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Syllabus

• Cloud Computing Introduction
• Definitions
• Economic Reasons
• Service Model
• Deployment Model

• Supporting Technologies
• Virtualization Technology
• Scalable Computing = Elasticity

• Security 
• New Threat Model
• New Attacks                                            Cloud provider
• Countermeasures Encryption
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Working with encrypted data

• A client stores its data on a cloud system
• Then the client wants to implement some computations on the 

data without leaking any information about
• the data
• the data and which data is used by the computation

• Examples
• Store your personal information on the cloud and compute 

your tax declaration
• Store some information on the cloud and search this 

information
• Requires some proper encryption scheme because only a few 

schemes satisfies the constrains
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Homorphic encryption = Holy gray of encryption

Let 
• R and S be sets 
• E an encryption function R →S

E is 
• Additively homomorphic if E(a+b)=PLUS(E(a), E(b))
• Multiplicatively homomorphic if E(a×b)=MULT(E(a), E(b))
• Mixed-multiplicatively homomorphic E(xy)=Mixed-mult(E(x),E(y))

E is fully homomorphic if  there are no limitations on what 
manipulations can be performed.
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Homomorphic encryption

• Data is stored at the provider
• Computation is implemented at the provider
• Inputs are encrypted by the client
• The output is transmitted to the client that decrypt it
• No trivial solution are accepted = almost all the computation has 

to be executed by the provider to prevent cases where 
– the data is transmitted to the client, 
– the client decrypts the data 
– the client computes the results
– the results are encrypted
– the results are transmitted to the provider
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Fully homomorphic

In the following the manipulation will be represented as a circuit 
that implements some boolean operations on the data of 
interest and where the operators are gates 

AND OR

AND

NOT

Fully homomorphic = NAND gates
so that any function can be computed
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Meaning

Any computation can be expressed as a Boolean circuit: a 
series of additions and multiplications

Using such a scheme, any circuit (consisting of AND and 
XOR) could be homomorphically evaluated, effectively 
allowing the construction of programs which may be run 
on the encryptions of their inputs to produce an 
encryption of their output

Since such a program never decrypts its input, it could be 
run by an untrusted party without revealing its inputs and 
internal state.
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    But our case introduce further constrains-1

• No optimization of the computation
• Circuit minimization may not be applied because it leaks information 

about data that is accessed
• A random access machine cannot be used because it leaks the 

information of which data has been accessed by the computation
• This efficiency can be recovered only if information about data that has 

been used can leak
• The size of the output must be fixed in advance =  the number of output 

wires in the circuit must be fixed in advance. 
• If  I request all of my files that contain a combination of keywords, I 

should also specify how much data I want to be retrieved (e.g. 1MB). 
• From my request, the cloud will generate a circuit for a function that 

outputs the first megabyte of the correct files, 
• The output is truncated or padded with zeros prevent leaking 

something a priori about the relationship between the function (that is 
known) and my data.
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    But our case introduce further constrains-2

• semantic security against chosen-plaintext attacks (CPA) : given a ciphertext 
c that encrypts either m0 or m1, it is hard for an adversary A to decide which of 
the two values c encrypts, even if it is allowed to choose m0 and m1. 
“hard” = if  A runs in polynomial time and guesses correctly with probability 

1/2 + OE, then OE = A’s advantage, must be negligible. 
Otherwise, A breaks the semantic security of the encryption scheme.

• If an encryption scheme is deterministic (=  there is only one ciphertext that 
encrypts a given message) then it cannot be semantically secure. 

An attacker can easily tell whether c encrypts m0 by encrypting m0 and by 
checking if the results is equal to c. 

• A semantically secure encryption scheme must be probabilistic  
– several ciphertexts that encrypt a given message 
– encryption chooses one randomly according to some distribution
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Encryption scheme e

• Four algorithms
–  KeyGene , Encrypte , Decrypte (must be efficient)

–  Evaluatee

• Efficient =  runs in time poly(L) where  L = bit-length of the keys. 
• KeyGene uses L to generate 

– a single key sk in a symmetric  scheme,
– two keys an asymmetric scheme, a public key pk and secret key sk. 

