
1

F.Baiardi – Security of Cloud Computing – Introspection

Security of Cloud Computing

Fabrizio Baiardi
f.baiardi@unipi.it

2

F.Baiardi – Security of Cloud Computing – Introspection

Syllabus

• Cloud Computing Introduction
• Definitions
• Economic Reasons
• Service Model
• Deployment Model

• Supporting Technologies
• Virtualization Technology
• Scalable Computing = Elasticity

• Security
• New Threat Model
• New Attacks
• Countermeasures Introspection

3

F.Baiardi – Security of Cloud Computing – Introspection

VMI

• Virtual Machine Introspection
• Techniques and tools to monitor VM behavior
• Inspect a VM from the outside to assess what's happening on the

inside
• Possible for security tools

– Virus scanners
– Intrusion detection systems

• Observe and respond to VM events from a "safe" location outside the
monitored machine

4

F.Baiardi – Security of Cloud Computing – Introspection

Virtualization Overview

5

F.Baiardi – Security of Cloud Computing – Introspection

Memory Mapping

6

F.Baiardi – Security of Cloud Computing – Introspection

Memory Mapping

• A process perspective
– Request results in direct access to the memory address

• The OS layer has an active role in providing memory location
access
– Access the page table to map the logical memory address to

a physical memory address
• VMM provides an abstraction layer between

– Each VM OS's memory management
– The underlying physical hardware

• VMM translates the VM-requested page frame number into a
page frame number for the physical hardware

• Gives the VM access to that page

7

F.Baiardi – Security of Cloud Computing – Introspection

VMM Memory Accesses

• VMM accesses memory pages assigned to each VM directly by
– VMM's active involvement in this process
– Its elevated privileges

• Without the VM actually requesting the page
• Can also make those pages accessible to other VMs

8

F.Baiardi – Security of Cloud Computing – Introspection

Virtual Machine Introspection -1

• By implementing a physical machine through a virtual one, we can
check the integrity of any component of the physical machine by
evaluating a predicate on the state of the virtual one = on some
memory subset of the physical one

• This task can be delegated to the VMM but this strongly increases the
complexity of the VMM itself together with the probability of a
successful attack

• If the VMM has not been successfully attacked, then the same task
can be delegated to another VM, the introspection one

• This may be seen as a particular kind of dynamic, or semantic,
attestation where the Introspection VM can give some assurance about
the status of another VM

• Bootstrap = the Introspection VM assures the integrity of a component
on a VM that, in turn, assures the integrity of the VM

9

F.Baiardi – Security of Cloud Computing – Introspection

Virtual Machine Introspection -2

• There are several ways of implementing VMI
– Asynchronous: the introspection VM evaluates some

invariant that should hold independently of the actions
executed by the VM

– Synchronous: the introspection VM monitors the execution
of the other VM and, at some predefined moments,

• freezes the execution of the VM
• evaluates a condition on the status of the VM
• resume the execution or kills the VM

• Synchronous is more complex because it involves a
synchronization between the two VMs

• In any case a semantic gap arises: the Introspection VM access
single memory positions while the condition/assertion is defined
at a higher abstraction level

10

F.Baiardi – Security of Cloud Computing – Introspection

Virtual Machine Introspection - 3

• Controls are more expensive but even more robust, wrt those
implemented between two processes sharing some memory,
because of the separation that the VMM implements between
– The environment to be monitored, monitored VM
– The monitoring environment, introspection VM

• To minimize the control cost, a chain of trust can be used where
– some components in the execution VM implement some

control
– the introspection VM checks the integrity of these

components
• In any case, the controls requires the formalization of a process

self to be compared against the actual process behaviour

11

F.Baiardi – Security of Cloud Computing – Introspection

VM Introspection: the modular solution

• A simple introspection library to access the
memory of the Monitored VM

• A module in the kernel that checks the
integrity of the IDS on the Monitored VM

• The integrity of the kernel of the
Monitored VM is protected by the
Introspector in the Introspection VM

• Definition of the Introspector depends
upon that of the module in the kernel

• Checks can be implemented anytime a
given nmber of kernel invocation has
occurred

12

F.Baiardi – Security of Cloud Computing – Introspection

Chain of Trust

13

F.Baiardi – Security of Cloud Computing – Introspection

Further advantages of VMI

• Full visibility of the system running inside the Monitored VM: the
Introspection VM can access every Monitored VM component,
such as the main memory or the processor's registers.

