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12.1. Introduction to 
Cryptography
 Goal: Confidentiality

 Message “sent in clear”: Eve can overhear
 Encryption unintelligible to Eve; only Bob can 

decipher with his secret key (shared w/ Alice)

Alice Bob

“My account number is 485853 
and my PIN is 4984”

Eve
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12.1.1. Substitution Ciphers

 Plaintext: meet me at central park      
 Ciphertext: phhw ph dw fhqwudo sdun

 Plain:   abcdefghijklmnopqrstuvwxyz
 Cipher: defghijklmnopqrstuvwxyzabc

 Key is 3, i.e. shift letter right by 3
 Easy to break due to frequency of letters
 Good encryption algorithm produces output that 

looks random: equal probability any bit is 0 or 1



  

12.1.2. Notation & Terminology

 m = message (plaintext), c = ciphertext
 F = encryption function
 F-1 = decryption function
 k = key (secret number)

 c = F(m,k) = Fk(m) = encrypted message

 m = F-1(c,k) = F-1
k(c) = decrypted message

 Symmetric cipher: F-1(F(m,k), k) = m, same key

Cipher



  

Symmetric Encryption

 Alice encrypts a message with the same key 
that Bob uses to decrypt.

 Eve can see c, but cannot compute m because k 
is only known to Alice and Bob

Alice Bob
1. Construct m
2. Compute c= F(m,k)
3. Send c to Bob

c
4. Receive c from Alice
5. Compute d=F-1(c,k)
6. m = d



  

12.1.3. Block Ciphers

 Blocks of bits (e.g. 256) encrypted at a time

 Examples of several algorithms:
 Data Encryption Standard (DES)
 Triple DES
 Advanced Encryption Standard (AES) or Rijndael

 Internal Data Encryption Algorithm (IDEA), 
Blowfish, Skipjack, many more… (c.f. Schneier)



  

12.1.3. DES

 Adopted in 1977 by NIST

 Input: 64-bit plaintext, 56-bit key (64 w/ parity)
 Parity Bits: redundancy to detect corrupted keys
 Output: 64-bit ciphertext
 Susceptible to Brute-Force (try all 256 keys)

 1998: machine Deep Crack breaks it in 56 hours
 Subsequently been able to break even faster
 Key size should be at least 128 bits to be safe



  

12.1.3. Triple DES

 Do DES thrice w/ 3 different keys (slower)
 c = F(F-1(F(m ,k1),k2),k3) where F = DES

Why decrypt with k2?

Backwards compatible w/ DES, easy upgrade

 Keying Options: Key Size (w/ Parity)
k1 ≠ k2 ≠ k3 : 168-bit (192-bit)

k1 = k3 ≠ k2 : 112-bit (128-bit)

k1 = k2 = k3 : 56-bit (64-bit) (DES)



  

12.1.3. AES (Rijndael)

 Invented by 2 Belgian cryptographers
 Selected by NIST from 15 competitors after 

three years of conferences vetting proposals
 Selection Criteria: 

 Security, Cost (Speed/Memory)
 Implementation Considerations (Hardware/Software)

 Key size & Block size: 128, 192, or 256 bits 
(much larger than DES)

 Rely on algorithmic properties for security, not 
obscurity



  

12.1.4. Security by Obscurity: 
Recap
 Design of DES, Triple DES algorithms public

 Security not dependent on secrecy of implementation
 But rather on secrecy of key

 Benefits of Keys:
 Easy to replace if compromised
 Increasing size by one bit, doubles attacker’s work

 If invent own algorithm, make it public! Rely on 
algorithmic properties (math), not obscurity.



