Crypto (DES, 3DES, AES)

 Efficient (smaller keys / faster encryption) because
of simpler operations (e.g. discrete log)

 Key agreement problem
 Online

 Asymmetric-Crypto (RSA, ECC)
 RSA 1000x slower than DES, more complicated

operations (e.g. modular exponentiation)
 How to publish public keys? Requires PKI / CAs
 Offline or Online

13.5. Certificate Authorities
 Trusted third party: CA verifies people’s identities
 Authenticates Bob & creates public key

certificate (binds Bob’s identity to his public key)

 CA also revokes keys and certificates
 Certificate Revocation List: compromised keys

 Public Key Infrastructure (PKI): CA + everything
required for public key encryption

13.7. Challenge – Response with
Encryption
 Alice issues “challenge” message to person

 Random # (nonce) encrypted with Bob’s public key
 If person is actually Bob, he will be able to decrypt it

Bob
{384764342}PK(Bob)

384764342

Alice

Eve
{957362353}PK(Bob)

???

CHAPTER 14
Key Management &
Exchange

Slides adapted from "Foundations of Security: What Every Programmer
Needs To Know" by Neil Daswani, Christoph Kern, and Anita Kesavan
(ISBN 1590597842; http://www.foundationsofsecurity.com). Except as
otherwise noted, the content of this presentation is licensed under the
Creative Commons 3.0 License.

14.1. Types of Keys

 Encryption keys can be used to accomplish
different security goals

 Identity Keys

 Conversation or Session Keys

 Integrity Keys

 One Key, One Purpose: Don’t reuse keys!

14.1.1. Identity Keys

 Used to help carry out authentication

 Authentication once per connection between two
parties

 Generated by principal, long-lifetime (more bits)

 Bound to identity with certificate (e.g. public keys
in asymmetric system)

14.1.2. Conversation or Session
Keys
 Helps achieve confidentiality

 Used after 2 parties have authenticated
themselves to each other

 Generated by key exchange protocol (e.g. Diffie-
Hellman algorithm)

 Short-lifetime (fewer bits)

14.1.3. Integrity Keys

 Key used to compute Message Authentication
Codes (MACs)

 Alice and Bob share integrity key
 Can use to compute MACs on message
 Detect if Eve tampered with message

 Integrity keys used in digital signatures

14.2. Key Generation
 Key generated through algorithms (e.g. RSA)

 Usually involves random # generation as a step
 But for Identity Based Encryption, master key

 Avoid weak keys (e.g. in DES keys of all 1s or
0s, encrypting twice decrypts)

 Don’t want keys stolen: After generation
 Don’t store on disk connected to network
 Also eliminate from memory (avoid core dump attack)

 Generating keys from passwords: Use
password-based encryption systems to guard
against dictionary attacks

14.2.1. Random Number
Generation
 Ex: Alice & Bob use RSA to exchange a secret

key for symmetric crypto (faster)
 Alice generates random # k
 Sends to Bob, encrypted with his public key
 Then use k as key for symmetric cipher

 But if attacker can guess k, no secrecy
 Active eavesdropper can even modify/inject data

into their conversation
 Problem: Generating hard to guess random #s

14.2.2. The rand() function

 How about using rand() function in C?
 Uses linear congruential generator
 After some time, output repeats predictably

 Can infer seed based on few outputs of rand()
 Allows attacker to figure out all past & future output

values
 No longer unpredictable

 Don’t use for security applications

14.2.3. Random Device Files

 Virtual devices that look like files: (e.g. on Linux)
 Reading from file provides unpredictable random bits

generated based on events from booting
 /dev/random – blocks until random bits available
 /dev/urandom – doesn’t block, returns what’s there

$ head -c 20 /dev/random > /tmp/bits # read 20 chars
$ uuencode --base64 /tmp/bits printbits # encode,
print
begin-base64 644 printbits
bj4Ig9V6AAaqH7jzvt9T60aogEo===== # random output

14.2.4. Random APIs

 Windows OS: CryptGenKey() – to securely
generate keys

 Java: SecureRandom class in java.security
package (c.f. AESEncrypter example, Ch. 12)
 Underlying calls to OS (e.g. CryptGenKey() for

Windows or reads from /dev/random for Linux)
 No guarantees b/c cross-platform
 But better than java.util.Random

14.3. Key (Secret) Storage

 Secret to store for later use
 Cryptographic key (private)
 Password or any info system’s security depends on

 Recall Kerchoff’s principle: security should
depend not on secrecy of algorithm, but on
secrecy of cryptographic keys

 Options for storing secrets?