• Transparency: the security checks can be implemented without
modifying the software on the Mon-VM and they are almost
invisible
– The kernel has to be modified but not the application running

on the Monitored VM
– If the underlying architecture fully support virtualization, no

software on the Monitored VM has to be updated

14

F.Baiardi – Security of Cloud Computing – Introspection

A full HIDS: Introspection and Alerts

15

F.Baiardi – Security of Cloud Computing – Introspection

A more general case

16

F.Baiardi – Security of Cloud Computing – Introspection

Semantic Integrity and Introspection

A trivial attack classification
• Attacks against user-level processes:

– the attacker injects some code into a process
– the attacker diverges the original control-flow to execute the

injected code.
• Attacks against the kernel:

– modify some kernel functionalities
– modify the kernel behavior to hide any sign of the attack.

• User level attacks are the first step of a complex attack that,
after increasing the privilege of the attacker results in the
execution of an attack against the kernel or against the kernel
and then the VMM

17

F.Baiardi – Security of Cloud Computing – Introspection

Process Self

• Process Self = The properties of a process that determine its run-time
behavior

• The process self can be approximated through static analysis.
• Axiom

if the process current behavior deviates from the process self then the
process code has been altered by an attack.

• Measuring the semantic integrity:
– the approximation of the process self
– the monitoring the actual process behavior to assure that it is

coherent with the process self.
• If P is a generic process that we want to protect.

– Self (P) refers to the process self of P
– SourceCode(P) is the source code of P program= syntactic integrity

18

F.Baiardi – Security of Cloud Computing – Introspection

All the relations

19

F.Baiardi – Security of Cloud Computing – Introspection

Self and OS calls

 It is widely accepted that an abstract description of a process
self should consider the OS calls issued by the process

 Any attempt to violate the security policy, hide the trace of an
attack, avoid intrusion detection mechanisms involves some
interaction with the OS

 Hence the process self should be defined in terms of the OS
calls

20

F.Baiardi – Security of Cloud Computing – Introspection

Self: Alternative Descriptions

Default Allow
• Forbidden Calls: the set of system calls that P cannot issue
• Forbidden Parameters: the set of system calls that P cannot

issue and assertions on the parameters it cannot transmit to a
call

Default Deny
• Hashing or Memory Invariants; memory invariants to be

evaluated anytime P issues a given system call
• Allowed Calls: the set of system calls that P can issue and

assertions on their parameters
• Enriched Traces: the sequence of system calls that P issues in

one execution; each call may be coupled with an assertion on
the process memory

21

F.Baiardi – Security of Cloud Computing – Introspection

Enriched Traces

• A set of enriched traces fully describes alternative legal behaviors of P

• Proper static tools may be designed to map SourceCode(P)

into Self (P) described through enriched traces = <CFG(P), IT(P) >

• CFG(P) =

– context-free grammar that defines the system call traces that P
may issue during its execution

– a set of strings on an alphabet with a symbol for each system call

• IT(P)= a set of invariants {I(P, 1), …, I(P, n) }, each associated with a
program point i, 1in, where P invokes a system call.

22

F.Baiardi – Security of Cloud Computing – Introspection

Grammar Generation Algorithm - 1

• A static tool can generate CFG(P) while traversing AST(P), the
abstrax syntax tree of P

• CFG(P) = < T, F, S, R > where
– T is a set of terminal symbols with one symbol for each

distinct system call in SourceCode(P)
– F is a set of non-terminal symbols, one for each function

defined in SourceCode(P); each symbol corresponds to a
subset of T.

– S is the starting symbol, which corresponds to main;
– R is the set of production rules X B where

• X is a non-terminal symbol
• B a sequence of terminal and non-terminal symbols.

23

F.Baiardi – Security of Cloud Computing – Introspection

Grammar Generation Algorithm - 2

• GGA analyzes AST(P) and for each function fun defined
inSourceCode(P) it inserts into F a new non-terminal symbol Sfun
and a new rule Rnew into R with Sfun as its left-hand-side

• To generate the right-hand side of the rule, GGA linearly scans
the definition of fun in SourceCode(P)

• Distinct production rules may be generated, according to the type
of statements in the body of fun.

• For each statement, GGA generates a new rule and adds a new
symbol to the right-hand side of Rnew .

• In this way, CFG(P) represents the system calls that fun can
invoke and the ordering among the invocations in the body of fun.

24

F.Baiardi – Security of Cloud Computing – Introspection

Grammar Generation Algorithm - 3

May result in a false negative

May result in a false negative

25

F.Baiardi – Security of Cloud Computing – Introspection

Assertion Generator -1

• The Assertion Generator traverses AST(P) and analyzes the
variables, functions and language statements to build the invariant
table (IT (P)).

• To simplify the analysis, we restrict to:
– integer variables: only files and socket descriptors to express

relations among these variables and the system calls;
– string variables: in case of arrays of char statically declared,

functions to manipulate strings are treated like assignments;
– struct members: only integer or string type field.