  

12.1.5. Electronic Code Book

 Encrypting more data: ECB encrypt blocks of 
data in a large document

 Leaks info about structure of document (e.g. 
repeated plaintext blocks)
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12.1.5. Review of XOR

 Exclusive OR (either 
x or y but not both)

 Special Properties:
 x XOR y = z
 z XOR y = x
 x XOR z = y 

x y x XOR y

0 0 0

0 1 1

1 0 1

1 1 0



  

12.1.5. Cipher Block Chaining

 CBC: uses XOR, no patterns leaked!
 Each ciphertext block depends on prev block
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12.1.5. Output Feedback (OFB)

 Makes block cipher into stream cipher
 Like CBC, but do XOR with plaintext after 

encryption
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12.2. Stream Ciphers

 Much faster than block ciphers

 Encrypts one byte of plaintext at a time

 Keystream: infinite sequence (never reused) of 
random bits used as key

 Approximates theoretical scheme: one-time pad, 
trying to make it practical with finite keys



  

12.2.1 One-Time Pad

 Key as long as plaintext, random stream of bits
 Ciphertext = Key XOR Plaintext
 Only use key once!

 Impractical having key the same size as 
plaintext (too long, incurs too much overhead)

 Theoretical Significance: “perfect secrecy” 
(Shannon) if key is random.
 Under brute-force, every decryption equally likely
 Ciphertext yields no info about plaintext (attacker’s a 

priori belief state about plaintext is unchanged)



  

12.2.2. RC4

 Most popular stream cipher: 10x faster than DES

 Fixed-size key “seed” to generate infinite stream

 State Table S that changes to create stream
 40/256-bit key used to seed table (fill it)



  

RC4 implementation
Table initialization

 for i = 0 to 255

S[i] = i

j = 0

for i = 0 to 255

   j = (j + S[i] + key[i mod kl]) 
           mod 256

  swap (S[i], S[j])

 kl=keylength

Encrypt/decrypt
   i = 0

 j = 0

      for l = 0 to len(input)

          i = (i + 1) mod 256

          j = (j + S[i]) mod 256

          swap (S[i], S[j])

         output[l] = 

              S[(S[i] + S[j]) mod 256] 

                       XOR input[l]



  

12.2.2. RC4 Pitfalls

 Never use the same key more than once!

 Clients & servers should use different RC4 keys!
 C  S: P XOR k [Eve captures P XOR k]
 S  C: Q XOR k [Eve captures Q XOR k]
 Eve: (P XOR k) XOR (Q XOR k) = P XOR Q!!!
 If Eve knows either P or Q, can figure out the other

 Ex: Simple Mail Transfer Protocol (SMTP)
 First string client sends server is HELO
 Then Eve could decipher first few bytes of response



  

12.2.2. More RC4 Pitfalls

 Initial bytes of key stream are “weak”
 Ex: WEP protocol in 802.11 wireless standard is 

broken because of this
 Discard first 256-512 bytes of stream

 Active Eavesdropper
 Could flip bit without detection
 Can solve by including MAC to protect integrity of 

ciphertext



  

12.3. Steganography

 All ciphers transform plaintext to random bits

 Eve can tell Alice is sending sensitive info to Bob

 Conceal existence of secret message

 Use of a “covert channel” to send a message.



  

12.3.1. What is Steganography?

 Study of techniques to send sensitive info and 
hide the fact that sensitive info is being sent

 Ex: “All the tools are carefully kept” -> Attack
 Other Examples: Invisible ink, Hidden in Images

 Least significant bit of image pixels
 Modifications to image not noticeable by an observer
 Recipient can check for modifications to get message

Red      Green    Blue
00000000 00000000 00000000 

00000001 00000000 00000001 101



  

12.3.2. Steganography vs. 
Cryptography
 Key Advantage: when Alice & Bob don’t want 

Eve to know that they’re communicating secrets

 Traffic Analysis can return useful information

 Disadvantages compared to encryption
 Essentially relying on security by obscurity
 Useless once covert channel is discovered 
 High overhead (ratio of plain bits/secret bits high)

 Can be used together with encryption, but even 
more overhead (additional computation for both)
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13.1. Why Asymmetric Key 
Cryptography?
 So two strangers can talk privately on Internet

 Ex: Bob wants to talk to Alice & Carol secretly
 Instead of sharing different pairs of secret keys with 

each (as in symmetric key crypto)
 Bob has 2 keys: public key and private (or secret) key

 Alice and Carol can send secrets to Bob 
encrypted with his public key

 Only Bob (with his secret key) can read them



  

13.1. Public Key System

Bob

Alice

Carol

Denise

Directory



  

13.1.  The Public Key Treasure 
Chest
 Public key = Chest with open lock
 Private key = Key to chest
 Treasure = Message
 Encrypting with public key

 Find chest with open lock
 Put a message in it
 Lock the chest

 Decrypting with private key
 Unlock lock with key 
 Take contents out of the chest

http://www.fortcroghan.org/images/Scavanger%20Hunt.doc


  

13.1. Asymmetric Encryption

 Alice encrypts a message with different key 
than Bob uses to decrypt

 Bob has a public key, kp, and a secret key, ks.  
Bob’s public key is known to Alice.

