
1

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Security of Cloud Computing

Fabrizio Baiardi
f.baiardi@unipi.it

2

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Syllabus

• Cloud Computing Introduction
• Definitions
• Economic Reasons
• Service Model
• Deployment Model

• Supporting Technologies
• Virtualization Technology
• Scalable Computing = Elasticity

• Security
• New Threat Model
• New Attacks Cloud provider
• Countermeasures

3

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Introduction

F

• Not only Software as a Service but
also “Storage-as-a-service” becoming
a more common business model

• Client pays server to store file F

• Without retrieving file, how can client
be sure that server still has it?

• Or, more generally, can provide it
within an agreed response time?

• Archiving is a typical case: Client
retains only metadata

4

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Adversarial Model

Erasing adversary may fail to store parts of file, or store at less than
agreed tier

Corrupting adversary may also modify parts of file

Motivations:

Reduce cost / increase profit (“freeloading” in a p2p contest)

Hide “evidence”

Change content – though typically detectable by integrity checks

Or, just hardware, software, or human error

Assume that adversary has deleted or corrupted fraction of file, up to
time that test is run

5

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Proofs of Possess Retrievability

 A proof of Posses - Retrievability (POP, POR) provides
assurance that a party possesses a file, without actually
retrieving it

 Objective: Provide “early warning” of deletion, corruption, or
other failure to meet service levels, in time to remediate e.g.,
exclude this server and add another one

 Since adversary can distinguish POR (= modest number of
queries) from actual retrieval (= large number), can always pass
test, then deny service

 POR shows that at time of test, adversary’s state is sufficient
(with high probability) to enable retrieval – thereby limiting time
period during which undetected corruption may occur

6

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

A Challenge-Response MACs

F

• MAC file with different keys, try one at
a time

MAC
MAC
MAC

MAC keys

PRFfile key {

7

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Simple Approach, cont’d

F

MAC

MAC key

MAC=?

• MAC file with different keys, try one at
a time

• # runs limited by client storage

• Server must MAC entire file

PRFfile key

 {

8

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Block approach

● The file is splitted into d blocks
● We check whether some blocks is still there
● The probability of non detecting an eraser is

 where
● r is the number of blocks we control
● m is the number of blocks that have been erased
● 1-m/d is the probability of selecting one block that has

not been erased

9

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Per-Block MACs

• MAC selected blocks, and sample q

MAC

MAC

F

MAC

MAC key

block
indices

PRFfile key

10

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Per-Block MACs, cont’d

• MAC selected blocks, and sample q

• Server work now only q MACs / run

• But message exchange ~ q

• With error rate , Pr [undetected] ≤ (1 -)q

MAC

MAC

F

MAC

MAC key

block
indices

block indices,
MAC key

per-block MACs=?

PRFfile key

11

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Group MACs

F

MAC

MAC key

block
indices

• MAC group of sampled blocks

PRFfile key

12

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Group MACs, cont’d

F

MAC

MAC key

block
indices

block indices,
MAC key

group MAC=?

• MAC group of sampled blocks

• Server response now constant size

• But client request size still ~ q

PRFfile key

13

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Index Derivation

F

PRF

MAC

MAC key

block
indices

run key

• Derive block indices from run key

PRFfile key

14

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Index Derivation, cont’d

F

MAC

PRF

MAC key

block
indices

run key

group MAC=?

• Derive block indices from run key

• Both message exchanges now
constant size

• But client storage still ~ # runs

PRFfile key

15

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Server Storage of Encrypted MACs

F

PRF

MAC

MAC key

block
indices

run key

Enc

• Encrypt group MACs, store on server

PRFfile key

enc key

16

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Server Storage of Encrypted MACs, cont’d

F

MAC

PRF

MAC key

block
indices

run key

MAC, encrypted MAC

• Encrypt group MACs, store on server

• Client storage now constant

• But small error rate (<) may go
undetected

PRFfile key

Dec

=?

enc key

17

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Recovering from Errors

MAC sampling detects server error rate ≥ with high
probability

Smaller error rate (<) may go undetected, but can be
corrected

First solution: Apply error-correcting code to file before
storing

But non-trivial: No efficient simple codes known that are
robust against arbitrary adversarial errors

Second solution: Encrypt file, apply error-correcting code,
then apply pseudorandom permutation to block order

Black-Rogaway (CT-RSA 02) define PRP for arbitrary
domain

18

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Remaining Challenges …

 There are schemes that support update of the file
 Other scheme based upon homomorphic encryption allow any

one to check that the server stores the file
 Number of runs is limited by server storage of encrypted MACs

but this is not very compelling

19

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Homorphic encryption = Holy gray of
encryption

 a) Let R and S be sets and E an encryption R →S
 b) E is

– Additively homomorphic if
E(a+b)=PLUS(E(a), E(b))