26

F.Baiardi – Security of Cloud Computing – Introspection

Assertion Generator - 2

Any assertion is the composition of any of the followings:
• Parameters assertions. They express data-ow relations among

parameters of distinct calls, e.g. the file descriptor in a read call is
the result of a previous open call.

• File Assertions. To prevent symlink and race condition attacks,
they check, as an example, that the real file-name corresponding
to the le descriptor belongs to a known directory.

• Buffer length assertions. They check that the length of the string
passed to a vulnerable function is not larger than the local buer to
hold it.

• Conditional statements assertions. They prevent problems due to
impossible paths by relating a system call and the expression in
the guard of a conditional statement (important difference wrt self
described as CFG only)

27

F.Baiardi – Security of Cloud Computing – Introspection

The Analyst - 1

28

F.Baiardi – Security of Cloud Computing – Introspection

The Analyst - 2

29

F.Baiardi – Security of Cloud Computing – Introspection

Invariant Evaluation - 1

30

F.Baiardi – Security of Cloud Computing – Introspection

Invariant Evaluation - 2

• The Introspection VM runs an Assertion Checker that evaluates
invariants on P memory status

• Access to the variables of P and to the CPU of the Monitored VM is
implemented through an Introspection Library

• Every time P issues a system call the Introspection VM:

(i) retrieves the system call number and the value of its parameter;

(ii) determines the invariant coupled with the issued system call;

(iii) retrieves the values of the variables that the invariant refers to;

(iv) evaluates the invariant and:
• kills P if the invariant is false

• otherwise it resumes the execution of P.

31

F.Baiardi – Security of Cloud Computing – Introspection

Memory Monitoring
Implementation

32

F.Baiardi – Security of Cloud Computing – Introspection

 Monitoring Memory on Production-Level Systems

(1) Passive Monitoring: Viewing memory in Ai from S without any timing
synchronization between the two virtual machines

(2) Active Monitoring: Viewing memory in Ai from S with event notification being sent
from Ai to S to permit monitoring at relevant times

(3) Locating Valuable Data: Applying formal models or obtained from supervised
learning to find critical data structures within the raw memory view

(1) Passive Monitoring: Viewing memory in Ai from S without any timing
synchronization between the two virtual machines

(2) Active Monitoring: Viewing memory in Ai from S with event notification being sent
from Ai to S to permit monitoring at relevant times

(3) Locating Valuable Data: Applying formal models or obtained from supervised
learning to find critical data structures within the raw memory view

33

F.Baiardi – Security of Cloud Computing – Introspection

Xen overview

• Runs directly on the physical hardware
• Special management domain is called Dom0 to provide a management

interface
• The VMM gives Dom0 system access to a control library

– create, destroy, start, pause, stop, and allocate resources to VMs
 from Dom0

• Provides drivers for the host’s physical hardware
• Can also request that memory pages allocated to unprivileged VMs

34

F.Baiardi – Security of Cloud Computing – Introspection

Xen overview

35

F.Baiardi – Security of Cloud Computing – Introspection

The XenAccess Library

• An open source VM
introspection library

• Access to virtual addresses,
kernel symbols, and more

• Works with Xen and dd-style
memory image files

• Released in Spring 2006
• Maintained by Georgia Tech

Inf. Sec. Center to encourage
more research

• http://www.xenaccess.org

36

F.Baiardi – Security of Cloud Computing – Introspection

Passive Monitoring

To monitor application memory of another virtual machine
we have to map the memory into an address of the
monitoring one

Mapping “raw memory view” to virtual addresses and
symbols requires the steps shown in figure below.

Address and symbol mapping can be performed by a VM
introspection library (e.g., XenAccess)

To monitor application memory of another virtual machine
we have to map the memory into an address of the
monitoring one

Mapping “raw memory view” to virtual addresses and
symbols requires the steps shown in figure below.

Address and symbol mapping can be performed by a VM
introspection library (e.g., XenAccess)

BD Payne, M Carbone, and W Lee. Secure and Flexible Monitoring of Virtual Machines. In ACSAC 2007.

37

F.Baiardi – Security of Cloud Computing – Introspection

Steps for Passive Monitoring

38

F.Baiardi – Security of Cloud Computing – Introspection

Active Monitoring

BD Payne, M Carbone, M Sharif, and W Lee. An Arch for Secure Active Monitoring Using Virtualization. In Oakland 2008.

Monitoring application receives event notification from Guest VM when code execution
reaches one of the hooks installed in the Guest VM kernel.

Hooks and all associated code are protected from tampering using hypervisor-enforced
memory protections (i.e., User VM can not modify these security-critical components).

Hooks invoke trampoline, which transfers control to the security application.

