
1

F.Baiardi – Security of Cloud Computing – Supporting Tech

Security of Cloud Computing

Fabrizio Baiardi
f.baiardi@unipi.it

2

F.Baiardi – Security of Cloud Computing – Supporting Tech

Syllabus

• Cloud Computing Introduction
• Definitions

• Economic Reasons

• Service Model

• Deployment Model

 Supporting Technologies

• Virtualization Technology

• Scalable Computing = Elasticity

• Security

• New Threat Model

• New Attacks

• Countermeasures

3

F.Baiardi – Security of Cloud Computing – Supporting Tech

Elastic, scalable, parallel

• All these term implies that not all the computations can exploit at best a
cloud architecture

• If an application running on a single machine is migrated to a single VM
on a cloud
– Benefits in term of availability and reliability because the whole VM

can be migrated to another machine if the current one crashes
– Crash cannot be masked
– No benefit in terms of performance even if a large number of

physical hosts is available
• An application should be conceived from the beginning as a huge

number of processess mapped onto a large number of VMs
• The final performance depends on the mapping of the VMs onto the

physical hosts under the assumption that there is a minimal
performance loss with respect to the sequential case when several VMs
are mapped onto the same node

4

F.Baiardi – Security of Cloud Computing – Supporting Tech

 Elastic, Scalable, Parallel Computing

This point discusses

a) how can we decompose an application into a large number of
concurrent processes

b) how to structure the software to support an application that has
been decomposed into a large number of concurrent processes

Goal

a) simple decomposition

b) linear speed up: the time to implement a computation decreases
as 1/n where n is the number of processes resulting from the
decomposition

5

F.Baiardi – Security of Cloud Computing – Supporting Tech

Parallel and Distributed Computing

Parallel computing can apply distinct strategies :

Vector processing of data (SIMD)

Multiple CPUs in a single computer (MIMD)

Distributed computing is multiple CPUs across many computers
(MIMD distributed memory)

Example of distributed computing

• Weather prediction

• Indexing the web (Google)

• Simulating an Internet-sized network for networking experiments
(PlanetLab)

• Speeding up content delivery (Akamai)

6

F.Baiardi – Security of Cloud Computing – Supporting Tech

A Brief History

1975-85

• Parallel computing was favored in
the early years

• Primarily vector-based at first

• Gradually more thread-based
parallelism was introduced

1985-95

• “Massively parallel architectures”
start rising in prominence

• Message Passing Interface (MPI)
and other libraries developed

• Bandwidth was a big problem

1995-today

• Cluster/grid architecture
increasingly dominant

• COTS technologies

• Web-wide cluster software

• Google = thousands of
nodes/cluster

Cray 2 supercomputer

7

F.Baiardi – Security of Cloud Computing – Supporting Tech

Data Parallelization Idea

Parallelization is “easy” if processing can be cleanly split into n units:

work

w1 w2 w3

Partition
problem

8

F.Baiardi – Security of Cloud Computing – Supporting Tech

Data Parallelization Idea (2)

w1 w2 w3

thread thread thread

Spawn worker threads:

In a parallel computation, we would like to have as many threads
as we have processors. e.g., a four-processor computer would be
able to run four threads at the same time.

thread thread thread

Workers process data:

w1 w2 w3

9

F.Baiardi – Security of Cloud Computing – Supporting Tech

Parallelization Idea (3)

results

Report
results

thread thread thread
w1 w2 w3

Embarassing parallel computation

10

F.Baiardi – Security of Cloud Computing – Supporting Tech

Parallelization Pitfalls

But this model is too simple!

● How do we assign work units to worker threads?
● What if we have more work units than threads?
● How do we aggregate the results at the end?
● How do we know all the workers have finished?
● What if the work cannot be divided into completely

separate tasks?

11

F.Baiardi – Security of Cloud Computing – Supporting Tech

What is MapReduce?

