

CHAPTER 12
Symmetric Key
Cryptography

Slides adapted from "Foundations of Security: What Every Programmer
Needs To Know" by Neil Daswani, Christoph Kern, and Anita Kesavan
(ISBN 1590597842; http://www.foundationsofsecurity.com). Except as
otherwise noted, the content of this presentation is licensed under the
Creative Commons 3.0 License.

12.1. Introduction to
Cryptography
 Goal: Confidentiality

 Message “sent in clear”: Eve can overhear
 Encryption unintelligible to Eve; only Bob can

decipher with his secret key (shared w/ Alice)

Alice Bob

“My account number is 485853
and my PIN is 4984”

Eve

12.1. Introduction to
Cryptography
 Goal: Confidentiality

 Message “sent in clear”: Eve can overhear
 Encryption unintelligible to Eve; only Bob can

decipher with his secret key (shared w/ Alice)

Alice Bob

“My account number is 485853
and my PIN is 4984”

Eve

12.1.1. Substitution Ciphers

 Plaintext: meet me at central park
 Ciphertext: phhw ph dw fhqwudo sdun

 Plain: abcdefghijklmnopqrstuvwxyz
 Cipher: defghijklmnopqrstuvwxyzabc

 Key is 3, i.e. shift letter right by 3
 Easy to break due to frequency of letters
 Good encryption algorithm produces output that

looks random: equal probability any bit is 0 or 1

12.1.2. Notation & Terminology

 m = message (plaintext), c = ciphertext
 F = encryption function
 F-1 = decryption function
 k = key (secret number)

 c = F(m,k) = Fk(m) = encrypted message

 m = F-1(c,k) = F-1
k(c) = decrypted message

 Symmetric cipher: F-1(F(m,k), k) = m, same key

Cipher

Symmetric Encryption

 Alice encrypts a message with the same key
that Bob uses to decrypt.

 Eve can see c, but cannot compute m because k
is only known to Alice and Bob

Alice Bob
1. Construct m
2. Compute c= F(m,k)
3. Send c to Bob

c
4. Receive c from Alice
5. Compute d=F-1(c,k)
6. m = d

12.1.3. Block Ciphers

 Blocks of bits (e.g. 256) encrypted at a time

 Examples of several algorithms:
 Data Encryption Standard (DES)
 Triple DES
 Advanced Encryption Standard (AES) or Rijndael

 Internal Data Encryption Algorithm (IDEA),
Blowfish, Skipjack, many more… (c.f. Schneier)

12.1.3. DES

 Adopted in 1977 by NIST

 Input: 64-bit plaintext, 56-bit key (64 w/ parity)
 Parity Bits: redundancy to detect corrupted keys
 Output: 64-bit ciphertext
 Susceptible to Brute-Force (try all 256 keys)

 1998: machine Deep Crack breaks it in 56 hours
 Subsequently been able to break even faster
 Key size should be at least 128 bits to be safe

12.1.3. Triple DES

 Do DES thrice w/ 3 different keys (slower)
 c = F(F-1(F(m ,k1),k2),k3) where F = DES

Why decrypt with k2?

Backwards compatible w/ DES, easy upgrade

 Keying Options: Key Size (w/ Parity)
k1 ≠ k2 ≠ k3 : 168-bit (192-bit)

k1 = k3 ≠ k2 : 112-bit (128-bit)

k1 = k2 = k3 : 56-bit (64-bit) (DES)

12.1.3. AES (Rijndael)

 Invented by 2 Belgian cryptographers
 Selected by NIST from 15 competitors after

three years of conferences vetting proposals
 Selection Criteria:

 Security, Cost (Speed/Memory)
 Implementation Considerations (Hardware/Software)

 Key size & Block size: 128, 192, or 256 bits
(much larger than DES)

 Rely on algorithmic properties for security, not
obscurity

12.1.4. Security by Obscurity:
Recap
 Design of DES, Triple DES algorithms public

 Security not dependent on secrecy of implementation
 But rather on secrecy of key

 Benefits of Keys:
 Easy to replace if compromised
 Increasing size by one bit, doubles attacker’s work

 If invent own algorithm, make it public! Rely on
algorithmic properties (math), not obscurity.