– Multiplicatively homomorphic if
E(a×b)=MULT(E(a), E(b))

– Mixed-multiplicatively homomorphic
E(xy)=Mixed-mult(E(x),y)

– fully homomorphic if there are no limitations
on manipulations

20

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Homomorphic encryption

• Data + Computation at the provider
• Inputs are encrypted by the client
• Outputs are transmitted to the client that decrypt it
• No trivial solution = the provider executes most

computations to prevent cases where
– the data is transmitted to the client,
– the client decrypts the data, computes the results and

encrypts
– the results are transmitted to the provider

21

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Sentinels – Another Approach

• Sentinels= randomly constructed check values.
• F’ = F encryption + embedded sentinels,

F is encrypted so that sentinels cannot be discovered
• Verification phase: V specifies the positions of some sentinels in

F’ and asks the archive to return the corresponding sentinel
values.

• Security: Because F is encrypted and the sentinels are
randomly valued, the archive cannot feasibly distinguish a priori
between sentinels and portions of the original file F.
– If the archive deletes or modifies a substantial, fraction of F',

it will with high probability also change a fraction of
sentinels.

– If V requests and verifies enough sentinels, V can detect
whether the archive has erased or altered a substantial
fraction of F'

• Individual sentinels are, however, only one-time verifiable.

22

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Sentinel Overwriting

F

PRF

block
indices

run key

• Insert into selected blocks
pseudorandom values, and check

PRFfile key

sentinel
valuessentinel n. : a

person or thing
that watches
(dictionary.com)

哨兵 : security
guard, watchman,
watcher
(babylon.com)

23

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Sentinel Overwriting, cont’d

F

PRF

block
indices

run key

sentinel values=?

• Insert pseudorandom values, and check
• Security proof in standard model
• Size limitations … but can optimize
• No special storage at server
• Error correcting code makes up for overwrite
• Insertion also possible – design tradeoffs

PRFfile key

24

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Theoretical Considerations

• Proof of retrievability is a protocol for demonstrating that a party
possesses a file
• Successful verification Successful retrieval
• Party’s “response” interface is preferred building block for

reduction
• Different from proof of knowledge, which demonstrates that a

party possesses a witness related to a public value
• e.g., discrete log x of gx

• No corresponding public value for file
• The sentinel POR scheme has curious feature that the sentinels

and protocol messages are independent of the file whose
possession is being proved

25

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Conclusions

Proofs of retrievability provide assurance that file stored
on server can be retrieved – with only a modest
number of operations and overhead

Multiple design steps lead to practical schemes based
on MACs, sentinels

Many variants, optimizations to explore

Next step: Integration with actual file systems for a real
test of performance, parameterization

26

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

But we also have the inverse problem

• How can you be sure that data in the cloud has been erased?
• In general you cannot be sure if the data has been collected or

created on the cloud
• But there are other solutions when data has been created

outside and then stored in the cloud

Vanish: Increasing Data Privacy with
Self-Destructing Data

R.Geambasu, T. Kohno, A. Levy, H.M. Levy.
Proceedings of the USENIX Security Symposium, Montreal,

Canada, August 2009.

27

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

How can Ann delete her sensitive email?

She doesn’t know where all the copies are

Services may retain data for long after user tries to delete

Motivating Problem: Data Lives Forever

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

27

Ann CarlaSensitive
email

ISP

 Sensitive
 Senstive

 Sensitive

 Sensitive
 Senstive

 Sensitive

 Sensitive
 Senstive

 Sensitive

 Sensitive
 Senstive

 Sensitive

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

28

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Archived Copies Can Resurface Years Later

28

ISP

 Sensitive
 Senstive

 Sensitive

 Sensitive
 Senstive

 Sensitive

Some time later… Subpoena,
 hacking, …

 Sensitive
 Senstive

 Sensitive

 Sensitive
 Senstive

 Sensitive

CarlaAnn

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

Retroactive attack
on archived data

29

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

The Retroactive Attack

29

Time

User tries
to delete

Copies
archived

Retroactive
attack begins

Upload
data months or years

30

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Subpoena,
hacking, …

Why Not Use Encryption (e.g., PGP)?

ISP

 Sensitive
 Senstive

 Sensitive

 Sensitive
 Senstive

 Sensitive

CarlaAnn

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

30

31

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Why Not Use a Centralized Service?