The general principle

 Cryptography does not solve a problem
but simplifies it

 We have encrypted a huge file with a
small key

 How we protect the key?
 The file is protected provided that we can

protect the key

14.3.1. Keys in Source Code

 Ex: Program storing a file on disk such that no
other program can touch it Might use key to
encrypt file: Where to store it?

 Maybe just embed in source code? Easy since
you can use at runtime to decrypt.

 Can reverse-engineer binary to obtain the key
(even if obfuscated) e.g. strings utility outputs
sequence of printable chars in object code

14.3.1. Reverse-Engineering
/* vault program (from 6.1.2) */
1 int checkPassword() {
2 char pass[16];
3 bzero(pass, 16); // Initialize
4 printf ("Enter password: ");
5 gets(pass);
6 if (strcmp(pass, "opensesame") == 0)
7 return 1;
8 else
9 return 0;
10 }
11
12 void openVault() {
13 // Opens the vault
14 }
15
16 main() {
17 if (checkPassword()) {
18 openVault();
19 printf ("Vault opened!");
20 }
21 }

partial output of printable
characters in object code
$ strings vault
C@@0@
$ @
Enter password:
opensesame
__main
_impure_ptr
calloc
cygwin_internal
dll_crt0__FP11per_process
free
gets
malloc
printf
realloc
strcmp
GetModuleHandleA
cygwin1.dll
KERNEL32.dll

Key Leaked!

14.3.2. Storing the Key in a File
on Disk
 Alternative to storing in source code, could store

in file on disk

 Attacker with read access could
 Find files with high entropy (randomness)
 These would be candidate files to contain keys

 C.f. “Playing Hide and Seek with Stored Keys”
(Shamir and van Someren)

14.3.3. “Hard to Reach” Places

 Store in Windows Registry instead of file?
 Part of OS that maintains config info
 Not as easy for average user to open

 But regedit can allow attacker (or slightly
above-average user) to read the registry
 Also registry entries stored on disk
 Attacker with full read access can read them

 Registry not the best place to store secrets

14.3.4. Storing Secrets in
External Devices (1)
 Store secrets in device external to computer!

 Key won’t be compromised even if computer is
 Few options: smart card, HSMs, PDAs, key disks

 Smart Card (contains tamper-resistant chip)
 Limited CPU power, vulnerable to power attacks
 Must rely on using untrusted PIN readers
 Attacker observes power of circuits,

computation times to extract bits of
the key

14.3.4. Storing Secrets in
External Devices (2)
 Hardware Security Module (HSM)

 Device dedicated to storing crypto secrets
 External device, add-on card, or separate machine
 Higher CPU power, key never leaves HSM

(generated and used there)

 PDA or Cell phone
 No intermediate devices like PIN readers
 More memory, faster computations
 Can have security bugs of their own

14.3.4. Storing Secrets in
External Devices (3)
 Key Disk

 USB, non-volatile memory, 2nd authentication factor
 No CPU, not tamper-resistant
 No support for authentication
 Ex: IronKey, secure encrypted flash drive

 External Devices & Keys
 Allows key to be removed from host system
 Problem: connected to compromised host
 Advantage: if crypto operation done on device & key

never leaves it, damage limited
 Can attack only while connected, can’t steal key

14.4. Key Agreement and
Exchange
 Keys have been generated and safely stored,

now what?
 If Alice & Bob both have it, can do symmetric crypto
 Otherwise, have to agree on key

 How to create secure communication channel
for exchange?

 Few Options
 Use Asymmetric Keys
 Diffie-Hellman (DH) Key Exchange

14.4.1. Using Asymmetric Keys

 Public-key crypto much more computationally
expensive than symmetric key crypto

 Use RSA to send cryptographically random
conversation key k

 Use k as key for faster symmetric ciphers (e.g.
AES) for rest of conversation

14.4.1. Key Exchange Example

Alice Bob

{CK=8a6cd93b2b4f8803}RSA(XYZ)

{Hello Alice}AES(8a6cd93b2b4f8803)

I am Bob. My public key is XYZ.