12.1.5. Electronic Code Book

 Encrypting more data: ECB encrypt blocks of
data in a large document

 Leaks info about structure of document (e.g.
repeated plaintext blocks)

DES

P1

K

C1

DES

P2

K

C2

DES

Pn

K

Cn

…

12.1.5. Review of XOR

 Exclusive OR (either
x or y but not both)

 Special Properties:
 x XOR y = z
 z XOR y = x
 x XOR z = y

x y x XOR y

0 0 0

0 1 1

1 0 1

1 1 0

12.1.5. Cipher Block Chaining

 CBC: uses XOR, no patterns leaked!
 Each ciphertext block depends on prev block

DES

P1

K

C1

DES

P2

K

C2

DES

Pn

K

Cn

…

+ ++

IV

12.1.5. Output Feedback (OFB)

 Makes block cipher into stream cipher
 Like CBC, but do XOR with plaintext after

encryption

AES

P1

K

C1

AESK

C2

AESK

Cn

…

+

IV

+P2
+Pn

12.2. Stream Ciphers

 Much faster than block ciphers

 Encrypts one byte of plaintext at a time

 Keystream: infinite sequence (never reused) of
random bits used as key

 Approximates theoretical scheme: one-time pad,
trying to make it practical with finite keys

12.2.1 One-Time Pad

 Key as long as plaintext, random stream of bits
 Ciphertext = Key XOR Plaintext
 Only use key once!

 Impractical having key the same size as
plaintext (too long, incurs too much overhead)

 Theoretical Significance: “perfect secrecy”
(Shannon) if key is random.
 Under brute-force, every decryption equally likely
 Ciphertext yields no info about plaintext (attacker’s a

priori belief state about plaintext is unchanged)

12.2.2. RC4

 Most popular stream cipher: 10x faster than DES

 Fixed-size key “seed” to generate infinite stream

 State Table S that changes to create stream
 40/256-bit key used to seed table (fill it)

RC4 implementation
Table initialization

 for i = 0 to 255

S[i] = i

j = 0

for i = 0 to 255

 j = (j + S[i] + key[i mod kl])
 mod 256

 swap (S[i], S[j])

 kl=keylength

Encrypt/decrypt
 i = 0

 j = 0

 for l = 0 to len(input)

 i = (i + 1) mod 256

 j = (j + S[i]) mod 256

 swap (S[i], S[j])

 output[l] =

 S[(S[i] + S[j]) mod 256]

 XOR input[l]

12.2.2. RC4 Pitfalls

 Never use the same key more than once!

 Clients & servers should use different RC4 keys!
 C S: P XOR k [Eve captures P XOR k]
 S C: Q XOR k [Eve captures Q XOR k]
 Eve: (P XOR k) XOR (Q XOR k) = P XOR Q!!!
 If Eve knows either P or Q, can figure out the other

 Ex: Simple Mail Transfer Protocol (SMTP)
 First string client sends server is HELO
 Then Eve could decipher first few bytes of response

12.2.2. More RC4 Pitfalls

 Initial bytes of key stream are “weak”
 Ex: WEP protocol in 802.11 wireless standard is

broken because of this
 Discard first 256-512 bytes of stream

 Active Eavesdropper
 Could flip bit without detection
 Can solve by including MAC to protect integrity of

ciphertext

12.3. Steganography

 All ciphers transform plaintext to random bits

 Eve can tell Alice is sending sensitive info to Bob

 Conceal existence of secret message

 Use of a “covert channel” to send a message.

12.3.1. What is Steganography?

 Study of techniques to send sensitive info and
hide the fact that sensitive info is being sent

 Ex: “All the tools are carefully kept” -> Attack
 Other Examples: Invisible ink, Hidden in Images

 Least significant bit of image pixels
 Modifications to image not noticeable by an observer
 Recipient can check for modifications to get message

Red Green Blue
00000000 00000000 00000000

00000001 00000000 00000001 101

12.3.2. Steganography vs.
Cryptography
 Key Advantage: when Alice & Bob don’t want

Eve to know that they’re communicating secrets

 Traffic Analysis can return useful information

 Disadvantages compared to encryption
 Essentially relying on security by obscurity
 Useless once covert channel is discovered
 High overhead (ratio of plain bits/secret bits high)

 Can be used together with encryption, but even
more overhead (additional computation for both)

CHAPTER 13
Asymmetric Key
Cryptography

Slides adapted from "Foundations of Security: What Every Programmer
Needs To Know" by Neil Daswani, Christoph Kern, and Anita Kesavan
(ISBN 1590597842; http://www.foundationsofsecurity.com). Except as
otherwise noted, the content of this presentation is licensed under the
Creative Commons 3.0 License.