Monitoring application receives event notification from Guest VM when code execution
reaches one of the hooks installed in the Guest VM kernel.

Hooks and all associated code are protected from tampering using hypervisor-enforced
memory protections (i.e., User VM can not modify these security-critical components).

Hooks invoke trampoline, which transfers control to the security application.

39

F.Baiardi – Security of Cloud Computing – Introspection

Ether

• Use Intel VT hardware virtualization extensions to provide instruction
execution on actual hardware

• Extend the Xen hypervisor to leverage Intel VT for malware analysis
• Provides for both instruction-by-instruction examination of malware, and

also coarser grained system call-by-system call examination
• System Diagram:

40

F.Baiardi – Security of Cloud Computing – Introspection

Ether: Experiments

• Two tools to test the Ether framework:
– EtherUnpack: extracts hidden code from

obfuscatd malware
– EtherTrace: Records system calls executed by

obfuscated malware

• Evaluation
– EtherUnpack: how well current tools extract

hidden code by obfuscating a test binary and
looking for a known string in the extracted code

– EtherTrace: a test binary which executes a set of
known operations obfuscated and then observe if
these operation were logged by the tool

41

F.Baiardi – Security of Cloud Computing – Introspection

Ether: EtherUnpack Results

Packing Tool PolyUnpack Renovo EtherUnpack

Armadillo no no yes

Aspack no yes yes

Asprotect yes yes yes

FSG yes yes yes

MEW yes yes yes

MoleBox no yes yes

Morphine yes yes yes

Obsidium no no yes

PECompact no yes yes

Themida no yes yes

Themida VM no no yes

UPX yes yes yes

UPX Scrambled yes yes yes

WinUPack no yes yes

Yoda’s Protector no yes yes

42

F.Baiardi – Security of Cloud Computing – Introspection

Ether: EtherUnpack Results

PolyUnpack = Approach is based on the observation that sequences
of packed or hidden code in a malware instance can be
made self-identifying when its runtime execution is checked
against its static code model.

Renovo = An approach based on the observation that sequences
of packed or hidden code in a malware instance can be
made self-identifying when its runtime execution is checked
against its static code model.

43

F.Baiardi – Security of Cloud Computing – Introspection

Ether: EtherTrace Results
Packing Tool Norman Sandbox Anubis EtherTrace

None yes yes yes

Armadillo no no yes

UPX yes yes yes

Upack yes yes yes

Themida yes yes yes

PECompact yes yes yes

ASPack yes yes yes

FSG yes yes yes

ASProtect yes no yes

WinUpack yes yes yes

tElock yes no yes

PKLITE32 yes yes yes

Yoda’s Protector no yes yes

NsPack yes yes yes

MEW yes yes yes

nPack yes yes yes

RLPack yes yes yes

RCryptor yes yes yes

44

F.Baiardi – Security of Cloud Computing – Introspection

VIX

• Virtual Introspection for Xen
• Place in the privileged Dom0 VM
• Interact through a stable API
• Reduce the application's ability to perform inline processing

(requests in real time)

45

F.Baiardi – Security of Cloud Computing – Introspection

How VIX works

• Pauses operation of the target VM

• Maps some of its memory into the Dom0

• Acquires and decodes the memory pages

• Resumes operation of the target VM

• Reference task_struct data structures

– process ID, process name, memory map, and execution time

• Traverses the list of task_structs

46

F.Baiardi – Security of Cloud Computing – Introspection

List of task_structs

Linux stores this list as a circular double-linked list
Each kernel version has an associated memory address for the
first process

47

F.Baiardi – Security of Cloud Computing – Introspection

VMI Functionality

Not depend on any VM OS functionality for information
VIX application

vix-ps, vix-netstat, vix-lsof, vix-pstrings, vix-lsmod, vix-pmap,
and vix-top

vix-ps
Traverse the entire task list
Output as the ps command

48

F.Baiardi – Security of Cloud Computing – Introspection

VM Introspection - VMware Initiatives

Security API’s

• Designed for security productization

• Agent runs within a VM

• Capabilities
•Memory access events

•Selected CPU events

•VM lifecycle events

•Access to VM memory & CPU state

•Page Table walker

49

F.Baiardi – Security of Cloud Computing – Introspection

Security APIs (VMsafe)

Goals
• Better than physical

Exploit hypervisor interposition to place new security agent

Provide security coverage for the VM kernel (and applications)
• Hypervisor as a Base of Trust

Divide responsibilities between the hypervisor and in-VM agent

The hypervisor covers the VM kernel, the rest is done from within
the VM

Insure in-VM security agent execution and correctness
• Security as an infrastructure service