• Evaluatee is associated to a set Fe of permitted functions such that

–  f in Fe

–  if c1, …, ct are such that  ci = Encrypte (pk, mi) then 

• Evaluatee,(pk, f, c1, …, ct) = c

• f(m1, …, mt) = Decrypte(sk, c) (sk if symmetric)

e is fully homomorphic if any function belongs to Fe
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Constrains

• decrypting c, the output of Evaluatee takes the same amount of 
computation as decrypting c1, a ciphertext output by Encrypte 

• c is the same size as c1 ( compact ciphertexts requirement)

Informally, 
• the size of c and the time needed to decrypt it do not grow with 

the complexity of f; rather, they are completely independent of f

• the complexity of Decrypte, as well as those of KeyGene and 
Encrypte, must remain polynomial in L
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A first approximation - 1

Assume L= N, P = L2 and Q = L5.
A (symmetric) Encryption Scheme:
KeyGene(L): The key is a random P-bit odd integer p.

Encrypt
e
(p, m): To encrypt a bit m in {0, 1}, 

1) choose a random N-bit number m’ such that m’ = m mod 2. 
       2) output c= m’ + pq, where q is a random Q-bit number.

Decrypte(p, c): Output (c mod p) mod 2 where 

1) (c mod p) = c’ in (−p/2,p/2) 
2)  p divides c − c’

                           we  recover q by finding the multiple

        of p closest to c and the noise parity is the encrypted bit 

(c mod p) = noise associated to the ciphertext c 
= distance to the nearest multiple of p

Decryption works because the noise m’ has the same parity as the message m. 
A ciphertext output by Encrypt is a fresh ciphertext, since it has small (N-bit) noise.

m' and m have the 
same parity
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A first approximation – 1 bis
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A first approximation - 2

Adde(c1, c2) = c1 + c2 

Sube(c1, c2) = c1 − c2

Multe(c1, c2) = c1 • c2.

Evaluatee( f, c1, …, ct) = 

1) Express f as a circuit C with XOR and AND gates

2) Let C’ be the same circuit as C, but with XOR and AND gates 
replaced by addition and multiplication gates over the integers.

3) Output c = f ‘(c1, …, ct) where  f ‘  is the multivariate polynomial that 
corresponds to C’. 

If this work we can deduce a pubblic encryption scheme
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Does it works ? - 1

Let us consider  c = c1 • c2,

We have that  c =  (m’1 + pq1) (m’2 + pq2) =
= m’1 • m’2 + pq’ for some integer q’. 

      Assume that noises  m’1  and m’2 are small enough, so that 
                   | m’1 • m’2 |< p/2, This implies that 

 (c mod p) = m’1 • m’2 

and since ci’s noise is m’i, which has the same parity as mi. 

 (c mod p) mod 2 = m1 • m2 

If c1 and c2 have  k1- and k2-bit noises, the ciphertext of  c1 • c2 has 
(roughly) (k1 + k2)-bit noise.
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Does it works ? - 2

What happens when we perform many Adde, Sube, and Multe as 
prescribed by the circuit representing a function f ? 

1) We have that f’’(c1, ..., ct) = f ‘(m’1, ..., m’t) + pq’ for some integer q’, 
where m’t is the noise associated to ci.

2) If | f ‘(m’1, ..., m’t)| < p/2, then ( f ‘(c1, …, ct) mod p) = f ‘(m’1, ..., m’t).

3) By reducing modulo 2, we obtain the correct result: f (m1, …, mt).

This show that e can handle those functions for which  | f ‘ (a1, …, at)| 
is always less than p/2 if all of the ai are at most N bits
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Bootstrappable Encryption

 e is bootstrappable  if it can handle its own decryption function augmented 
by a single gate= the functions that e can handles includes its own 
decryption function composed with some useful work, one gate

Suppose that e can handle 

1. the decryption function, expressed as a circuit De of size polynomial in L

2. De augmented by an Add, Sub, or Mult gate modulo 2.

De augmented by Add = two copies of De connected by an Add gate. 

This is a complete set of circuits, in the sense that if these four circuits are 
in Fe, then one can construct from e a scheme e’ that is fully 
homomorphic.
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Bootstrappable Encryption
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Bootstrappable Encryption
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Bootstrappable Encryption
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Bootstrappable Encryption

 1. Assume that        1  c1 encrypts m under key pk1
     2         sk1 is an encrypted secret key
                         3          skv1 is a vector of ciphertexts that encrypt the bits of sk1 
                                        under pk2 via Encrypte(pk2, sk1j).