• Simple data-parallel programming model designed by Google for
scalability and fault-tolerance to make a subset (albeit a large one)
of distributed problems easier to code

• Automates data distribution & result aggregation
• Restricts the ways data can interact to eliminate locks (no shared

state = no locks!)
• Pioneered by Google

– Processes 20 petabytes of data per day
• Popularized by open-source Hadoop project

– Used at Yahoo!, Facebook, Amazon, …

12

F.Baiardi – Security of Cloud Computing – Supporting Tech

MapReduce Design Goals

Scalability to large data volumes:

1000’s of machines, 10,000’s of disks

Cost-efficiency:

Commodity machines (cheap, but unreliable)

Commodity network

Automatic fault-tolerance (fewer administrators)

Easy to use (fewer programmers)

13

F.Baiardi – Security of Cloud Computing – Supporting Tech

Challenges

Cheap nodes fail, especially if you have many

Mean time between failures for 1 node = 3 years

Mean time between failures for 1000 nodes = 1 day

Solution: Build fault-tolerance into system

Commodity network = low bandwidth

Solution: Push computation to the data

Programming distributed systems is hard

Solution: Data-parallel programming model: users write “map” &
“reduce” functions, system distributes work and handles faults

14

F.Baiardi – Security of Cloud Computing – Supporting Tech

MapReduce Programming Model

Data type: key-value records

Map function:

(Kin, Vin) list(Kinter, Vinter)

Reduce function:

(Kinter, list(Vinter)) list(Kout, Vout)

All those with the same key, Kinter in the example

15

F.Baiardi – Security of Cloud Computing – Supporting Tech

Example: Word Count

def mapper(line):

 foreach word in line.split():

 output(word, 1)

def reducer(key, values):

 output(key, sum(values))

Each word in the document is a key

key

value

16

F.Baiardi – Security of Cloud Computing – Supporting Tech

Word Count Execution

the quick

brown fox

the fox ate

the mouse

how now

brown cow

MapMap

MapMap

MapMap

ReduceReduce

ReduceReduce

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

the, 1
brown, 1
fox, 1

quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1

brown, 1

ate, 1
mouse, 1

cow, 1

Input
Map Shuffle & Sort Reduce

Output

17

F.Baiardi – Security of Cloud Computing – Supporting Tech

An Optimization: The Combiner

def combiner(key, values):

 output(key, sum(values))

A combiner is a local aggregation function for repeated keys produced
by same map

Works for associative functions like sum, count, max

Decreases size of intermediate data

Example: map-side aggregation for Word Count:

18

F.Baiardi – Security of Cloud Computing – Supporting Tech

Word Count with Combiner

Input Map & Combine Shuffle & Sort Reduce Output

the quick

brown fox

the fox ate

the mouse

how now

brown cow

MapMap

MapMap

MapMap

ReduceReduce

ReduceReduce

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

the, 1
brown, 1
fox, 1

quick, 1

the, 2
fox, 1

how, 1
now, 1

brown, 1

ate, 1
mouse, 1

cow, 1

19

F.Baiardi – Security of Cloud Computing – Supporting Tech

20

F.Baiardi – Security of Cloud Computing – Supporting Tech

Data store 1 Data store n
map

(key 1,
values...)

(key 2,
values...)

(key 3,
values...)

map

(key 1,
values...)

(key 2,
values...)

(key 3,
values...)

Input key*value
pairs

Input key*value
pairs

== Barrier == : Aggregates intermediate values by output key

reduce reduce reduce

key 1,
intermediate

values

key 2,
intermediate

values

key 3,
intermediate

values

final key 1
values

final key 2
values

final key 3
values

...

Barrier

21

F.Baiardi – Security of Cloud Computing – Supporting Tech

MapReduce Implementation Details

Single master controls job execution on multiple slaves

Mappers preferentially placed on same node or same rack as their input
block

Minimizes network usage

Mappers save outputs to local disk before serving them to reducers

supports recovery if a reducer crashes

enables having more reducers than nodes

22

F.Baiardi – Security of Cloud Computing – Supporting Tech

Fault Tolerance in MapReduce

1. If a task crashes:

Retry on another node

OK for a map because it has no dependencies

OK for reduce because map outputs are on disk

If the same task fails repeatedly, fail the job or ignore that input
block (user-controlled)

2. If a node crashes:

Re-launch its current tasks on other nodes

Re-run any maps the node previously ran

Necessary because their output files were lost along
with the crashed node

 Note: For these fault tolerance features to work,
map and reduce tasks must be side-effect-free

23

F.Baiardi – Security of Cloud Computing – Supporting Tech

Fault Tolerance in MapReduce

3. If a task is going slowly (straggler):

Launch second copy of task on another node (“speculative
execution”)