 Asymmetric Cipher: F-1(F(m,kp),ks) = m
Alice Bob

1. Construct m

2. Compute c= F(m,kp)

3. Send c to Bob
c

4. Receive c from Alice
5. Compute d=F-1(c,ks)
6. m = d



  

13.2. RSA (1)

 Invented by Rivest/Shamir/Adelman (1978) 
 First asymmetric encryption algorithm
 Most widely known public key cryptosystem

 Used in many protocols (e.g., SSL, PGP, …)

 Number theoretic algorithm: security based on 
difficulty of factoring large prime numbers

 1024, 2048, 4096-bit keys common



  

13.2. RSA (2)

 Public Key Parameters:
 Large composite number n with two prime factors
 Encryption exponent e coprime (no common factor) to 
(n) = (p-1)(q-1)

 Private Key:
 Factors of n: p, q (n = pq)
 Decryption exponent d such that ed *1 (mod (n))

 Encryption: Alice sends c = me mod n
 Decryption: Bob computes m = cd mod n



  

Key generation and proof :-) 
 Choose two distinct prime p and q and compute n = pq. 

 n is used as the modulus for both the public and private keys

 Compute φ(n) = (p – 1)(q – 1), where φ is Euler's totient 
function.

 Choose an integer e where 1 < e < φ(n) and gcd of (e, φ(n)) = 
1

 e is released as the public key exponent.

 Determine d = e–1 mod φ(n); i.e., d is the multiplicative 
inverse of e mod φ(n) = solve for d given (de) mod φ(n) = 1.

 d is kept as the private key exponent.

Fermat little theorem 



  

13.3. Elliptic CurveCryptography

 Invented by N. Koblitz & V. Miller (1985)

 Based on hardness of elliptic curve discrete log 
problem

 Standardized by NIST, ANSI, IEEE for 
government, financial use

 Certicom, Inc. currently holds patent

 Small keys: 163 bits (<< 1024-bit RSA keys)



  

13.3: RSA vs. ECC

 RSA Advantages:
 Has been around longer; math well-understood
 Patent expired; royalty free
 Faster encryption

 ECC Advantages:
 Shorter key size
 Fast key generation (no primality testing)
 Faster decryption



  

13.4. Symmetric vs. Asymmetric 
Key Cryptography
 Symmetric-Crypto (DES, 3DES, AES)

 Efficient (smaller keys / faster encryption) because 
of simpler operations (e.g. discrete log)

 Key agreement problem
 Online

 Asymmetric-Crypto (RSA, ECC)
 RSA 1000x slower than DES, more complicated 

operations (e.g. modular exponentiation)
 How to publish public keys? Requires PKI / CAs
 Offline or Online



  

13.5. Certificate Authorities
 Trusted third party: CA verifies people’s identities
 Authenticates Bob & creates public key 

certificate (binds Bob’s identity to his public key)

 CA also revokes keys and certificates
 Certificate Revocation List: compromised keys

 Public Key Infrastructure (PKI): CA + everything 
required for public key encryption



  

13.7. Challenge – Response with 
Encryption
 Alice issues “challenge” message to person

 Random # (nonce) encrypted with Bob’s public key
 If person is actually Bob, he will be able to decrypt it

Bob
{384764342}PK(Bob)

384764342

Alice

Eve
{957362353}PK(Bob)

???
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14.1. Types of Keys

 Encryption keys can be used to accomplish 
different security goals

 Identity Keys

 Conversation or Session Keys

 Integrity Keys

 One Key, One Purpose: Don’t reuse keys!