Recrypte(pk2, De, skv1, c1).
1. Generate c ‘1 via Encrypte (pk2, c1j) over the bits of c1
2. Output c = Evaluatee (pk2, De, sk1, c ‘1) 

• The decryption circuit De has input wires for 
1. the bits of a secret key 
2. the bits of a ciphertext. 

• Evaluatee takes in the bits of sk1 and c1, each encrypted under pk2. 

As long as e can handle De : 
a) e is used to evaluate the decryption circuit homomorphically. 
b) the output c is an encryption under pk2 of Decrypte(sk1, c1) = m. 
c) Recrypte outputs a new encryption of m, but under pk2.
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Bootstrappable Encryption

 To understand Recrypte consider that  m is doubly encrypted at one point, 
a) first under pk1
b) next under pk2. 

Ordinarily, the only thing one can do with a doubly encrypted message is to peel 
off the outer encryption first, and then decrypt the inner layer. 

Instead, Recrypte 
a) uses  Evaluatee algorithm to remove the inner encryption,
b) by evaluating De removes the noise associated to the first ciphertext

under pk1 (decryption removes noise),
c) simultaneously introduces new noise by evaluating through Evaluatee

the ciphertexts under pk2. 

As long as the noise added is less than the removed one, we have made “progress.”
Obviously we have to add some functions (Add, Sub, Mul)
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Bootstrappable Encryption

 

k1 k2 dec k2 dec k1

Venc(V, K1) enc(V, K1)

enc( enc(V, k1) k2)

V

V enc(V, k1) enc( enc(V, k1), enc(k2, k1)) 

dec(enc( enc(V, k1), enc(k2, k1)), enc(k1,k2)) 

=    enc(V, k2)

Standard 

Gentry
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A full homomorphic scheme

Suppose that 
a) e can handle De augmented by some gate, e.g., Add; call this 

augmented circuit  DAdd. 
b) c1 and c2  encrypt m1 and m2 respectively, under pk1, 

if c’ 1 and c‘ 2 encrypt the bits of the ciphertexts under pk2 then
        c =Evaluatee(pk2, DAdd, sk1, c ‘1 , c ‘2 ) 
encrypts m1  m2  under  pk2 .

We get a fully homomorphic encryption scheme e’ by recursing this process 
where  the key in e’ is 

a) a sequence of public keys (pk1, …, pka+1) 
b)  a chain of encrypted secret keys sk1, ..., ska, where ski is 

encrypted under pki+1. 
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A full homomorphic scheme

To evaluate a function f in e’, 

1. we express f as a circuit, topologically arrange its gates into levels, 
2. scan sequentially the levels and for a gate at level i + 1(e.g., an Add gate) 

1. take as input the encrypted secret key ski and a couple of ciphertexts 
associated to output wires at level i that are under pki, 

2. homomorphically evaluate DAdd to get a ciphertext under pki+1 
associated to a wire at level i + 1.

3. output the ciphertext associated to the output wire of f.

Putting the encrypted secret key bits sk1, ..., ska in the public key of e’ is not 
a problem for security because these bits are indistinguishable from 
encryptions of 0 as long as e is semantically secure 

Last step: reduce the complexity of the key, instead of several pubblic keys 
we have the same key for all the level (no information is leaked by revealing 
the encyption of a secret key under a pubblic key, circular security)
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Breakthrough(2009)
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Practical …  ?

According to an article on Forbes.com, Gentry's solution has a 
catch: It requires immense computational effort. In the case of a 
Google search, for instance, performing the process with 
encrypted keywords would multiply the necessary computing 
time by around 1 trillion, Gentry estimates. 

1 trilion = 10 12

If we exploit Moore’s law , after 40 years an homomorphic 
search would be as efficient as a search today
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Practical …  ? Bruce Scheiner