“Agent less” security services for VMs

Flexible OS independent solutions

50

F.Baiardi – Security of Cloud Computing – Introspection

Verify-Before-Execute Flow

“Hypervisor”

VM

Security
Agent

Power On

Page access event

VM Information

CPU State & Memory Pages

Query VM

Install Triggers

Query CPU & Memory state

Install / Remove Triggers

Power Off

51

F.Baiardi – Security of Cloud Computing – Introspection

Sample Introspection Agents

Verify-Before-Execute

Utilize memory introspection to validate all executing pages

Flow

Trace all pages for execution access

On execution detection
Trace for page modification

Verify if page contain malware

Remove execution trace

On modification detection
Trace for execution

Remove modification trace

NX NX NX NX NX

NX

NX / NW

NX NX NX

Is bad?
NW

NW / NX

NX

NX / NW

52

F.Baiardi – Security of Cloud Computing – Introspection

Security APIs – Use cases

VM Kernel coverage
– Detect infection in early boot process

• Device opt ROM attacks

• Boot loader

• Boot records
• OS image

– Detect code injection due to kernel vulnerabilities
– Detect self modifying code in kernel
– Lock kernel after initialization

53

F.Baiardi – Security of Cloud Computing – Introspection

Case Study - Microsoft Patch Guard

• Goal
– Prevent patching of (x64 based) kernels
– Force Indipendent Software Vendors to behave nicely
– Prevent Root-kits ??

• Implementation
– Obfuscated Invocation
– Obfuscated Persistence
– Evolving (Thanks to the awesome work from uninformed.org)

• What's The Problem?
– Circumventable
– Complicated
– Only for x64 based Windows Systems

54

F.Baiardi – Security of Cloud Computing – Introspection

Security APIs – Use cases cont’

Watch dog services

Liveness check for in-VM security agent
Detect agent presence

Verify agent periodic execution

Protect agent code and static data

55

F.Baiardi – Security of Cloud Computing – Introspection

TPM vs. Introspection

TPM

Root of trust rely on hardware

Passive device

Platform and software stack
decide what to measure

Need software update to
change measurement
coverage

Can not detect compromise
in software stack since
verification

VM Introspection
• Root of trust rely on hypervisor

• Introspection agent have the
initiative

• Security vendor / policy dictate
what to measure

• Coverage is content, and can
change independently of VM

• Designed to continuously scan
VMs and to detect compromise

56

F.Baiardi – Security of Cloud Computing – Introspection

VMsafe – Network Introspection

• Capabilities
– Place an inline network agent on any VM virtual nic
– Allow reading, injecting, modifying, and dropping packets.

• Benefits
– Efficiently monitor inter-VM network communication
– Integrated support for live migration

• Virtualization only applications
– Correlate VM internals with network policy. (using CPU/ Memory

inspections one can learn OS version, patch level, configuration etc)
– Build a trusted distributed firewall.

57

F.Baiardi – Security of Cloud Computing – Introspection

Retrospective Security

• Motivation
– Detect whether you have been attacked in the past
– Detect if you might be still compromised by a past attack

• Method
– VMware Record & Replay allow for a deterministic replay of

VM using recorded logs
– Potentially the recordings have captured an attack
– The security API’s are detached from the recorded VM

(unlike in-VM agent) and can attach to a replay session

58

F.Baiardi – Security of Cloud Computing – Introspection

Retrospective Security

• What is it good for?
– Run more aggressive policies that will not be acceptable in

production environments
– Discover 0days used to exploit your system
– Learn how the malware / attacker have navigated your system
– Use data tainting technique to detect any side effects that still exist

on your system
– Possibly clean the finding from last step on your production VM.
– Learn about the scope of the damage done to your system, i.e.

what is the extent of data leakage

59

F.Baiardi – Security of Cloud Computing – Introspection

Security vs. Hardware Virtualization

1st Generation – SVM, VT-X
– VMM no longer need to run the VM kernel under binary translation
– Security Trade off – Code Breakpoint, Guest code patching (while

translating), Control flow visibility

2nd Generation – NPT, EPT
– VMM no longer need to have software based MMU
– Security Trade off – Tracking LA->PA mapping is becoming

expensive, resulting with inability to operate on linear addresses.