Take the output of whichever copy finishes first, and kill the
other

Surprisingly important in large clusters

Stragglers occur frequently due to failing hardware, software
bugs, misconfiguration, etc

Single straggler may noticeably slow down a job

24

F.Baiardi – Security of Cloud Computing – Supporting Tech

““Fault” ToleranceFault” Tolerance

Nodes failNodes fail
– Re-run tasksRe-run tasks

Nodes are slow (stragglers)Nodes are slow (stragglers)
– Run backup tasks (speculative execution)Run backup tasks (speculative execution)
– To minimize job’s response timeTo minimize job’s response time

• Important for short jobsImportant for short jobs

24

25

F.Baiardi – Security of Cloud Computing – Supporting Tech

Speculative executionSpeculative execution

The scheduler schedules backup executions of the remaining The scheduler schedules backup executions of the remaining in-in-
progress tasksprogress tasks

The task is marked as completed whenever either the primary or the The task is marked as completed whenever either the primary or the
backup execution completesbackup execution completes

Improve job response time by 44% according Google’s experimentsImprove job response time by 44% according Google’s experiments

Seems a simple problem, butSeems a simple problem, but

Resource for speculative tasks is not freeResource for speculative tasks is not free

- How to choose nodes to run speculative tasks?- How to choose nodes to run speculative tasks?

- How to distinguish “stragglers” from nodes that are slightly slower?- How to distinguish “stragglers” from nodes that are slightly slower?

Stragglers should be found out earlyStragglers should be found out early

25

26

F.Baiardi – Security of Cloud Computing – Supporting Tech

Speculative execution vs MonitoringSpeculative execution vs Monitoring

- How to choose nodes to run speculative tasks?- How to choose nodes to run speculative tasks?

- How to distinguish “stragglers” from nodes that are slightly slower?- How to distinguish “stragglers” from nodes that are slightly slower?

Stragglers should be found out earlyStragglers should be found out early

All these problems require the adoption of a proper execution All these problems require the adoption of a proper execution
monitoringmonitoring

An execution monitoring is a tool to analyze actual resource usage to An execution monitoring is a tool to analyze actual resource usage to
discover problems in program execution discover problems in program execution

26

27

F.Baiardi – Security of Cloud Computing – Supporting Tech

Hadoop’s schedulerHadoop’s scheduler

Start speculative tasks based on a simple heuristicStart speculative tasks based on a simple heuristic

– Comparing each task’s progress to the averageComparing each task’s progress to the average

Assumption of homogeneous environmentAssumption of homogeneous environment

– The default scheduler works wellThe default scheduler works well

– Broken in utility computingBroken in utility computing

27

How to robustly perform speculative execution
(backup tasks) in heterogeneous environments?

28

F.Baiardi – Security of Cloud Computing – Supporting Tech

Takeaways

By providing a data-parallel programming model, MapReduce can
control job execution in useful ways:

Automatic division of job into tasks

Automatic placement of computation near data

Automatic load balancing

Recovery from failures & stragglers

User focuses on application, not on complexities of distributed
computing

29

F.Baiardi – Security of Cloud Computing – Supporting Tech

1. Search

Input: (lineNumber, line) records

Output: lines matching a given pattern

Map:
 if(line matches pattern):
 output(line)

Reduce: identity function

Alternative: no reducer (map-only job)

30

F.Baiardi – Security of Cloud Computing – Supporting Tech

2. Sort

Input: (key, value) records

Output: same records, sorted by key

Map: identity function

Reduce: identity function

Trick: Pick partitioning
function h such that
k1<k2 => h(k1)<h(k2) pig

sheep
yak

zebra

aardvark
ant
bee
cow

elephant

MapMap

MapMap

MapMap

ReduceReduce

ReduceReduce

ant, bee

zebra

aardvark,
elephant

cow

pig

sheep, yak

[A-M]

[N-Z]

31

F.Baiardi – Security of Cloud Computing – Supporting Tech

3. Inverted Index

Input: (filename, text) records

Output: list of files containing each word

Map:
 foreach word in text.split():
 output(word, filename)

Combine: uniquify filenames for each word

Reduce:
def reduce(word, filenames):
 output(word, sort(filenames))