Unfortunately -- you knew that was coming, right? -- Gentry’s scheme is completely 
impractical. It uses something called an ideal lattice as the basis for the encryption 
scheme, and both the size of the ciphertext and the complexity of the encryption 
and decryption operations grow enormously with the number of operations you 
need to perform on the ciphertext -- and that number needs to be fixed in advance. 
And converting a computer program, even a simple one, into a Boolean circuit 
requires an enormous number of operations. These aren't impracticalities that can 
be solved with some clever optimization techniques and a few turns of Moore's Law; 
Despite this, IBM’s PR machine has been in overdrive about the discovery. Its press 
release makes it sound like this new homomorphic scheme is going to rewrite the 
business of computing: not just cloud computing, but "enabling filters to identify 
spam, even in encrypted email, or protection information contained in electronic 
medical records." Maybe someday, but not in my lifetime.
This is not to take anything away anything from Gentry or his discovery. Visions of a 
fully homomorphic cryptosystem have been dancing in cryptographers' heads for 
thirty years. I never expected to see one. It will be years before a sufficient number 
of cryptographers examine the algorithm that we can have any confidence that the 
scheme is secure, but -- practicality be damned -- this is an amazing piece of work.
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A simpler problem

• Let us consider now the case where the client wants to search a file 
stored by the cloud

• We assume that the file will never be updated (or that is updated 
outside the cloud)

• Obviously also in this case no information should be leaked so that 
the previous conditions about non deterministic encryption always 
holds

• We consider symmetric encryption since there is no need to transmit 
the result of the query
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Tokenisation

For a set of documents, the client execute the following for each 

document before uploading it to a remote, untrusted server.

a) the input document is tokenised into a set of words, W.  This 
tokenisation needs to still contain all of the input symbols, whilst 
separating words from punctuation.

For example, a sentence such as “Something, something2!” 
would need to be transformed into 

{‘Something’ , ‘,<space>’ , ‘something2’ , ‘!’}. 

The bundling of the first comma and space together into the 
same ‘word’ is probably acceptable, as it is unlikely that a user 
would want to search for “, ”.
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A simpler problem
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Constrains

• Leak no information about the structure of the file
• Leak no information about the query
• Avoid crypting and decrypting the file
• Avoid trusted third party
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First solution
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First solution
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First solution - Problems

This is the reason why we cannot exor with
a random string
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Improvement -1/Controlled Searching 

The key is a function of the value
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Controlled Searching

How do we decrypt now?
The issue of hiding search queries is still unresolved.

(W).f and given  isserver  untrusted  the:search To

).( Now, random.at uniformly chosen key secret  a with keyed
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Improvement - 2 

AES mode
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Improvement - 2 

Xi =

Ti
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Problem  

previous solution
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Complete solution  
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The Final Picture

Ek”(Wi)

Si Fki(Si)

F Ki

Plaintext

Stream Cipher

ciphertext

Wi

E k”

Li

f k’
k i
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A problem 

●  In this case search on the file can be executed but the file 
cannot be decripted because this requires the knowledge of 
some bit of the plaintext

●      This problem can be solved if a key only depends a subset of 
the bits of the encrypted value
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A New Solution 

k1=k’
 k2=k’’

  k3=k’’’

k’’’

k’

k’’

It depends upon L
i
 and S

i
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A Complete Solution - 1

1. Generate k1, k2 and k3 from the master key for encryption (e.g. password). These keys
1. must be different and should be derived from the master private key in such a way 

that knowing k1 doesn’t reveal either k2 or k3 (as well as all other combinations).  
2. allow us to reveal at most two keys to the server, giving it enough information to 

perform a search, but not to decrypt the document or understand what we’re 
searching for. 

Tokenise the file and repeat the following for each word Wi

2. Wi is encrypted with a standard block cipher. This uses k2 as generated in the previous 
step and can be performed using either ECB mode, or CBC mode with a fixed IV.

Xi = Ek2 (Wi)

3.  The next step takes x bits from the stream cipher  G  seeded on the key k3. These bits 
are denoted as Si and their length is lower than that of the encrypted word, Xi. The 
choice of x should be pre-determined and be consistent throughout the system.
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A Complete Solution - 2

4. The encrypted word, Xi , is then split into left and right halves (Li and Ri) 
where 
1.  the length of Li is x 
2.  the length of Ri is length(Xi)− x.

Xi = 〈Li , Ri  〉
5. A word specific key, ki , is then created by combining the left half, Li , 

with the key k1 before hashing it.
ki = fk1(Li)

6. Then Si (from step 3) is combined with ki either through a process such 
as XOR or concatenation before being hashed to produce a number of 
bits, equal in length to that of Ri .