3rd Generation – IO MMU, VT-D
– VMM can assign physical devices to VMs without worry of VM

escape or hypervisor corruption
– Security Trade off – Avoids interposition on the pass-thru device

60

F.Baiardi – Security of Cloud Computing – Introspection

1 generation

Shadow page table

Shadow page table
Three abstractions of memory

Machine: actual hardware memory
2 GB of DRAM

Physical: abstraction of hardware memory managed by OS
If a VMM allocates 512 MB to a VM, the OS thinks the
computer has 512 MB of contiguous physical memory
 (Underlying machine memory may be discontiguous)

Virtual: virtual address spaces you know and love
Standard 232 address space

In each VM, OS creates and manages page tables for
its virtual address spaces without modification
But these page tables are not used by the MMU hardware

Shadow page table
VMM creates and manages page tables that map
virtual pages directly to machine pages

● These tables are loaded into the MMU on a context switch
● VMM page tables are the shadow page tables
● VMM needs to keep its V M tables consistent with
 changes made by OS to its V P tables
● VMM maps OS page tables as read only
● When OS writes to page tables, trap to VMM
● VMM applies write to shadow table and OS table, returns
● Also known as memory tracing

Shadow page table

65

F.Baiardi – Security of Cloud Computing – Introspection

2 generation

66

F.Baiardi – Security of Cloud Computing – Introspection

Second generation: Intel EPT & AMD NPT

• Eliminating the need to shadow page table

67

F.Baiardi – Security of Cloud Computing – Introspection

Third generation: Intel VT-d & AMD IOMMU

• I/O device assignment

– VM owns real device

• DMA remapping

– Support address translation for DMA

• Interrupt remapping

– Routing device interrupt

68

F.Baiardi – Security of Cloud Computing – Introspection

Threat Monitoring/Interfering

• Other approaches are possible
• An important classification is

– Monitor subject
– Interfere with subject

• Only monitor subject behavior
– Livewire
– Monitor a system can only detect and report problems

• Interfere with subject behavior
– LycosID, μDenali
– Can actually respond to a detected threat
– Might terminate the relevant processes or VM
– Might reduce the resources available to the VM (starve the

attacker)

69

F.Baiardi – Security of Cloud Computing – Introspection

Livewire

• An early host-based intrusion detection system
• Monitors VMs to gather information and detect attacks
• Merely reports it rather than interfering

70

F.Baiardi – Security of Cloud Computing – Introspection

LycosID

• Uses crossview validation techniques to compare running
processes

• Patches running code to enable reliable identification of hidden
processes

71

F.Baiardi – Security of Cloud Computing – Introspection

Manitou

• A VMI designed to detect malware
• Compares known instruction-page hashes with

memory-page hashes at runtime before starting a
program

• The instruction-page is corrupted and nonexecutable
for no match

• A self attestation model

72

F.Baiardi – Security of Cloud Computing – Introspection

μDenali

• Acts as a switch for network requests to a set of VMs
• Can force a VM reboot
• Its first goal is designing and implementing mechanisms for

lightweight VMMs, virtual machines, and guest operating
systems, so that 100s or 1000s can concurrently execute

• An ancillary challenge implied by this is resource management
across virtual machines: to fully isolate one VM from another

73

F.Baiardi – Security of Cloud Computing – Introspection

μDenali

74

F.Baiardi – Security of Cloud Computing – Introspection

μDenali

75

F.Baiardi – Security of Cloud Computing – Introspection

Semantic Awareness

• Account for different guest OS
• provide information that is more detailed
• Parse kernel memory to build a process table map
• Unaware VMI simply see memory as bits

LARES

• Gives each VM an internal "hook"
– Activate an external monitoring control upon execution

• Monitor can interrupt execution and pass control to a security
mechanism

– The hook is injected into the VM OS
– Hypervisor write-protects both the hook and the transfers control
– Triggers at a meaningful system execution point

76

F.Baiardi – Security of Cloud Computing – Introspection

Semantically Unaware (AntFarm)

• Monitor the VM's memory management unit
• Can construct the virtual-to-physical memory mapping
• Infer information about the machine's processes and OS
• Anticipatory Scheduling

77

F.Baiardi – Security of Cloud Computing – Introspection

IntroVirt

• It supports the construction of vulnerability specific predicates
• Attempt to bridge the "semantic gap" between

– The VMI application
– The target VM

• Using functionality on the target VM itself to lend context to the
acquired data

• Basic mechanism insert assertion + replay VM

78

F.Baiardi – Security of Cloud Computing – Introspection

IntroVirt: the patch complexity

79

F.Baiardi – Security of Cloud Computing – Introspection

Event Replay

• Ability to replay, or log events on a VM is useful
– Debugging OSs
– Replaying compromises

• VM must record enough information to reconstruct interesting
portions

• The penalty is to record extra information

Revirt

• An example of a logging VMI
• Serves as the basis for time-traveling VMs that allow replay

from any previous VM state

80

F.Baiardi – Security of Cloud Computing – Introspection

ReVirt

81

F.Baiardi – Security of Cloud Computing – Introspection

IaaS, Overlay and Security

• Trust in the network of VMs that is mapped onto the cloud may be
increased by inserting into the networks some VMs that monitors the
self of the processes running on the VMs and the data these VMs
exchanges