Asymmetric (e.g. RSA)

Alice Bob

{k} PK(B)

{data}k

{data}k

Symmetric (e.g. AES)

14.4.2. Diffie-Hellman (DH) (1)

 Key exchange (over insecure channel) without
public-key certificates?

 DH: use public parameters g, p
 Large prime number p

 Generator g (of Zp = {1, …, p-1}), i.e. powers g, g2, …,
gp-1 produce all these elements

 Alice & Bob generate rand #s a, b respectively
 Using g, p, a, b, they can create a secret known

only to them (relies on hardness of solving the
discrete log problem)

14.4.2. Diffie-Hellman (DH) (2)

Alice Bob

ga mod p

gb mod p

Choose a Choose b

Compute (gb)a
mod p

Compute
(ga)b mod p

Secret Key = gab mod p

Eve can compute (ga)(gb)= ga+b mod p but that’s not the secret key!

14.4.2. Diffie-Hellman (DH) (2)

Alice Bob

ga mod p

gb mod p

Choose a Choose b

Compute (gb)a
mod p

Compute
(ga)b mod p

Secret Key = gab mod p

Eve can compute (ga)(gb)= ga+b mod p but that’s not the secret key!

14.4.2. Man-in-the-Middle
Attack against DH

Mallory can see all communication between Alice & Bob!

Alice Bob

ga

gb

Choose a Choose b

Compute (gm)a

Compute (gm)b

Mallory
Choose m

gm

gm Compute (gb)m

Compute (ga)m

Secret Key = gam Secret Key = gbm

CHAPTER 15
MACs and Signatures

Slides adapted from "Foundations of Security: What Every Programmer
Needs To Know" by Neil Daswani, Christoph Kern, and Anita Kesavan
(ISBN 1590597842; http://www.foundationsofsecurity.com). Except as
otherwise noted, the content of this presentation is licensed under the
Creative Commons 3.0 License.

 Given arbitrary-length input, M, produce fixed-
length output (message digest), H(M), such that:

 Efficiency: Easy to compute H
 One-Way/Pre-Image resistance: Given H(M),

hard to compute M (pre-image)
 Collision resistance: Hard to find M1 ≠ M2 such

that H(M1) = H(M2)

15.1. Secure Hash Functions

HM MD=H(M)

15.1. Secure Hash Functions
Examples
 Non-Examples:

 Add ASCII values (collisions): H('AB') = H('BA')
 Checksums CRC32 not one-way or collision-resistant

 MD5: “Message Digest 5” invented by Rivest
 Input: multiple of 512-bits (padded)
 Output: 128-bits

 SHA1: developed by NIST & NSA
 Input: same as MD5, 512 bits
 Output: 160-bits

15.2. MACs

 Used to determine sender of message

 If Alice and Bob share key k, then Alice sends
message M with MAC tag t = MAC(M,k)

 Then Bob receives M’ and t’ and can check if
the message or signature has been tampered by
verifying t’ = MAC(M’, k)

15.2.1. CBC MACs

 Encrypt message with block cipher in CBC mode
 IV = 0, last encrypted block can serve as tag
 Insecure for variable-length messages

AES

M1

k AES

M2

k AES

Mn

k

tag

…
+ ++

0

15.2.2. HMAC

 Secure hash function to compute MAC
 Hash function takes message as input while

MAC takes message and key
 Simply prepending key onto message is not

secure enough (e.g. given MAC of M, attacker
can compute MAC of M||N for desired N)

 Def:
 Where K is key k padded with zeros
 opad, ipad are hexadecimal constants

, = Å || Å ||() ((opad) ((ipad)))HMAC M k H K H K M

15.3. Signatures (1)

 Two major operations: P, principal
 Sign(M, k) – M is message
 Verify(M, sig, P) – sig is signature to be verified

 Signature: sequence of bits produced by Sign()
such that Verify(M, sig, P) , (sig == Sign(M, k))
 Non-repudiable evidence that P signed M
 Many applications: SSL, to sign binary code,

authenticate source of e-mail

 Use asymmetric encryption ops F & F-1

15.3. Signatures (2)

 S() & V() : implement sign & verify functions

 Signature is s = S(M, ks) =F-1(h(M), ks)
 Decrypt hash with secret key
 Only signer (principal with secret key) can sign