13.1. Why Asymmetric Key
Cryptography?
 So two strangers can talk privately on Internet

 Ex: Bob wants to talk to Alice & Carol secretly
 Instead of sharing different pairs of secret keys with

each (as in symmetric key crypto)
 Bob has 2 keys: public key and private (or secret) key

 Alice and Carol can send secrets to Bob
encrypted with his public key

 Only Bob (with his secret key) can read them

13.1. Public Key System

Bob

Alice

Carol

Denise

Directory

13.1. The Public Key Treasure
Chest
 Public key = Chest with open lock
 Private key = Key to chest
 Treasure = Message
 Encrypting with public key

 Find chest with open lock
 Put a message in it
 Lock the chest

 Decrypting with private key
 Unlock lock with key
 Take contents out of the chest

http://www.fortcroghan.org/images/Scavanger%20Hunt.doc

13.1. Asymmetric Encryption

 Alice encrypts a message with different key
than Bob uses to decrypt

 Bob has a public key, kp, and a secret key, ks.
Bob’s public key is known to Alice.

 Asymmetric Cipher: F-1(F(m,kp),ks) = m
Alice Bob

1. Construct m

2. Compute c= F(m,kp)

3. Send c to Bob
c

4. Receive c from Alice
5. Compute d=F-1(c,ks)
6. m = d

13.2. RSA (1)

 Invented by Rivest/Shamir/Adelman (1978)
 First asymmetric encryption algorithm
 Most widely known public key cryptosystem

 Used in many protocols (e.g., SSL, PGP, …)

 Number theoretic algorithm: security based on
difficulty of factoring large prime numbers

 1024, 2048, 4096-bit keys common

13.2. RSA (2)

 Public Key Parameters:
 Large composite number n with two prime factors
 Encryption exponent e coprime (no common factor) to
(n) = (p-1)(q-1)

 Private Key:
 Factors of n: p, q (n = pq)
 Decryption exponent d such that ed *1 (mod (n))

 Encryption: Alice sends c = me mod n
 Decryption: Bob computes m = cd mod n

Key generation and proof :-)
 Choose two distinct prime p and q and compute n = pq.

 n is used as the modulus for both the public and private keys

 Compute φ(n) = (p – 1)(q – 1), where φ is Euler's totient
function.

 Choose an integer e where 1 < e < φ(n) and gcd of (e, φ(n)) =
1

 e is released as the public key exponent.

 Determine d = e–1 mod φ(n); i.e., d is the multiplicative
inverse of e mod φ(n) = solve for d given (de) mod φ(n) = 1.

 d is kept as the private key exponent.

Fermat little theorem

13.3. Elliptic CurveCryptography

 Invented by N. Koblitz & V. Miller (1985)

 Based on hardness of elliptic curve discrete log
problem

 Standardized by NIST, ANSI, IEEE for
government, financial use

 Certicom, Inc. currently holds patent

 Small keys: 163 bits (<< 1024-bit RSA keys)

13.3: RSA vs. ECC

 RSA Advantages:
 Has been around longer; math well-understood
 Patent expired; royalty free
 Faster encryption

 ECC Advantages:
 Shorter key size
 Fast key generation (no primality testing)
 Faster decryption

13.4. Symmetric vs. Asymmetric
Key Cryptography
 Symmetric-Crypto (DES, 3DES, AES)

 Efficient (smaller keys / faster encryption) because
of simpler operations (e.g. discrete log)

 Key agreement problem
 Online

 Asymmetric-Crypto (RSA, ECC)
 RSA 1000x slower than DES, more complicated

operations (e.g. modular exponentiation)
 How to publish public keys? Requires PKI / CAs
 Offline or Online

13.5. Certificate Authorities
 Trusted third party: CA verifies people’s identities
 Authenticates Bob & creates public key

certificate (binds Bob’s identity to his public key)

 CA also revokes keys and certificates
 Certificate Revocation List: compromised keys

 Public Key Infrastructure (PKI): CA + everything
required for public key encryption

13.7. Challenge – Response with
Encryption
 Alice issues “challenge” message to person

 Random # (nonce) encrypted with Bob’s public key
 If person is actually Bob, he will be able to decrypt it

Bob
{384764342}PK(Bob)

384764342

Alice

Eve
{957362353}PK(Bob)

???