Optimization to minimize
communication

32

F.Baiardi – Security of Cloud Computing – Supporting Tech

4. Most Popular Words

Input: (filename, text) records

Output: top 100 words occurring in the most files

Two-stage solution:

Job 1:
Create inverted index, giving (word, list(file)) records

Job 2:
Map each (word, list(file)) to (count, word)

Sort these records by count as in sort job

Optimizations:

Map to (word, 1) instead of (word, file) in Job 1

Count files in job 1’s reducer rather than job 2’s mapper

Estimate count distribution in advance and drop rare words

33

F.Baiardi – Security of Cloud Computing – Supporting Tech

5. Numerical Integration

Input: (start, end) records for sub-ranges to integrate

Easy using custom InputFormat
Output: integral of f(x) dx over entire range

Map:
 def map(start, end):
 sum = 0
 for(x = start; x < end; x += step):
 sum += f(x) * step
 output(“”, sum)

Reduce:
def reduce(key, values):
 output(key, sum(values))

34

F.Baiardi – Security of Cloud Computing – Supporting Tech

Inverted Index Example

to be or
not to be afraid, (12th.txt)

be, (12th.txt, hamlet.txt)
greatness, (12th.txt)

not, (12th.txt, hamlet.txt)
of, (12th.txt)

or, (hamlet.txt)
to, (hamlet.txt)

hamlet.txt

be not
afraid of
greatness

12th.txt

to, hamlet.txt
be, hamlet.txt
or, hamlet.txt
not, hamlet.txt

be, 12th.txt
not, 12th.txt
afraid, 12th.txt
of, 12th.txt
greatness, 12th.txt

35

F.Baiardi – Security of Cloud Computing – Supporting Tech

What is MapReduce used for?

At Google:

Index construction for Google Search

Article clustering for Google News

Statistical machine translation

At Yahoo!:

“Web map” powering Yahoo! Search

Spam detection for Yahoo! Mail

At Facebook:

Data mining

Ad optimization

Spam detection

36

F.Baiardi – Security of Cloud Computing – Supporting Tech

What is MapReduce used for?

In research:

Astronomical image analysis (Washington)

Bioinformatics (Maryland)

Analyzing Wikipedia conflicts (PARC)

Natural language processing (CMU)

Particle physics (Nebraska)

Ocean climate simulation (Washington

37

F.Baiardi – Security of Cloud Computing – Supporting Tech

NFS Disadvantages for MapReduce

• Network congestion
• Heavy disk activity of the NFS server adversely affects the

NFS’s performance.
• When the client attempts to mount , the client system

hangs, although this can be mitigated using a specific
mount.

• If the server hosting the exported file system becomes
unavailable due to any reason, no one can access the
resource.

• NFS has security problems because its design assumes a
trusted network.

• Google FS developed as an alternative

38

F.Baiardi – Security of Cloud Computing – Supporting Tech

Google FS Assumptions

• High Component failure rates
– Inexpensive commodity components fail all the

time.
• Modest number of huge files.

– Just a few million
– Each is 100 MB or larger: multi GB files typically

• Files are write once ,mostly appended to
– Perhaps Concurrently

• Large streaming reads.

39

F.Baiardi – Security of Cloud Computing – Supporting Tech

GFS Design Decisions

Files are stored as chunks.

 - Fixed size(64 MB).

Reliability through replication.

 - Each chunk is replicated across 3+ chunkservers

 Single master to co ordinate access, keep metadata

 - Simple centralized management.

No data caching

 - Little benefit due to large datasets,streaming reads.

40

F.Baiardi – Security of Cloud Computing – Supporting Tech

GFS Architecture

41

F.Baiardi – Security of Cloud Computing – Supporting Tech

Single master

From distributed systems we know this is a:
Single point of failure
Scalability bottleneck

GFS solutions:
Shadow masters
Minimize master involvement
 a) never move data through it, use only for metadata

and cache metadata at clients
 b) large chunk size
 c) master delegates authority to primary replicas in

data mutations (chunk leases)
Simple, and good enough!

42

F.Baiardi – Security of Cloud Computing – Supporting Tech

Metadata

• Global metadata is stored on the master.
– File and chunk namespaces.
– Mapping from files to chunks.
– Locations of each chunk replicas.