  

14.1.1. Identity Keys

 Used to help carry out authentication

 Authentication once per connection between two 
parties

 Generated by principal, long-lifetime (more bits)

 Bound to identity with certificate (e.g. public keys 
in asymmetric system)



  

14.1.2. Conversation or Session 
Keys
 Helps achieve confidentiality

 Used after 2 parties have authenticated 
themselves to each other

 Generated by key exchange protocol (e.g. Diffie-
Hellman algorithm)

 Short-lifetime (fewer bits)



  

14.1.3. Integrity Keys

 Key used to compute Message Authentication 
Codes (MACs)

 Alice and Bob share integrity key
 Can use to compute MACs on message
 Detect if Eve tampered with message

 Integrity keys used in digital signatures



  

14.2. Key Generation
 Key generated through algorithms (e.g. RSA)

 Usually involves random # generation as a step
 But for Identity Based Encryption, master key

 Avoid weak keys (e.g. in DES keys of all 1s or 
0s, encrypting twice decrypts)

 Don’t want keys stolen: After generation
 Don’t store on disk connected to network
 Also eliminate from memory (avoid core dump attack)

 Generating keys from passwords: Use 
password-based encryption systems to guard 
against dictionary attacks



  

14.2.1. Random Number 
Generation
 Ex: Alice & Bob use RSA to exchange a secret 

key for symmetric crypto  (faster)
 Alice generates random # k
 Sends to Bob, encrypted with his public key
 Then use k as key for symmetric cipher

 But if attacker can guess k, no secrecy
 Active eavesdropper can even modify/inject data 

into their conversation
 Problem: Generating hard to guess random #s



  

14.2.2. The rand() function

 How about using rand() function in C?
 Uses linear congruential generator
 After some time, output repeats predictably

 Can infer seed based on few outputs of rand()
 Allows attacker to figure out all past & future output 

values
 No longer unpredictable

 Don’t use for security applications



  

14.2.3. Random Device Files

 Virtual devices that look like files: (e.g. on Linux)
 Reading from file provides unpredictable random bits 

generated based on events from booting
 /dev/random – blocks until random bits available
 /dev/urandom – doesn’t block, returns what’s there

$ head -c 20 /dev/random > /tmp/bits # read 20 chars
$ uuencode --base64 /tmp/bits printbits # encode, 
print
begin-base64 644 printbits
bj4Ig9V6AAaqH7jzvt9T60aogEo===== # random output



  

14.2.4. Random APIs

 Windows OS: CryptGenKey() – to securely 
generate keys

 Java: SecureRandom class in java.security 
package (c.f. AESEncrypter example, Ch. 12)
 Underlying calls to OS (e.g. CryptGenKey() for 

Windows or reads from /dev/random for Linux)
 No guarantees b/c cross-platform
 But better than java.util.Random



  

14.3. Key (Secret) Storage

 Secret to store for later use
 Cryptographic key (private)
 Password or any info system’s security depends on

 Recall Kerchoff’s principle: security should 
depend not on secrecy of algorithm, but on 
secrecy of cryptographic keys

 Options for storing secrets?



  

The general principle

 Cryptography does not solve a problem 
but simplifies it

 We have encrypted a huge file with a 
small key

 How we protect the key?
 The file is protected provided that we can 

protect the key



  

14.3.1. Keys in Source Code

 Ex: Program storing a file on disk such that no 
other program can touch it Might use key to 
encrypt file: Where to store it?

 Maybe just embed in source code? Easy since 
you can use at runtime to decrypt.

 Can reverse-engineer binary to obtain the key 
(even if obfuscated) e.g. strings utility outputs 
sequence of printable chars in object code



  

14.3.1. Reverse-Engineering
/* vault program (from 6.1.2) */
1 int checkPassword() {
2     char pass[16];
3     bzero(pass, 16); // Initialize
4     printf ("Enter password: ");
5     gets(pass);
6     if (strcmp(pass, "opensesame") == 0)
7 return 1;
8     else
9 return 0;
10 }
11
12 void openVault() {
13 // Opens the vault
14 }
15
16 main() {
17     if (checkPassword()) {
18         openVault();
19         printf ("Vault opened!");
20     }
21 }

# partial output of printable
# characters in object code
$ strings vault
C@@0@
$ @
Enter password:
opensesame
__main
_impure_ptr
calloc
cygwin_internal
dll_crt0__FP11per_process
free
gets
malloc
printf
realloc
strcmp
GetModuleHandleA
cygwin1.dll
KERNEL32.dll

Key Leaked!