CHAPTER 14
Key Management &
Exchange

Slides adapted from "Foundations of Security: What Every Programmer
Needs To Know" by Neil Daswani, Christoph Kern, and Anita Kesavan
(ISBN 1590597842; http://www.foundationsofsecurity.com). Except as
otherwise noted, the content of this presentation is licensed under the
Creative Commons 3.0 License.

14.1. Types of Keys

 Encryption keys can be used to accomplish
different security goals

 Identity Keys

 Conversation or Session Keys

 Integrity Keys

 One Key, One Purpose: Don’t reuse keys!

14.1.1. Identity Keys

 Used to help carry out authentication

 Authentication once per connection between two
parties

 Generated by principal, long-lifetime (more bits)

 Bound to identity with certificate (e.g. public keys
in asymmetric system)

14.1.2. Conversation or Session
Keys
 Helps achieve confidentiality

 Used after 2 parties have authenticated
themselves to each other

 Generated by key exchange protocol (e.g. Diffie-
Hellman algorithm)

 Short-lifetime (fewer bits)

14.1.3. Integrity Keys

 Key used to compute Message Authentication
Codes (MACs)

 Alice and Bob share integrity key
 Can use to compute MACs on message
 Detect if Eve tampered with message

 Integrity keys used in digital signatures

14.2. Key Generation
 Key generated through algorithms (e.g. RSA)

 Usually involves random # generation as a step
 But for Identity Based Encryption, master key

 Avoid weak keys (e.g. in DES keys of all 1s or
0s, encrypting twice decrypts)

 Don’t want keys stolen: After generation
 Don’t store on disk connected to network
 Also eliminate from memory (avoid core dump attack)

 Generating keys from passwords: Use
password-based encryption systems to guard
against dictionary attacks

14.2.1. Random Number
Generation
 Ex: Alice & Bob use RSA to exchange a secret

key for symmetric crypto (faster)
 Alice generates random # k
 Sends to Bob, encrypted with his public key
 Then use k as key for symmetric cipher

 But if attacker can guess k, no secrecy
 Active eavesdropper can even modify/inject data

into their conversation
 Problem: Generating hard to guess random #s

14.2.2. The rand() function

 How about using rand() function in C?
 Uses linear congruential generator
 After some time, output repeats predictably

 Can infer seed based on few outputs of rand()
 Allows attacker to figure out all past & future output

values
 No longer unpredictable

 Don’t use for security applications

14.2.3. Random Device Files

 Virtual devices that look like files: (e.g. on Linux)
 Reading from file provides unpredictable random bits

generated based on events from booting
 /dev/random – blocks until random bits available
 /dev/urandom – doesn’t block, returns what’s there

$ head -c 20 /dev/random > /tmp/bits # read 20 chars
$ uuencode --base64 /tmp/bits printbits # encode,
print
begin-base64 644 printbits
bj4Ig9V6AAaqH7jzvt9T60aogEo===== # random output

14.2.4. Random APIs

 Windows OS: CryptGenKey() – to securely
generate keys

 Java: SecureRandom class in java.security
package (c.f. AESEncrypter example, Ch. 12)
 Underlying calls to OS (e.g. CryptGenKey() for

Windows or reads from /dev/random for Linux)
 No guarantees b/c cross-platform
 But better than java.util.Random

14.3. Key (Secret) Storage

 Secret to store for later use
 Cryptographic key (private)
 Password or any info system’s security depends on

 Recall Kerchoff’s principle: security should
depend not on secrecy of algorithm, but on
secrecy of cryptographic keys

 Options for storing secrets?