31

Backdoor
agreement

ISP

CarlaAnn

Centralized Service

“Trust us: we’ll help you
delete your data on time.”

32

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

The Problem: Two Huge Challenges for Privacy

Data lives forever

On the web: emails, Facebook photos, Google Docs, blogs, …

In the home: disks are cheap, so no need to ever delete data

In your pocket: phones and USB sticks have GBs of storage

Retroactive disclosure of both data and user keys has become commonplace

Hackers

Misconfigurations

Legal actions

Border seizing

Theft

Carelessness

32

33

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Question:

Can we empower users with control of data lifetime?

Answer:

Self-destructing data

33

Time

User tries
to delete

Copies
archived

Retroactive
attack begins

Upload
data months or years

Timeout
(all copies

 self
destruct)

34

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Self-Destructing Data Model

1. Until timeout, users can read original message

2. After timeout, all copies become permanently unreadable

2.1. even for attackers who obtain an archived copy & user keys

2.2. without requiring explicit delete action by user/services

2.3. without having to trust any centralized services

34

Ann Carla

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

 This is sensitive stuff.

ISP

Sensitive
email

Goals

self-destructing
data (timeout)

35

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Vanish: Self-Destructing Data System

Traditional solutions are not sufficient for self-destructing data goals:

PGP

Centralized data management services

Forward-secure encryption
…

Let’s try something completely new!

35

Idea:
Leverage P2P systems

36

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

 A system of individually-owned computers that make a portion
of their resources available directly to their peers without
intermediary managed hosts or servers. [~wikipedia]

 Important properties (for Vanish):
 Huge scale – millions of nodes

 Geographic distribution – hundreds of countries

 Decentralization – individually-owned, no single point of trust

 Constant evolution – nodes constantly join and leave

P2P 101: Intro to Peer-To-Peer Systems

36

37

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Distributed Hashtables (DHTs)

37

 Hashtable data structure implemented on a P2P network

 Get and put (index, value) pairs

 Each node stores part of the index space

 DHTs are part of many file sharing systems:

 Vuze, Mainline, KAD

 Vuze has ~1.5M simultaneous nodes in ~190 countries

 Vanish leverages DHTs to provide self-destructing data

 One of few applications of DHTs outside of file sharing

DHT

Logical structure

38

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

a) D chooses prime p such that p n+1, K in Zp the
 group generated by p;
b) generates distinct, random, non-zero

xi in Zp, i=1,...,n;

c) generates random ai Zp, i=1, 2,..., t – 1;

d) a0 = K, the secret;

e) f(x) = i=0 to t – 1 aixi mod p;

Pi’s share is (xi, f(xi)).

Shamir’s (t, n)-threshold scheme:

39

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

World-Wide
DHT

How Vanish Works: Data Encapsulation

Vanish

Encapsulate
(data, timeout)

Vanish Data Object
VDO = {C, L}

Secret
Sharing

(M of N)

k1

k2

kN

...

k3

k1

k2

k3

kN

Ann

C = EK(data)

L

K

k1

k3

kN

k2

39

VDO = {C, L}
Carla

Access key

40

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

How Vanish Works: Data Decapsulation

40

Vanish

Encapsulate
(data, timeout)

Ann

C = EK(data)

World-Wide
DHT

Vanish

Decapsulate
(VDO = {C, L})

data

Carla

Secret
Sharing

(M of N)...
k1

k3

kN

data = DK(C)

kN

k3

k1

L L

K

Secret
Sharing

(M of N)

X

VDO = {C, L}

k2k2

Vanish Data Object
VDO = {C, L}

K

41

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

How Vanish Works: Data Timeout

The DHT loses key pieces over time

Natural churn: nodes crash or leave the DHT

Built-in timeout: DHT nodes purge data periodically

Key loss makes all data copies permanently unreadable

41

World-Wide
DHT

Vanish

Secret
Sharing

(M of N)...

k1

k3

kN

data = DK(C)

L

K
X

kN

k3

k1

41

X

X

42

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Threat Model

Goal: protect against retroactive attacks on old copies

Attackers don’t know their target until after timeout

Attackers may do non-targeted “pre-computations” at any time

Communicating parties trust each other

E.g., Ann trusts Carla not to keep a plain-text copy

42

Pre-computation

Time

Copies
archived

Retroactive
attack begins

Upload
data months or yearsTimeout

43

F.Baiardi – Security of Cloud Computing – Proof of Retrievability 43

Attack Analysis

Retroactive Attack Defense
Obtain data by legal means (e.g.,
subpoenas)