Fki (Si)

7. The final step performs a XOR between 〈Li , Ri  and 〉 〈Si , Fki (Si) .〉
Cipher tex t = 〈Li , Ri〉⊕〈Si , Fki (Si) .〉
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A Complete Solution - 3

k1=k’
 k2=k’’

  k3=k’’’

k’’’

k’

k’’

It depends upon L
i
 and S

i
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Search client

Given a word W, the  client :

1. Generates k1, k2 and k3

2. Encrypts word W using the same block cipher and key (k2) as the 
encryption process to produce the encrypted word, X

X = Ek2 (W)

3. Extracts the left part (L), consisting of the same x bits as used in 
the encryption process and uses it to generate the word-specific 
key, k,  as in step 5 of the encryption process by combining they 
key k1 with the left part of X before hashing them.

k = f k1(L)

4. Sends  〈X, k  to the 〉 untrusted server
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Search server

1. For each encrypted word block C in the document, XOR it with the 
encrypted word X to produce the pair  〈Si , Fk(Si)  〉

2. Since the length of x in step 3 of encryption is known, the server takes this 
number of bits from the front of 〈Si , Fk(Si)  to retrieve 〉 Si , the bits the 
encryption takes from the stream cipher

3. Since the server knows both Si and k, received by the client,  it  can 
combine Si with k and hashed using the same process as in step 6 of 
encryption and compared to the right part of the pair = Fk(Si)

4. If this matches, then the word is found and the current document can be 
added to a list of documents, to be returned to the client after the entire 
document set is inspected

This process leaks no information about what word is being searched for 
to the server, whilst still allowing it to determine matching documents
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Decryption

It is similar to searching. 

After downloading a document, the client generates the three keys k′, k′' 
and k then it iterates over each encrypted block, C, as follows:

1) Take x bits from the stream cipher, seeded on key k′′′,  to create Si before 
XORing them with the first x bits of the ciphertext block, C to reveal the left 
part of the ciphertext word, L. 

2) To determine the right part, R, the client know Si and L and can generate 
the word specific key k as in the encryption process. 

k = fk′ (L)
3) Using k, the client generates Fk(Si). which can be used to fully restore X the 

encrypted word.
4) Since the client knows the pair 〈Si , Fk(Si)  and the ciphertext, it can XOR 〉

them to retrieve X.
5) The client knows the key k′′ used to encrypt X so it can trivially retrieve the   

plaintext word.
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Alternative solution: Bloom filter

• We build an index of a file to simplify the search
• Efficient method to encode set membership

•  The set: n elements (n is large)

• The Bloom filter: array of m bits (m is small)

•  q independent hash functions:

 h1:{0,1}* → [1,m], ….,  hi:{0,1}* → [1,m], …, hq:{0,1}* → [1,m]; 

Properties

– History independent

– Once added, elements can’t be removed
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Bloom Filter

• For each element s  S, the array bits at positions h∈ 1(s), . . . , 
hq(s) are set to 1.

• A location can be set to 1 multiple times, but only the first is 
noted. 

• To determine if an element a belongs to the set S, we check the 
bits at positions h1(a), . . . , hq(a) 

– If all the checked bits are 1’s, then a is considered a 
member of the set.

– There is, however, some probability of a false positive, in 
which a appears to be in S but actually is not. 

– False positives occur because each location may have also 
been set by some element other than a. 

– On the other hand, if any checked bits are 0, then a is 
definitely not a member of S = no false negatives.
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Bloom Filter

h1(‘water’)=2 h1(‘sky’)=1

h2(‘water’)=5 h2(‘sky’)=5 q=3

h3(‘water’)=9 h3(‘sky’)=7

h1(‘air’)=2,  h2(‘air’)=5,  h3(‘air’)=7 simultaneously = false positive!

To minimize false positive rate FP, need to choose
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Optimal Bloom Filter Parameters

If m is the size of the Bloom filter array  and n is the number of unique words 
in the document then  False Positive= (1/2)a where a = (ln 2)(m/n)

We can determine the optimal parameters as follow 

1. Initially we choose FP. To this purpose considers that if FP increases, the 
server returns irrelevant documents that can be weeded out by mechanical 
scanning after being decrypted. Hence, FP is proportional to the 
communication overhead but it does not affect correctness 

2. Compute q the number of pseudo-random function keys as   −log2(FP).

3. Scan every document in the set and compute nu as the number of unique 
words. n = nu where  is a constant factor to allow for updates Only unique 
words in the document set are considered rather than all possible words 