  

14.3.2. Storing the Key in a File 
on Disk
 Alternative to storing in source code, could store 

in file on disk

 Attacker with read access could 
 Find files with high entropy (randomness) 
 These would be candidate files to contain keys

 C.f. “Playing Hide and Seek with Stored Keys” 
(Shamir and van Someren)



  

14.3.3. “Hard to Reach” Places

 Store in Windows Registry instead of file?
 Part of OS that maintains config info
 Not as easy for average user to open

 But regedit can allow attacker (or slightly 
above-average user) to read the registry
 Also registry entries stored on disk
 Attacker with full read access can read them

 Registry not the best place to store secrets 



  

14.3.4. Storing Secrets in 
External Devices (1)
 Store secrets in device external to computer!

 Key won’t be compromised even if computer is
 Few options: smart card, HSMs, PDAs, key disks

 Smart Card (contains tamper-resistant chip)
 Limited CPU power, vulnerable to power attacks
 Must rely on using untrusted PIN readers
 Attacker observes power of circuits, 

computation times to extract bits of 
the key



  

14.3.4. Storing Secrets in 
External Devices (2)
 Hardware Security Module (HSM)

 Device dedicated to storing crypto secrets
 External device, add-on card, or separate machine
 Higher CPU power, key never leaves HSM 

(generated and used there)

 PDA or Cell phone
 No intermediate devices like PIN readers
 More memory, faster computations
 Can have security bugs of their own



  

14.3.4. Storing Secrets in 
External Devices (3)
 Key Disk

 USB, non-volatile memory, 2nd authentication factor
 No CPU, not tamper-resistant
 No support for authentication
 Ex: IronKey, secure encrypted flash drive

 External Devices & Keys
 Allows key to be removed from host system
 Problem: connected to compromised host
 Advantage: if crypto operation done on device & key 

never leaves it, damage limited
 Can attack only while connected, can’t steal key



  

14.4. Key Agreement and 
Exchange
 Keys have been generated and safely stored, 

now what?
 If Alice & Bob both have it, can do symmetric crypto
 Otherwise, have to agree on key

 How to create secure communication channel 
for exchange?

 Few Options
 Use Asymmetric Keys
 Diffie-Hellman (DH) Key Exchange 



  

14.4.1. Using Asymmetric Keys

 Public-key crypto much more computationally 
expensive than symmetric key crypto

 Use RSA to send cryptographically random 
conversation key k 

 Use k as key for faster symmetric ciphers (e.g. 
AES) for rest of conversation



  

14.4.1. Key Exchange Example

Alice Bob

{CK=8a6cd93b2b4f8803}RSA(XYZ)

{Hello Alice}AES(8a6cd93b2b4f8803)

I am Bob.  My public key is XYZ.

Asymmetric  (e.g. RSA)

Alice Bob

{k} PK(B)

{data}k

{data}k

Symmetric (e.g. AES)



  

14.4.2. Diffie-Hellman (DH) (1)

 Key exchange (over insecure channel) without 
public-key certificates?

 DH: use public parameters g, p 
 Large prime number p

 Generator g (of Zp = {1, …, p-1}), i.e. powers g, g2, …, 
gp-1 produce all these elements

 Alice & Bob generate rand #s a, b respectively
 Using g, p, a, b, they can create a secret known 

only to them (relies on hardness of solving the 
discrete log problem)



  

14.4.2. Diffie-Hellman (DH) (2) 

Alice Bob

ga mod p 

gb mod p

Choose a Choose b

Compute (gb)a 
mod p

Compute 
(ga)b mod p

Secret Key = gab mod p

Eve can compute (ga)(gb)= ga+b mod p but that’s not the secret key!