The general principle

 Cryptography does not solve a problem
but simplifies it

 We have encrypted a huge file with a
small key

 How we protect the key?
 The file is protected provided that we can

protect the key

14.3.1. Keys in Source Code

 Ex: Program storing a file on disk such that no
other program can touch it Might use key to
encrypt file: Where to store it?

 Maybe just embed in source code? Easy since
you can use at runtime to decrypt.

 Can reverse-engineer binary to obtain the key
(even if obfuscated) e.g. strings utility outputs
sequence of printable chars in object code

14.3.1. Reverse-Engineering
/* vault program (from 6.1.2) */
1 int checkPassword() {
2 char pass[16];
3 bzero(pass, 16); // Initialize
4 printf ("Enter password: ");
5 gets(pass);
6 if (strcmp(pass, "opensesame") == 0)
7 return 1;
8 else
9 return 0;
10 }
11
12 void openVault() {
13 // Opens the vault
14 }
15
16 main() {
17 if (checkPassword()) {
18 openVault();
19 printf ("Vault opened!");
20 }
21 }

partial output of printable
characters in object code
$ strings vault
C@@0@
$ @
Enter password:
opensesame
__main
_impure_ptr
calloc
cygwin_internal
dll_crt0__FP11per_process
free
gets
malloc
printf
realloc
strcmp
GetModuleHandleA
cygwin1.dll
KERNEL32.dll

Key Leaked!

14.3.2. Storing the Key in a File
on Disk
 Alternative to storing in source code, could store

in file on disk

 Attacker with read access could
 Find files with high entropy (randomness)
 These would be candidate files to contain keys

 C.f. “Playing Hide and Seek with Stored Keys”
(Shamir and van Someren)

14.3.3. “Hard to Reach” Places

 Store in Windows Registry instead of file?
 Part of OS that maintains config info
 Not as easy for average user to open

 But regedit can allow attacker (or slightly
above-average user) to read the registry
 Also registry entries stored on disk
 Attacker with full read access can read them

 Registry not the best place to store secrets

14.3.4. Storing Secrets in
External Devices (1)
 Store secrets in device external to computer!

 Key won’t be compromised even if computer is
 Few options: smart card, HSMs, PDAs, key disks

 Smart Card (contains tamper-resistant chip)
 Limited CPU power, vulnerable to power attacks
 Must rely on using untrusted PIN readers
 Attacker observes power of circuits,

computation times to extract bits of
the key

14.3.4. Storing Secrets in
External Devices (2)
 Hardware Security Module (HSM)

 Device dedicated to storing crypto secrets
 External device, add-on card, or separate machine
 Higher CPU power, key never leaves HSM

(generated and used there)

 PDA or Cell phone
 No intermediate devices like PIN readers
 More memory, faster computations
 Can have security bugs of their own

14.3.4. Storing Secrets in
External Devices (3)
 Key Disk

 USB, non-volatile memory, 2nd authentication factor
 No CPU, not tamper-resistant
 No support for authentication
 Ex: IronKey, secure encrypted flash drive

 External Devices & Keys
 Allows key to be removed from host system
 Problem: connected to compromised host
 Advantage: if crypto operation done on device & key

never leaves it, damage limited
 Can attack only while connected, can’t steal key

14.4. Key Agreement and
Exchange
 Keys have been generated and safely stored,

now what?
 If Alice & Bob both have it, can do symmetric crypto
 Otherwise, have to agree on key

 How to create secure communication channel
for exchange?

 Few Options
 Use Asymmetric Keys
 Diffie-Hellman (DH) Key Exchange

14.4.1. Using Asymmetric Keys

 Public-key crypto much more computationally
expensive than symmetric key crypto

 Use RSA to send cryptographically random
conversation key k

 Use k as key for faster symmetric ciphers (e.g.
AES) for rest of conversation

14.4.1. Key Exchange Example

Alice Bob

{CK=8a6cd93b2b4f8803}RSA(XYZ)

{Hello Alice}AES(8a6cd93b2b4f8803)

I am Bob. My public key is XYZ.

Asymmetric (e.g. RSA)

Alice Bob

{k} PK(B)

{data}k

{data}k

Symmetric (e.g. AES)

14.4.2. Diffie-Hellman (DH) (1)

 Key exchange (over insecure channel) without
public-key certificates?