 Verify s: V(M, s, kp) = (F(s,kp) == h(M))
 Encrypting with public key
 Allows anyone to verify a signature
 Need to bind principal’s identity to their public key

15.3.1. Certificates & CAs (1)

 Principal needs certificate from CA (i.e. its digital
signature) to bind his identity to his public key

 CA must first sign own certificate attesting to
own identity (“root”)

 Certificate, C(P), stored as text: name of
principal P, public key (kp(P)), expiration date

 C(P) = (Ctext(P), Csig(P))
 Root Certificate, C(CA), looks like

 Ctext(CA) = ("CA", kp(CA), exp)

 Csig(CA) = S(Ctext(CA), ks(CA))

15.3.1. Certificates & CAs (2)
 Alice constructs certificate text:

 Ctext(Alice)=("Alice", kp(Alice), exp)
 Authenticates herself to CA (through “out-of-band”

mechanism such as driver’s license)

 CA signs Alice’s certificate:
Csig(Alice)=S(Ctext(Alice),ks(CA))

 Alice has public key certificate
 C(Alice)=(Ctext(Alice),Csig(Alice))

 Can use to prove that kp(Alice) is her public key

signature verifies message?

15.3.2. Signing and Verifying

 Signing: sig = Sign(M, ks(P)) = (S(M, ks(P)),C(P))
 Compute S() with secret key: sig.S
 Append certificate: sig.C

 Verifying: Verify(M, sig, P) =
 V(M, sig.S, kp(P)) &
 V(sig.Ctext(P), sig.Csig(P), kp(CA)) &
 (Ctext(P).name == P) &
 (today < sig.Ctext(P).date)

signed by CA?
name matches on cert?
certificate not expired?

15.3.3. Registration Authorities

 Authenticating every principal can burden CA
 Can authorize RA to authenticate on CA’s behalf

 CA signs certificate binding RA’s identity to public key
 Signature now includes RA’s certificate too
 Possibly many intermediaries in the verification

process starting from “root” CA certificate
 More links in chain, more weak points: careful when

verifying signatures

 Ex: IE would not verify intermediate certificates
and trust arbitrary domains (anyone could sign)

15.3.4. Web of Trust

 Pretty Good Privacy (PGP): digital signatures
can be used to sign e-mail

 “Web of trust” model: users sign own certificates
and other’s certificates to establish trust

 Two unknown people can find a certificate chain
to a common person trusted by both

Source:
http://xkcd.com/364/

15.4. Attacks Against
Hash Functions
 Researchers have been able to obtain collisions

for some hash functions
 Collision against SHA-1: 263 computations (NIST

recommends phase out by 2010 to e.g. SHA-256)
 MD5 seriously compromised: phase out now!

 Collision attacks can’t fake arbitrary digital
signatures (requires finding pre-images)

 However could get 2 documents with same hash
and sign one and claim other was signed

15.5. SSL

 Handshake: steps client & server perform
before exchanging sensitive app-level data

 Goal of handshake: client & server agree on
master secret used for symmetric crypto

 Two round trips:
 1st trip is “hello” messages: what versions of SSL

and which cryptographic algorithms supported
 2nd varies based on client or mutual authentication

15.5.1. Server-Authenticated
Only (1)
 Client creates random pre-master secret,

encrypts with server’s public key
 Server decrypts with own private key
 Both compute hashes including random bytes

exchanged in “hello” to create master secret

 With master secret, symmetric session key and
integrity key derived (as specified by SSL)

 App Data encrypted with symmetric key

15.5.1. Server-Authenticated
Only (2)

Client Server

ClientHello

ServerHello, Certificate, ServerHelloDone

ClientKeyExchange, ChangeCipherSpec, Finished

ChangeCipherSpec, Finished

Application Data

15.5.2. Mutual Authentication (1)

 Client also sends own certificate to server
 Sends CertificateVerify message to allow server

to authenticate client’s public key
 Pre-master secret set, compute master secret
 Derive symmetric key & exchange data

 SSL mechanisms prevent many attacks (e.g.
man-in-the-middle) and has performance
optimizations (e.g. caching security params)