  

14.4.2. Diffie-Hellman (DH) (2) 

Alice Bob

ga mod p 

gb mod p

Choose a Choose b

Compute (gb)a 
mod p

Compute 
(ga)b mod p

Secret Key = gab mod p

Eve can compute (ga)(gb)= ga+b mod p but that’s not the secret key!



  

14.4.2. Man-in-the-Middle 
Attack against DH

Mallory can see all communication between Alice & Bob!

Alice Bob

ga

gb

Choose a Choose b

Compute (gm)a

Compute (gm)b

Mallory
Choose m

gm

gm Compute (gb)m

Compute (ga)m

Secret Key = gam Secret Key = gbm
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 Given arbitrary-length input, M, produce fixed-
length output (message digest), H(M), such that:

 Efficiency: Easy to compute H
 One-Way/Pre-Image resistance: Given H(M), 

hard to compute M (pre-image)
 Collision resistance: Hard to find M1 ≠ M2 such 

that H(M1) = H(M2)

15.1. Secure Hash Functions

HM MD=H(M)



  

15.1. Secure Hash Functions 
Examples
 Non-Examples: 

 Add ASCII values (collisions): H('AB') = H('BA')
 Checksums CRC32 not one-way or collision-resistant

 MD5: “Message Digest 5” invented by Rivest
 Input: multiple of 512-bits (padded)
 Output: 128-bits

 SHA1: developed by NIST & NSA
 Input: same as MD5, 512 bits
 Output: 160-bits



  

15.2. MACs

 Used to determine sender of message

 If Alice and Bob share key k, then Alice sends 
message M with MAC tag t = MAC(M,k)

 Then Bob receives M’ and t’  and can check if 
the message or signature has been tampered by 
verifying t’ = MAC(M’, k)



  

15.2.1. CBC MACs

 Encrypt message with block cipher in CBC mode
 IV = 0, last encrypted block can serve as tag
 Insecure for variable-length messages

AES

M1

k AES

M2

k AES

Mn

k

tag

…
+ ++

0



  

15.2.2. HMAC

 Secure hash function to compute MAC
 Hash function takes message as input while 

MAC takes message and key
 Simply prepending key onto message is not 

secure enough (e.g. given MAC of M, attacker 
can compute MAC of M||N for desired N)

 Def:
 Where K is key k padded with zeros
 opad, ipad are hexadecimal constants

, = Å || Å ||( ) (( opad) (( ipad) ))HMAC M k H K H K M



  

15.3. Signatures (1)

 Two major operations: P, principal
 Sign(M, k) – M is message
 Verify(M, sig, P) – sig is signature to be verified

 Signature: sequence of bits produced by Sign() 
such that Verify(M, sig, P) , (sig == Sign(M, k))
 Non-repudiable evidence that P signed M
 Many applications: SSL, to sign binary code, 

authenticate source of e-mail

 Use asymmetric encryption ops F & F-1



  

15.3. Signatures (2)

 S() & V() : implement sign & verify functions

 Signature is s = S(M, ks) =F-1(h(M), ks)
 Decrypt hash with secret key
 Only signer (principal with secret key) can sign

 Verify s: V(M, s, kp) = (F(s,kp) == h(M))
 Encrypting with public key 
 Allows anyone to verify a signature
 Need to bind principal’s identity to their public key



  

15.3.1. Certificates & CAs (1)

 Principal needs certificate from CA (i.e. its digital 
signature) to bind his identity to his public key

 CA must first sign own certificate attesting to 
own identity (“root”)

 Certificate, C(P), stored as text: name of 
principal P, public key (kp(P)), expiration date

 C(P) = (Ctext(P), Csig(P))
 Root Certificate, C(CA), looks like

 Ctext(CA) = ("CA", kp(CA), exp)

 Csig(CA) = S(Ctext(CA), ks(CA))



  

15.3.1. Certificates & CAs (2)
 Alice constructs certificate text:

 Ctext(Alice)=("Alice", kp(Alice), exp)
 Authenticates herself to CA (through “out-of-band” 

mechanism such as driver’s license)

 CA signs Alice’s certificate: 
Csig(Alice)=S(Ctext(Alice),ks(CA))

 Alice has public key certificate
 C(Alice)=(Ctext(Alice),Csig(Alice))

 Can use to prove that kp(Alice) is her public key



  

signature verifies message?