 DH: use public parameters g, p
 Large prime number p

 Generator g (of Zp = {1, …, p-1}), i.e. powers g, g2, …,
gp-1 produce all these elements

 Alice & Bob generate rand #s a, b respectively
 Using g, p, a, b, they can create a secret known

only to them (relies on hardness of solving the
discrete log problem)

14.4.2. Diffie-Hellman (DH) (2)

Alice Bob

ga mod p

gb mod p

Choose a Choose b

Compute (gb)a
mod p

Compute
(ga)b mod p

Secret Key = gab mod p

Eve can compute (ga)(gb)= ga+b mod p but that’s not the secret key!

14.4.2. Diffie-Hellman (DH) (2)

Alice Bob

ga mod p

gb mod p

Choose a Choose b

Compute (gb)a
mod p

Compute
(ga)b mod p

Secret Key = gab mod p

Eve can compute (ga)(gb)= ga+b mod p but that’s not the secret key!

14.4.2. Man-in-the-Middle
Attack against DH

Mallory can see all communication between Alice & Bob!

Alice Bob

ga

gb

Choose a Choose b

Compute (gm)a

Compute (gm)b

Mallory
Choose m

gm

gm Compute (gb)m

Compute (ga)m

Secret Key = gam Secret Key = gbm

CHAPTER 15
MACs and Signatures

Slides adapted from "Foundations of Security: What Every Programmer
Needs To Know" by Neil Daswani, Christoph Kern, and Anita Kesavan
(ISBN 1590597842; http://www.foundationsofsecurity.com). Except as
otherwise noted, the content of this presentation is licensed under the
Creative Commons 3.0 License.

 Given arbitrary-length input, M, produce fixed-
length output (message digest), H(M), such that:

 Efficiency: Easy to compute H
 One-Way/Pre-Image resistance: Given H(M),

hard to compute M (pre-image)
 Collision resistance: Hard to find M1 ≠ M2 such

that H(M1) = H(M2)

15.1. Secure Hash Functions

HM MD=H(M)

15.1. Secure Hash Functions
Examples
 Non-Examples:

 Add ASCII values (collisions): H('AB') = H('BA')
 Checksums CRC32 not one-way or collision-resistant

 MD5: “Message Digest 5” invented by Rivest
 Input: multiple of 512-bits (padded)
 Output: 128-bits

 SHA1: developed by NIST & NSA
 Input: same as MD5, 512 bits
 Output: 160-bits

15.2. MACs

 Used to determine sender of message

 If Alice and Bob share key k, then Alice sends
message M with MAC tag t = MAC(M,k)

 Then Bob receives M’ and t’ and can check if
the message or signature has been tampered by
verifying t’ = MAC(M’, k)

15.2.1. CBC MACs

 Encrypt message with block cipher in CBC mode
 IV = 0, last encrypted block can serve as tag
 Insecure for variable-length messages

AES

M1

k AES

M2

k AES

Mn

k

tag

…
+ ++

0

15.2.2. HMAC

 Secure hash function to compute MAC
 Hash function takes message as input while

MAC takes message and key
 Simply prepending key onto message is not

secure enough (e.g. given MAC of M, attacker
can compute MAC of M||N for desired N)

 Def:
 Where K is key k padded with zeros
 opad, ipad are hexadecimal constants

, = Å || Å ||() ((opad) ((ipad)))HMAC M k H K H K M

15.3. Signatures (1)

 Two major operations: P, principal
 Sign(M, k) – M is message
 Verify(M, sig, P) – sig is signature to be verified

 Signature: sequence of bits produced by Sign()
such that Verify(M, sig, P) , (sig == Sign(M, k))
 Non-repudiable evidence that P signed M
 Many applications: SSL, to sign binary code,

authenticate source of e-mail

 Use asymmetric encryption ops F & F-1

15.3. Signatures (2)

 S() & V() : implement sign & verify functions

 Signature is s = S(M, ks) =F-1(h(M), ks)
 Decrypt hash with secret key
 Only signer (principal with secret key) can sign

 Verify s: V(M, s, kp) = (F(s,kp) == h(M))
 Encrypting with public key
 Allows anyone to verify a signature
 Need to bind principal’s identity to their public key