3. With q and n determined, the array size m is given by m = nq/ ln 2.
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Encrypted Bloom Filter

Restrict ability to compute the hash functions by

using a secret

h1(w,k1) = f(w,k1)

h2(w,k2) = f(w,k2)

… …

hq(w,kq) = f(w,kq)
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Private and Secure indexes

• Index is an additional structure that allows the remote server to 
perform searches efficiently

•  Computed over unencrypted documents

•  Private index should preserve user’s privacy
• Indexes associated with each document

• Security model: IND-CKA semantic security against adaptive 
chosen keyword attack

= a secure index does not reveal anything about the 
document’s content

•  Security game:

given two encrypted documents of equal size, and an index, 
decide which document is encoded in the index
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Secure Index

• An index is a Bloom filter, with pseudorandom functions used as 
hash functions

•  A collection of 4 algorithms:
– Keygen(s)
– Trapdoor(Kpriv,w)
– BuildIndex(D,Kpriv)
– SearchIndex(Tw,ID)

• Keygen generates:
– pseudo-random function f
– master key Kpriv=(k1,…,kr)
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Secure Index

Build Index

For each word w in document Did:

–  Phase 1: compute trapdoor for w:

–  Phase 2: compute codeword for w:

–  Insert codeword into document’s Bloom filter

Distinct documents=
Distinct names =
Distinct values
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Secure Index Usage
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Achieving  IND-CKA

We need codewords because if the trapdoors Tx = f(x, k1), . . . , f(x, kq) are 
directly inserted into the Bloom filter index, the index is vulnerable to correlation 
attacks where the similarity of two documents is deduced by comparing Bloom 
filters indexes for overlaps, or lack thereof, of 1’s in the Bloom filter.

But, not enough to achieve IND-CKA because an adversary can win game 
easily

Solution:
• u = upper bound on the number of words in Did
• v = number of distinct words in Did
• insert into index (u-v) random words so that two documents have the same 

number of tokens in their index even if they contain distinct number of tokend 
 
But:
• u is computed relative to the encrypted document
• requires encryption of documents before building the index
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Privacy Enhanced Search
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Properties



70

F.Baiardi – Security of Cloud Computing – Working with encrypted data

The Basic Scheme

Alice wants to search Bob DB without revealing 
any information
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Group Chipers
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Group Chipers as Hash Functions
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Group Chipers as Hash Functions
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The Basic Scheme Revised

Bob learns the hash values
to be used
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Secure Conjunctive 
Keyword Search 

Over Encrypted Data

Philippe Golle
Jessica Staddon

Palo Alto Research Center

Brent Waters
Princeton University
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Motivating Scenario

Alice has a large amount of data
Which is private
Which she wants to access any time and from anywhere
Example: her emails

Alice stores her data on a remote server 
Good connectivity
Low administration overhead
Cheaper cost of storage
But untrusted

1. Alice may not trust the server 
• Data must be stored encrypted

1. Alice wants ability to search her data 
• Keyword search: “All emails from Bob”

1. Alice wants powerful, efficient search
• She wants to ask conjunctive queries
• E.g. ask for “All emails from Bob AND received last Sunday”
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Search on Encrypted Data

Alice Storage Server

D1, D2, …, Dn E(D1), E(D2), …, E(Dn)
Encryption

Later, Alice wants
all Di which contain
a keyword W
She generates a 
capability for W

Cap = GenCap(W)
Verify(Cap, E(Di)) = True

if Di contains W

Verify(Cap, E(Di)) = False
otherwise

E(Di) such that  
Verify(Cap,E(Di)) = T

Alice decrypts E(Di)
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Single Keyword Search

Solution of Song, Wagner & Perrig 
[2000 IEEE Security and Privacy]
Define a security model for single keyword search
Propose provably secure protocols

Limitations
Limited to queries for a single keyword
Can’t do boolean combinations of queries
          Example: “emails from Bob AND (received last week OR urgent)”

We focus on conjunctive queries
Documents Di which contains keywords W1 and W2 … and Wn

More restrictive than full boolean combinations
But powerful enough! (see search engines)
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Possible Approaches to 
Conjunctive Queries

Alice wants all documents with keywords W1 and W2 … and Wn

Computing set intersections
She generates capabilities Cap1 , Cap2 … Capn for W1 ,W2 … Wn

Storage server finds sets of documents S1 ,S2 … Sn that match the capabilities Cap1 , 
Cap2 … Capn and returns the intersection ∩Si

Problem
Server learns a lot of extra information on top of result of conjunctive 

query
E.g.     “Emails from Bob & Secret” 

•Defining Meta-Keywords
• Define a meta-keyword for every possible conjunction of keywords
• E.g.  “Email from Bob & Secret”   meta-keyword “From Bob || Secret”
• Meta-keywords are associated with documents like regular keywords
• Problem: with m keywords, we must define 2m meta-keywords to allow for 

all possible conjunctive queries. 