15.3.2. Signing and Verifying

 Signing: sig = Sign(M, ks(P)) = (S(M, ks(P)),C(P))
 Compute S() with secret key: sig.S
 Append certificate: sig.C

 Verifying: Verify(M, sig, P) = 
 V(M, sig.S, kp(P)) &
 V(sig.Ctext(P), sig.Csig(P), kp(CA)) &
 (Ctext(P).name == P) &
  (today < sig.Ctext(P).date)

signed by CA?
name matches on cert?
certificate not expired?



  

15.3.3. Registration Authorities

 Authenticating every principal can burden CA
 Can authorize RA to authenticate on CA’s behalf

 CA signs certificate binding RA’s identity to public key
 Signature now includes RA’s certificate too
 Possibly many intermediaries in the verification 

process starting from “root” CA certificate
 More links in chain, more weak points: careful when 

verifying signatures

 Ex: IE would not verify intermediate certificates 
and trust arbitrary domains (anyone could sign)



  

15.3.4. Web of Trust

 Pretty Good Privacy (PGP): digital signatures 
can be used to sign e-mail

 “Web of trust” model: users sign own certificates 
and other’s certificates to establish trust

 Two unknown people can find a certificate chain 
to a common person trusted by both

Source: 
http://xkcd.com/364/



  

15.4. Attacks Against 
Hash Functions
 Researchers have been able to obtain collisions 

for some hash functions
 Collision against SHA-1: 263 computations (NIST 

recommends phase out by 2010 to e.g. SHA-256)
 MD5 seriously compromised: phase out now!

 Collision attacks can’t fake arbitrary digital 
signatures (requires finding pre-images)

 However could get 2 documents with same hash 
and sign one and claim other was signed



  

15.5. SSL

 Handshake: steps client & server perform 
before exchanging sensitive app-level data

 Goal of handshake: client & server agree on 
master secret used for symmetric crypto

 Two round trips: 
 1st trip is “hello” messages: what versions of SSL 

and which cryptographic algorithms supported
 2nd varies based on client or mutual authentication



  

15.5.1. Server-Authenticated 
Only (1)
 Client creates random pre-master secret, 

encrypts with server’s public key
 Server decrypts with own private key
 Both compute hashes including random bytes 

exchanged in “hello” to create master secret

 With master secret, symmetric session key and 
integrity key derived (as specified by SSL) 

 App Data encrypted with symmetric key



  

15.5.1. Server-Authenticated 
Only (2)

Client Server

ClientHello

ServerHello, Certificate, ServerHelloDone

ClientKeyExchange, ChangeCipherSpec, Finished

ChangeCipherSpec, Finished

Application Data



  

15.5.2. Mutual Authentication (1)

 Client also sends own certificate to server
 Sends CertificateVerify message to allow server 

to authenticate client’s public key
 Pre-master secret set, compute master secret
 Derive symmetric key & exchange data

 SSL mechanisms prevent many attacks (e.g. 
man-in-the-middle) and has performance 
optimizations (e.g. caching security params)



  

Client Server

ClientHello

ServerHello, Certificate, CertificateRequest, ServerHelloDone

Certificate, ClientKeyExchange, CertificateVerify, 
ChangeCipherSpec, Finished

Application Data

ChangeCipherSpec, Finished

15.5.2. Mutual Authentication (2)



  

Summary

 MACs - protect integrity of messages
 Compute tag to detect tampering 
 Ex: CBC-MAC, HMAC (relies on secure hashes)

 Signatures – binds messages to senders
 Allows anyone to verify sender
 Prevents forged signatures
 Use CAs to bind identities to public keys
 Or use Web of Trust model

 Application: SSL (“Putting it all together”)
 Relies on Cryptography: symmetric & public-key
 And MACs & signatures



  

Some final words
 Using cryptography in a system full of 

vulnerabilities = fortness built on sand 
because the keys can be stolen

 Cryptography does not solve the problems, 
it just simplifies them

You cannot hide a 1 Terabyte file

You can encrypt the file with a 512 bits key 
and hide the key =

The same problem but much more simpler
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