• The coverage of the checks on process and data can be increased by
minimizing the number of processes that each VM runs i.e. by
increasing the number of VMs

• This has obvious advantages in term of safety and of performance
and overcomes the classical distinction between host and network
IDS e.g. to protect a process Pcrit running a critical application we can
– Map it onto a distinct VM, VMcrit
– Introduce a further VM to protect Pcrit self
– Monitoring the communication to/from VMcrit even from processes

that where mapped onto the same physical node

82

F.Baiardi – Security of Cloud Computing – Introspection

 VINCI: Virtual Interacting Network CommunIty

• A software architecture that exploits virtualization to share in a secure
way a cloud system.

• It decomposes users into communities: a set of users, their

applications, a set of services and of shared resources.
• Users with distinct privileges and applications with distinct trust levels

belong to distinct communities = Each community is paired with a level
that defines the security requirements and the trust in the community

• Each community is supported by a virtual community network = VCN
– a structured
– highly parallel

overlay network that interconnects VMs built by instantiating one of a
predefined set of VM templates.

83

F.Baiardi – Security of Cloud Computing – Introspection

VM templates

84

F.Baiardi – Security of Cloud Computing – Introspection

Interaction

• Direct Interaction within VMs in the same community
• Community VM manages resources shared among the same

community
• Firewall VM protect the communications among VMs of distinct

communities e.g. communication routed through nodes shared
with low level communities are encrypted

• File System VM manages resources shared among distinct
community by applying
– a security policy based upon the level of the various

community (e.g. Bell La Padula policy)
– Tainting to protect data

• Some VMs are introduced to manage the infrastructure (VM
mapping, allocation, migration)

85

F.Baiardi – Security of Cloud Computing – Introspection

APPROACH

•Track OS-level information flow
provenance by assigning a unique
identifier (color) to each potential
malware entry point

•Color individual processes/data based
on their interaction with potential entry
points or other previously colored
processes/data

•Color-based identification of malware
contaminations

•Color-based reduction of log data to be
analyzed

•Highlight event anomalies via abnormal
color interactions present in logs

•Leverage virtual machine technology
for tamper resistance of log coloring

Tainting

LSSD

Apach
e

Sendmai
l

DNSMySQL

Logger Guest OS

Virtual Machine Monitor (VMM)

Log
Monitor

Virtual Machine

…

Log

Attacker

86

F.Baiardi – Security of Cloud Computing – Introspection

Dynamic taint analysis

1. Taint analysis should be applied anytime a malicious user input
can be the vector of an attack. Very important even in the case of
web applications.

2. Mark input data as “tainted”

3. Monitor program execution to track how tainted attributes
propagate

4. Check when tainted data is used in dangerous ways

87

F.Baiardi – Security of Cloud Computing – Introspection

Dynamic taint analysis

TaintCheck performs dynamic taint analysis on a program by running the
program in its own emulation environment.

Binary re-writer
Taint Check

X86 instructions UCode

UCode

X86 instructions

Dynamic taint analysis

88

F.Baiardi – Security of Cloud Computing – Introspection

Dynamic taint analysis

X

Memory byte

Shadow Memory

Taint Data structure*

untainted

Use as

Fn pointer
Attack detected

TaintTrackerTaint seed TaintAssert

Exploit Analyzer

TaintCheck

Shadow Memory

*TDS holds the system call number, a snapshot of the current stack, and a copy of the data that was written

89

F.Baiardi – Security of Cloud Computing – Introspection

Dynamic taint analysis

TaintSeed

– It marks any data from untrusted sources as “tainted”
• Each byte of memory has a four-byte shadow memory that stores a

pointer to a Taint data structure if that location is tainted, or a NULL
pointer if it is not.

Memory is mapped to TDS

90

F.Baiardi – Security of Cloud Computing – Introspection

Dynamic taint analysis

TaintTracker

– It tracks each instruction that manipulates data in order to
determine whether the result is tainted.

• When the result of an instruction is tainted by one of the operands,
TaintTracker sets the shadow memory of the result to point to the
same Taint data structure as the tainted operand.

Memory is mapped to TDS Result is mapped to TDS

91

F.Baiardi – Security of Cloud Computing – Introspection

Dynamic taint analysis

TaintAssert

– It checks whether tainted data is used in ways that its policy
defines as illegitimate.

Memory is mapped to TDS Operand is mapped to TDS vulnerability

92

F.Baiardi – Security of Cloud Computing – Introspection

Dynamic taint analysis

Exploit Analyzer

– The Exploit Analyzer can provide useful information about how
the exploit happened, and what the exploit attempts to do.