“Emails from President & Non-secret”
“Emails from President & Secret”
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Outline

Model and definitions
Model of documents
Define conjunctive keyword search
Security model for conjunctive queries

Basic protocol
Size of capabilities is linear in the number of documents (n)

Amortized Protocol
Size of capabilities is linear in  n  but linear cost is incurred offline 

before the query is asked
Standard security assumptions

Constant-size Protocol
Size of capabilities is constant in n
But relies on new hardness assumption
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Model of Documents

• We assume structured documents where keywords are 
organized by fields

Alice Bob 06/01/2004 Urgent

Alice Charlie 05/28/2004 Secret

… … … …

Dave Alice 06/04/2004 Non-urgent

  From            To                  Date                  Status

m fields

n docs

D1

D2

Dn

The documents are associated with the rows Di = (Wi, 1, …, Wi, m)
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Conjunctive Search on Encrypted Data

Encryption: same as before

Generating a Capability
Before:  Cap = GenCap(W)
Now:      Cap = Gencap(j1, …,jt, Wj1, …, Wjt) where

j1, …,jt  are t field indices       
Wj1, …, Wjt are t keywords

Example: GenCap(“From,  Date”, “Bob,  06/04/2004”)

Verifying a capability
Let   Cap = Gencap(j1, …,jt, Wj1, …, Wjt) 
Verify (Cap, D) returns True if 

D has keyword Wj1 in field j1
…
D has keyword Wjt in field jt
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Security Model

Informally     “capabilities reveal no more information than they should”
    In particular, capabilities can’t be combined to create new ones

GenCap (j1, j2, W1, W2)  &  GenCap(j1, W1)   GenCap(j2, W2)

   Except for “trivial” set-theoretic combinations
       GenCap (j1, j2, W1, W2)  &  GenCap(j1, W1)   GenCap(j1, j2, W1, ┐W2)

Formally: we define the following game with an adversary A
A calls Encrypt and GenCap
A chooses two documents D0 and D1  and receives E(Db) 

A again calls Encrypt and GenCap
A guesses the bit b

A wins if
A guesses b correctly = guesses whether has received D0 or  D1 

None of the capabilities given in Steps 1 and 3 distinguish D0 from D1 

A protocol is secure if A wins with prob non-negligibly > 1/2
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Outline

Model and definitions
Model of documents
Define conjunctive keyword search
Security model for conjunctive queries

Basic protocol
Size of capabilities is linear in the number of documents (n)

Amortized Protocol
Size of capabilities is linear in  n  but linear cost is incurred offline 

before the query is asked
Standard security assumptions

Constant-size Protocol
Size of capabilities is constant in n
But relies on new hardness assumption
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Basic Protocol

• Parameters
– A group G of order q in which Decision Diffie Hellman  is hard and a 

generator g of G
– A keyed hash function fk  (Alice has the secret key k) 

– A hash function h

 miiiiii VaVaVa
i gggDE ,2,1, ,...,,)( •Encrypting  Di = (Wi,1, …, Wi,m)

• Let Vi, j  =  fk(Wi, j)
• Let  ai be a random value

•  Intuition
•  Alice commits to the encrypted keywords
•   The ai’s ensure that commitments are different for each document

•  Same keyword looks different in different documents
•  The commitments are malleable within the same document

•   Product of commitments = commitment to sum
•   Commitments are NOT malleable across different documents
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Malleable

• An encryption algorithm is malleable if an adversary can transform a 
ciphertext into another ciphertext which decrypts to a related plaintext. 

• Given an encryption of a plaintext m, it is possible to generate another 
ciphertext which decrypts to f(m), for a known function f, without necessarily 
knowing or learning m.