15.3.1. Certificates & CAs (1)

 Principal needs certificate from CA (i.e. its digital
signature) to bind his identity to his public key

 CA must first sign own certificate attesting to
own identity (“root”)

 Certificate, C(P), stored as text: name of
principal P, public key (kp(P)), expiration date

 C(P) = (Ctext(P), Csig(P))
 Root Certificate, C(CA), looks like

 Ctext(CA) = ("CA", kp(CA), exp)

 Csig(CA) = S(Ctext(CA), ks(CA))

15.3.1. Certificates & CAs (2)
 Alice constructs certificate text:

 Ctext(Alice)=("Alice", kp(Alice), exp)
 Authenticates herself to CA (through “out-of-band”

mechanism such as driver’s license)

 CA signs Alice’s certificate:
Csig(Alice)=S(Ctext(Alice),ks(CA))

 Alice has public key certificate
 C(Alice)=(Ctext(Alice),Csig(Alice))

 Can use to prove that kp(Alice) is her public key

signature verifies message?

15.3.2. Signing and Verifying

 Signing: sig = Sign(M, ks(P)) = (S(M, ks(P)),C(P))
 Compute S() with secret key: sig.S
 Append certificate: sig.C

 Verifying: Verify(M, sig, P) =
 V(M, sig.S, kp(P)) &
 V(sig.Ctext(P), sig.Csig(P), kp(CA)) &
 (Ctext(P).name == P) &
 (today < sig.Ctext(P).date)

signed by CA?
name matches on cert?
certificate not expired?

15.3.3. Registration Authorities

 Authenticating every principal can burden CA
 Can authorize RA to authenticate on CA’s behalf

 CA signs certificate binding RA’s identity to public key
 Signature now includes RA’s certificate too
 Possibly many intermediaries in the verification

process starting from “root” CA certificate
 More links in chain, more weak points: careful when

verifying signatures

 Ex: IE would not verify intermediate certificates
and trust arbitrary domains (anyone could sign)

15.3.4. Web of Trust

 Pretty Good Privacy (PGP): digital signatures
can be used to sign e-mail

 “Web of trust” model: users sign own certificates
and other’s certificates to establish trust

 Two unknown people can find a certificate chain
to a common person trusted by both

Source:
http://xkcd.com/364/

15.4. Attacks Against
Hash Functions
 Researchers have been able to obtain collisions

for some hash functions
 Collision against SHA-1: 263 computations (NIST

recommends phase out by 2010 to e.g. SHA-256)
 MD5 seriously compromised: phase out now!

 Collision attacks can’t fake arbitrary digital
signatures (requires finding pre-images)

 However could get 2 documents with same hash
and sign one and claim other was signed

15.5. SSL

 Handshake: steps client & server perform
before exchanging sensitive app-level data

 Goal of handshake: client & server agree on
master secret used for symmetric crypto

 Two round trips:
 1st trip is “hello” messages: what versions of SSL

and which cryptographic algorithms supported
 2nd varies based on client or mutual authentication

15.5.1. Server-Authenticated
Only (1)
 Client creates random pre-master secret,

encrypts with server’s public key
 Server decrypts with own private key
 Both compute hashes including random bytes

exchanged in “hello” to create master secret

 With master secret, symmetric session key and
integrity key derived (as specified by SSL)

 App Data encrypted with symmetric key

15.5.1. Server-Authenticated
Only (2)

Client Server

ClientHello

ServerHello, Certificate, ServerHelloDone

ClientKeyExchange, ChangeCipherSpec, Finished

ChangeCipherSpec, Finished

Application Data

15.5.2. Mutual Authentication (1)

 Client also sends own certificate to server
 Sends CertificateVerify message to allow server

to authenticate client’s public key
 Pre-master secret set, compute master secret
 Derive symmetric key & exchange data

 SSL mechanisms prevent many attacks (e.g.
man-in-the-middle) and has performance
optimizations (e.g. caching security params)