Memory is mapped to TDS Operand is mapped to TDS vulnerability

93

F.Baiardi – Security of Cloud Computing – Introspection

Dynamic taint analysis

Types of attacks detected by TaintCheck are
– Overwrite attack

• jump targets (such as return addresses, function pointers,
and function pointer offsets), whether altered to point to
existing code (existing code attack) or injected code (code
injection attack).

– Format string attacks
• an attacker provides a malicious format string to trick the

program into leaking data or into writing an attacker-chosen
value to an attacker-chosen memory address.

– E.g.. use of %s and %x format tokens to print data from the stack or
possibly other locations in memory.

94

F.Baiardi – Security of Cloud Computing – Introspection

Dynamic taint analysis

Why to use TaintCheck ?

– Does not require source code or specially compiled
binaries.

– Reliably detects most overwrite attacks.

– Has no known false positives.

– Enables automatic semantic analysis based signature
generation.

95

F.Baiardi – Security of Cloud Computing – Introspection

Evaluation

False Negatives
– A false negative occurs if an attacker can cause sensitive data to

take on a value without that data becoming tainted.
– E.g. if (x == 0)y = 0; else if (x == 1) y = 1; ...

– If values are copied from hard-coded literals, rather than
arithmetically derived from the input.

– IIS translates ASCII input into Unicode via a table

– If TaintCheck is configured to trust inputs that should not be
trusted.

– data from the network could be first written to a file on disk, and then read back
into memory.

96

F.Baiardi – Security of Cloud Computing – Introspection

Evaluation

False Positives

– TaintCheck detects that tainted data is being used in an
illegitimate way even when there is no attack taking place.

• It indicates, there are vulnerabilities in the program
– E.g. A program uses tainted data as a format string, but makes sure it does not

use it in a malicious way.

97

F.Baiardi – Security of Cloud Computing – Introspection

Evaluation

Synthetic

– To detect
• Overwritten return addresses

• Overwritten function pointer

• Format string vulnerability

Actual exploits
– ATPhttpd exploit (buffer overflow)
– Cfingerd exploit (format string vulnerability)
– Wu-ftpd exploit (format string vulnerability)

98

F.Baiardi – Security of Cloud Computing – Introspection

Evaluation

99

F.Baiardi – Security of Cloud Computing – Introspection

Evaluation

Performance

– CPU bound
– a 2.00 GHz Pentium 4, and 512 MB of RAM, running RedHat 8.0. was used to

compress bzip2(15mb)

» Normal runtime 8.2s

» Valgrind nullgrind skin runtime25.6s (3.1 times longer)

» Memcheck runtime 109s (13.3 times longer)

» TaintCheck runtime 305s (37.2 times longer)

– Short-lived

– Common case

100

F.Baiardi – Security of Cloud Computing – Introspection

Evaluation

Performance

– CPU bound

– Short-lived
• Basic blocks are cached and hence the penalty is acceptable over

long lived programs. For short lived programs it is still significantly
large

» Normal runtime for Cfingerd was0.0222s

» Valgrind nullgrind skin runtime took 13 times longer

» Memcheck runtime took 32 times longer

» TaintCheck runtime took 13 times longer

– Common case

101

F.Baiardi – Security of Cloud Computing – Introspection

Evaluation

Performance

– CPU bound

– Short-lived

– Common case
• For network services the latency experienced is due to network

and/or disk I/O and the TaintCheck performance penalty should not
be noticeable

102

F.Baiardi – Security of Cloud Computing – Introspection

Application

It is not practical to implement TaintCheck as a
standalone due to the performance overhead

– TaintCheck enabled honeypots could use TaintCheck to
monitor all of its network services

• TaintCheck will verify the exploit and provide additional
information about the detected attack

– TaintCheck with OS randomization
• identify which request contained an attack and generate

signature for the attack or blocking future requests from the
user.

– TaintCheck in a distributed environment

103

F.Baiardi – Security of Cloud Computing – Introspection

Evaluation

Performance

104

F.Baiardi – Security of Cloud Computing – Introspection

Application

Automatic semantic analysis based signature generation
– as it monitors how each byte of each attack payload is used by the

vulnerable program at the processor-instruction level.

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Third generation: Intel VT-d & AMD IOMMU
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85
	Dynamic taint analysis
	Diapositiva 87
	Diapositiva 88
	Diapositiva 89
	Diapositiva 90
	Diapositiva 91
	Diapositiva 92
	Diapositiva 93
	Diapositiva 94
	Evaluation
	Diapositiva 96
	Diapositiva 97
	Diapositiva 98
	Diapositiva 99
	Diapositiva 100
	Diapositiva 101
	Application
	Diapositiva 103
	Diapositiva 104