Client Server

ClientHello

ServerHello, Certificate, CertificateRequest, ServerHelloDone

Certificate, ClientKeyExchange, CertificateVerify,
ChangeCipherSpec, Finished

Application Data

ChangeCipherSpec, Finished

15.5.2. Mutual Authentication (2)

Summary

 MACs - protect integrity of messages
 Compute tag to detect tampering
 Ex: CBC-MAC, HMAC (relies on secure hashes)

 Signatures – binds messages to senders
 Allows anyone to verify sender
 Prevents forged signatures
 Use CAs to bind identities to public keys
 Or use Web of Trust model

 Application: SSL (“Putting it all together”)
 Relies on Cryptography: symmetric & public-key
 And MACs & signatures

Some final words
 Using cryptography in a system full of

vulnerabilities = fortness built on sand
because the keys can be stolen

 Cryptography does not solve the problems,
it just simplifies them

You cannot hide a 1 Terabyte file

You can encrypt the file with a 512 bits key
and hide the key =

The same problem but much more simpler

	CHAPTER 12 Symmetric Key Cryptography
	12.1. Introduction to Cryptography
	Diapositiva 3
	12.1.1. Substitution Ciphers
	12.1.2. Notation & Terminology
	Symmetric Encryption
	12.1.3. Block Ciphers
	12.1.3. DES
	12.1.3. Triple DES
	12.1.3. AES (Rijndael)
	12.1.4. Security by Obscurity: Recap
	12.1.5. Electronic Code Book
	12.1.5. Review of XOR
	12.1.5. Cipher Block Chaining
	12.1.5. Output Feedback (OFB)
	12.2. Stream Ciphers
	12.2.1 One-Time Pad
	12.2.2. RC4
	Diapositiva 19
	12.2.2. RC4 Pitfalls
	12.2.2. More RC4 Pitfalls
	12.3. Steganography
	12.3.1. What is Steganography?
	12.3.2. Steganography vs. Cryptography
	CHAPTER 13 Asymmetric Key Cryptography
	13.1. Why Asymmetric Key Cryptography?
	13.1. Public Key System
	13.1. The Public Key Treasure Chest
	13.1. Asymmetric Encryption
	13.2. RSA (1)
	13.2. RSA (2)
	Diapositiva 32
	13.3. Elliptic Curve Cryptography
	13.3: RSA vs. ECC
	13.4. Symmetric vs. Asymmetric Key Cryptography
	13.5. Certificate Authorities
	13.7. Authentication with Encryption
	CHAPTER 14 Key Management & Exchange
	14.1. Types of Keys
	14.1.1. Identity Keys
	14.1.2. Conversation or Session Keys
	14.1.3. Integrity Keys
	14.2. Key Generation
	14.2.1. Random Number Generation
	14.2.2. The rand() function
	14.2.3. Random Device Files
	14.2.4. Random APIs
	14.3. Key (Secret) Storage
	Diapositiva 49
	14.3.1. Keys in Source Code
	14.3.1. Reverse-Engineering
	14.3.2. Storing the Key in a File on Disk
	14.3.3. “Hard to Reach” Places
	14.3.4. Storing Secrets in External Devices (1)
	14.3.4. Storing Secrets in External Devices (2)
	14.3.4. Storing Secrets in External Devices (3)
	14.4. Key Agreement and Exchange
	14.4.1. Using Asymmetric Keys
	14.4.1. Key Exchange Example
	14.4.2. Diffie-Hellman (DH) (1)
	14.4.2. Diffie-Hellman (DH) (2)
	Diapositiva 62
	14.4.2. Man-in-the-Middle Attack against DH
	CHAPTER 15 MACs and Signatures
	15.1. Secure Hash Functions
	15.1. Secure Hash Functions Examples
	15.2. MACs
	15.2.1. CBC MACs
	15.2.2. HMAC
	15.3. Signatures (1)
	15.3. Signatures (2)
	15.3.1. Certificates & CAs (1)
	15.3.1. Certificates & CAs (2)
	15.3.2. Signing and Verifying
	15.3.3. Registration Authorities
	15.3.4. Web of Trust
	15.4. Attacks Against Hash Functions
	15.5. SSL
	15.5.1. Server-Authenticated Only (1)
	15.5.1. Server-Authenticated Only (2)
	15.5.2. Mutual Authentication (1)
	15.5.2. Mutual Authentication (2)
	Summary
	Diapositiva 84