Client Server

ClientHello

ServerHello, Certificate, CertificateRequest, ServerHelloDone

Certificate, ClientKeyExchange, CertificateVerify,
ChangeCipherSpec, Finished

Application Data

ChangeCipherSpec, Finished

15.5.2. Mutual Authentication (2)

Summary

 MACs - protect integrity of messages
 Compute tag to detect tampering
 Ex: CBC-MAC, HMAC (relies on secure hashes)

 Signatures – binds messages to senders
 Allows anyone to verify sender
 Prevents forged signatures
 Use CAs to bind identities to public keys
 Or use Web of Trust model

 Application: SSL (“Putting it all together”)
 Relies on Cryptography: symmetric & public-key
 And MACs & signatures

Some final words
 Using cryptography in a system full of

vulnerabilities = fortness built on sand
because the keys can be stolen

 Cryptography does not solve the problems,
it just simplifies them

You cannot hide a 1 Terabyte file

You can encrypt the file with a 512 bits key
and hide the key =

The same problem but much more simpler

	CHAPTER 12 Symmetric Key Cryptography
	12.1. Introduction to Cryptography
	Diapositiva 3
	12.1.1. Substitution Ciphers
	12.1.2. Notation & Terminology
	Symmetric Encryption
	12.1.3. Block Ciphers
	12.1.3. DES
	12.1.3. Triple DES
	12.1.3. AES (Rijndael)
	12.1.4. Security by Obscurity: Recap
	12.1.5. Electronic Code Book
	12.1.5. Review of XOR
	12.1.5. Cipher Block Chaining
	12.1.5. Output Feedback (OFB)
	12.2. Stream Ciphers
	12.2.1 One-Time Pad
	12.2.2. RC4
	Diapositiva 19
	12.2.2. RC4 Pitfalls
	12.2.2. More RC4 Pitfalls
	12.3. Steganography
	12.3.1. What is Steganography?
	12.3.2. Steganography vs. Cryptography
	CHAPTER 13 Asymmetric Key Cryptography
	13.1. Why Asymmetric Key Cryptography?
	13.1. Public Key System
	13.1. The Public Key Treasure Chest
	13.1. Asymmetric Encryption
	13.2. RSA (1)
	13.2. RSA (2)
	Diapositiva 32
	13.3. Elliptic Curve Cryptography
	13.3: RSA vs. ECC
	13.4. Symmetric vs. Asymmetric Key Cryptography
	13.5. Certificate Authorities
	13.7. Authentication with Encryption
	CHAPTER 14 Key Management & Exchange
	14.1. Types of Keys
	14.1.1. Identity Keys
	14.1.2. Conversation or Session Keys
	14.1.3. Integrity Keys
	14.2. Key Generation
	14.2.1. Random Number Generation
	14.2.2. The rand() function
	14.2.3. Random Device Files
	14.2.4. Random APIs
	14.3. Key (Secret) Storage
	Diapositiva 49
	14.3.1. Keys in Source Code
	14.3.1. Reverse-Engineering
	14.3.2. Storing the Key in a File on Disk
	14.3.3. “Hard to Reach” Places
	14.3.4. Storing Secrets in External Devices (1)
	14.3.4. Storing Secrets in External Devices (2)
	14.3.4. Storing Secrets in External Devices (3)
	14.4. Key Agreement and Exchange
	14.4.1. Using Asymmetric Keys
	14.4.1. Key Exchange Example
	14.4.2. Diffie-Hellman (DH) (1)
	14.4.2. Diffie-Hellman (DH) (2)
	Diapositiva 62
	14.4.2. Man-in-the-Middle Attack against DH
	CHAPTER 15 MACs and Signatures
	15.1. Secure Hash Functions
	15.1. Secure Hash Functions Examples
	15.2. MACs
	15.2.1. CBC MACs
	15.2.2. HMAC
	15.3. Signatures (1)
	15.3. Signatures (2)
	15.3.1. Certificates & CAs (1)
	15.3.1. Certificates & CAs (2)
	15.3.2. Signing and Verifying
	15.3.3. Registration Authorities
	15.3.4. Web of Trust
	15.4. Attacks Against Hash Functions
	15.5. SSL
	15.5.1. Server-Authenticated Only (1)
	15.5.1. Server-Authenticated Only (2)
	15.5.2. Mutual Authentication (1)
	15.5.2. Mutual Authentication (2)
	Summary
	Diapositiva 84

