Threat Analysis

Threat analysis

- It has to determines the enemies of a system
- Who is interested in attacking the system
- Who can access the resources to attack a system
- What are the events that may involve the system
- It determines the threats (classes) and the agents in each class
- If there is not a threat that can exploit a given vulnerability, then the assessment may neglect such a vulnerability
- It is strongly related (it may be interleaved with) the attack analysis (is there anyone that can implement this attack?)

A threat taxonomy

Threat analysis

- For each agent, the analysis determines
- The agent goals= rights on components
- The resources the agent can access
- Tecnological
- Information (security through obscurity)
- Know how and abilities
- The risk attitude of the agent
- Agents can be partially ordered according to
- the resources they can access
- the risk they are willing to take
- The higher the position, the larger the danger
- Attacks can be ordered in the same way

A lattice based description of agents

a) A poset modelling the know-how of a threat

A finite model to describe threat agents

A lattice based description of agents

A more refined model to describe threat agents

Describing an agent

- Each attack is described by a tuple of attributes and a noise
- Each agent is described by a tuple of attributes (same for attack) and an accepted noise
- We have one distinct partial order for each attribute
- This define a partial order for both agents and attacks

Feasible attacks

- Given
- a tuple T_{A} that describes the attack A and where each element evaluates an attribute of A
- a tuple T_{M} that describes a threat agent M and where each element evaluates the resources that M can access
- M can execute A provided
- Each element of tuple T_{M} is larger than or equal to the corresponding elemen of T_{A}
- The noise paired with A is smaller than or equal to the one that is accepted by M

Threat model

- Anytime a security problem is analysed there is the problem of formally determining the actions that any threat agent
- can execute (owns the resources to execute)
- cannot execute (lack of resources)
- is not willing to execute
should be considered
- It this problem is not solved, the analysis is not complete
- Not important when national security is involved

Threat model and partial orders

- The partial orders among threats and attacks are an important way to preserve the coherence of the analysis
- Implement the basic checks that a more powerful threat actually can implement a larger set of attacks (even if sometimes it may be not interested in implementing them)
- But do not support the discovery of threat or of attacks