P2P properties: constant evolution, geographic distribution,
decentralization

Gmail decapsulates all Vanish Data
Object emails

Compose with traditional encryption (e.g., PGP)

ISP sniffs traffic Anonymity systems (e.g., Tor)

DHT eclipse, routing attack
Defenses in DHT literature (e.g., constraints on routing table)

DHT Sybil attack
Defenses in DHT literature; Vuze offers some basic protection

Intercept DHT “get” requests & save
results

Vanish obfuscates key share lookups

Capture key pieces from the DHT (pre-
computation)

P2P property: huge scale

More (see paper)

44

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Attack Defense
Obtain data by legal means (e.g.,
subpoenas)

P2P properties: constant evolution, geographic distribution,
decentralization

Gmail decapsulates all VDO emails
Compose with traditional encryption (e.g., PGP)

ISP sniffs traffic Anonymity systems (e.g., Tor)

DHT eclipse, routing attack
Defenses in DHT literature (e.g., constraints on routing table)

DHT Sybil attack
Defenses in DHT literature; Vuze offers some basic protection

Intercept DHT “get” requests & save
results

Vanish obfuscates key share lookups

Capture key pieces from the DHT and
persist them

P2P property: huge scale

More (see paper)

 Retroactive Attacks

Capture any key pieces from the DHT
(pre-computation)

P2P property: huge scale

Vanish
Secret
Sharing

(M of N)

k1
k2

kN

...
k3

K Direct put

Replication

Given the huge DHT scale, how many nodes does the attacker need to be effective?

Current estimate: Attacker must join with ~8% of DHT size, for 25% capture

There may be other attacks (and defenses)

45

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Performances

46

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Vanish Applications

Self-destructing data & Vanish support many applications

Example applications:

Firefox plugin

Included in our release of Vanish
Thunderbird plugin

Developed by the community two weeks after release
Self-destructing files

Self-destructing trash-bin

…

46

47

F.Baiardi – Security of Cloud Computing – Proof of Retrievability 47

Encapsulate text in any text area in self-destructing VDOs

Firefox Plugin For Vanishing Web Data

48

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Conclusions

Two formidable challenges to privacy:

Data lives forever

Disclosures of data and keys have become commonplace

Self-destructing data empowers users with lifetime control

Vanish:

Combines global-scale DHTs with secret sharing to provide self-
destructing data

Firefox plugin allows users to set timeouts on text data anywhere on the
web

Vanish ≠ Vuze-based Vanish

Customized DHTs, hybrid approach, other P2P systems

Further extensions for security in the paper

48

http://vanish.cs.washington.edu/

49

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Attacking Vanish

50

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

The Sybil attack

One entity presents multiple identities for malicious intent.

Disrupt geographic and multi-path routing protocols by “being in more
than one place at once” and reducing diversity.

Relevant in many context:

– P2P network

– Ad hoc networks

– Wireless sensor networks

51

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Existing Work:
Is Preventing Sybil Attacks Possible?

John Douceur, Microsoft Research

“The Sybil Attack”, IPTPS '01 (First International Workshop on
Peer-to-Peer Systems (revised paper 2002))

named and introduced problem

strong negative theoretical results for networks without a
centralized authority

52

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Validation

Goal: accept all legitimate identities, but no counterfeits.

Verify identities:

– Direct validation

– Indirect validation

53

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Direct validation

Validate the distinctness of two entities by asking
them to perform task that one entity can not do:

If the communication resource is restricted, the verifier
broadcasts a request for identities and then only accepts replies
that occur within a given time interval.

If the storage resource is restricted, the verifier can challenges
each identity to store large amount of unique data. The verifier
verifies by keeping small excerpts of the data (sentinel).

If the computation resource is restricted, the verifier challenges
each identity to solve a unique computational problem.

54

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Direct validation

Assumption:
– all entities have identical resource constraints.
– all involved entities are verified

simultaneously.

Extreme and unrealistic!

55

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Indirect validation

Accept identities that have been validated by a
sufficient count of other identities that it has already
accepted.

Danger: a group of faulty entities can vouch for
counterfeit identities.

56

F.Baiardi – Security of Cloud Computing – Proof of Retrievability

Vanishing mail

Pluto Mail

 - it enables users to
– unsend, edit, and auto-expire sent emails

to view when their emails are opene
– use their existing email client and address

- it helps users reduce their online footprint, avoid
email disasters

- it requires no downloads or plugins for either the
sender or recipient.

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Existing Work: Is Preventing Sybil Attacks Possible?
	Validation
	Direct validation
	Diapositiva 54
	Indirect validation
	Diapositiva 56