• Malleability is often an undesirable property in a general-purpose 
cryptosystem, since it allows an attacker to modify the contents of a 
message. 

• A bank uses a stream cipher to hide its financial information, and a user 
sends an encrypted message containing, 
 “TRANSFER $0000100.00 TO ACCOUNT #199." 
An attacker that
– can modify the message on the wire, 
– guess the format of the unencrypted message, 
– could to change the amount of the transaction, or the recipient



87

F.Baiardi – Security of Cloud Computing – Working with encrypted data

Basic Protocol (Continued)

 miiiiii VaVaVa
i gggDE ,2,1, ,...,,)( 

•  Generating a capability Gencap(j1, …,jt, Wj1, …, Wjt) 

 )(),...,( 1 sasa nghghCap  


t

w jk w
Wfs

1
)(

•  Verifying a capability

 sa
t

w

Va
iwjii ghgh 








1

,

• Intuition
– The commitments are malleable
– The capability that allows the verification of commitments is not 

malleable
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Basic Protocol: Example

)(1 Alicefa kg
)(1 Urgentfa kg)(1 Bobfa kg

)(2 Secretfa kg
)(2 Davefa kg)(2 Alicefa kg

Capability for emails from Alice to Bob is 
•   Let s   =  fk (alice)  + fk (Bob)

•   

From            To          Status

 )(),( 21 sasa ghghCap 

)()( 11 BobfaAlicefa kk gg

)()( 22 DavefaAlicefa kk gg

))()((1 BobfAlicefa kkg 

))()((2 DavefAlicefa kkg 

  )( 11 ))()(( saBobfAlicefa ghgh kk 

  )( 22 ))()(( saDavefAlicefa ghgh kk 

√√

X

Problem: 
the size of capabilities is linear in n



89

F.Baiardi – Security of Cloud Computing – Working with encrypted data

Amortized Protocol

• Parameters: unchanged

• Encrypting a document Di = (Wi,1, …, Wi,m)
– Let Vi, j  =  fk ( Wi, j )

– Let ai be a random value

),...,,,()( ,2,1, miiiiiii VaVaVaa
i ggggDE 

Further value
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Amortized Protocol (Continued)

• Generating a capability Gencap(j1, …,jt, Wj1, …, Wjt) 
– Pick a random value r

– A proto-capability

– The query part

• Intuition
– In the basic protocol, we had
– Now, the proto-capability is independent of the query

• It can be transmitted “offline” before the query

– The random value r ties the proto-capability to the query

 )(),...,(),( 21 rarara nghghghQ 

 


t

w jk w
WfrC

1
)(

 


t

w wjiii
VaCa

i ggR 1 ,

)()( ra
i

ighRh 

•Verification: compute

return True if                            and False otherwise

 


t

w jk w
Wfs

1
)(
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Constant Protocol

• Parameters
– Two group G1 and G2 of order q 

– An admissible bilinear map e : G1 X G1  G2 

– A generator g of G1 

– A keyed hash function fk

• Encrypting a document D = (W1, …, Wm)
– Let Vi  =  fk(Wi)

– Let Ri,j be values chosen uniformly independently at random

– Let       miiiimimiiiiii RaRaRVaRVaa gggggDE ,1,,,1,1, ,...,,,...,,)( 
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Constant Protocol (Continued)

• Generating a capability Gencap(j1, …,jt, Wj1, …, Wjt)








 









t
r

Wfr
r jjgggCap

t

w wjk

,...,,,, 1

)(
1



• Verification

 
 





























  
t

k
Rar

RVar
aWfr

kjii

kjikjii

i

t

w wjk

gge

gge
gge

1

)(
)(

,

,,

1

,

,
, 


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Conclusion

Our contributions: 
Define security model for conjunctive keyword search on 
encrypted data and propose 3 protocols
1. Linear communication cost
2. Amortized linear communication cost

Standard hardness assumption
1. Constant cost

Uses new hardness assumption

Future work
Extend to full boolean queries

The OR operator appears tricky…
Indistinguishability of capabilities

Hide the fields that are being searched on
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Encrypting a function

In some cases there is a natural encryption of the function

As an example, in the case of the solution of a LP problem we can 
a) add some random value to the matrices  that codifies the  

problem

     b) pass the problem to a SaaS service that solves it

     c)     remove the random values from the solution

This exploits the linearity of the considered problem

Not general
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