• All in memory (64bytes/chunk)
– Fast
– Easily Accessible.

• Master has an operation log for persistent logging of
critical metadata updates.
– Persistent on local disk
– Replicated
– Check points for faster recovery.

43

F.Baiardi – Security of Cloud Computing – Supporting Tech

GFS Architecture

Single master
Mutiple chunkservers

44

F.Baiardi – Security of Cloud Computing – Supporting Tech

Mutations
 Mutation = write or append

 must be done for all replicas
 Goal: minimize master involvement
 Lease mechanism:

 master picks one replica as
 primary; gives it a “lease”
 for mutations

 primary defines a serial
order of mutations

all replicas follow this order
 Data flow decoupled from

control flow

45

F.Baiardi – Security of Cloud Computing – Supporting Tech

Atomic record append

Client specifies data

GFS appends it to the file atomically at least once
GFS picks the offset

works for concurrent writers

Used heavily by Google apps
e.g., for files that serve as multiple-producer/single-consumer queues

46

F.Baiardi – Security of Cloud Computing – Supporting Tech

Relaxed consistency model - I

“Consistent” = all replicas have the same value
“Defined” = replica reflects the mutation, consistent

Some properties:
concurrent writes leave region consistent, but possibly undefined
failed writes leave the region inconsistent

Some work has moved into the applications:
e.g., self-validating, self-identifying records

Simple, efficient
Google apps can live with it
what about other apps?

Namespace updates atomic and serializable

47

F.Baiardi – Security of Cloud Computing – Supporting Tech

Relaxed consistency model - II

● Long after a successful mutation, component failures can
of course still corrupt or destroy data.

● GFS identifies failed chunkservers by regular handshakes
between master and all chunkservers and detects data
corruption by checksumming

● Once a problem surfaces, the data is restored from valid
replicas as soon as possible

● A chunk is lost irreversibly only if all its replicas are lost
before GFS can react, typically within minutes. Even in this
case, it becomes unavailable, not corrupted: applications
receive clear errors rather than corrupt data.

48

F.Baiardi – Security of Cloud Computing – Supporting Tech

Relaxed consistency model - III

● GFS applications accommodate the relaxed consistency
model with a few simple techniques

● relying on appends rather than overwrites,
● checkpointing,
● writing self-validating, self-identifying records.

● Practically all applications mutate files by appending rather
than overwriting.

● A writer generates a file from beginning to end and atomically
renames the file to a permanent name after writing all the data, or
periodically checkpoints how much has been successfully written.
checkpoints may also include application-level checksums.

● Readers verify and process only the file region up to the last
checkpoint, which is known to be in the defined state.

49

F.Baiardi – Security of Cloud Computing – Supporting Tech

Relaxed consistency model - IV

● Google words

● Appending is far more efficient and more resilient to failures
than random writes. Checkpointing allows writers to restart
incrementally and keeps readers from processing successfully
written file data that is still incomplete from the application’s
perspective. In the other typical use, many writers concurrently
append to a file for merged results or as a producer-consumer
queue. Record append’s append-at-least-once semantics
preserves each writer’s output

50

F.Baiardi – Security of Cloud Computing – Supporting Tech

Master’s responsibilities
Metadata storage

Namespace management/locking

Periodic communication with chunkservers

give instructions, collect state, track cluster health

Chunk creation, re-replication, rebalancing

balance space utilization and access speed

spread replicas across racks to reduce correlated failures

re-replicate data if redundancy falls below threshold

rebalance data to smooth out storage and request load

Garbage Collection

simpler, more reliable than traditional file delete

master logs the deletion, renames the file to a hidden name

lazily garbage collects hidden files

Stale replica deletion

detect “stale” replicas using chunk version numbers

51

F.Baiardi – Security of Cloud Computing – Supporting Tech

Fault Tolerance

High availability
fast recovery : master and chunkservers restartable in

a few seconds
chunk replication: default: 3 replicas.
shadow masters

Data integrity
checksum every 64KB block in each chunk

52

F.Baiardi – Security of Cloud Computing – Supporting Tech

Performance

53

F.Baiardi – Security of Cloud Computing – Supporting Tech

Conclusion

GFS demonstrates how to support large-scale processing workloads on
commodity hardware
design to tolerate frequent component failures

optimize for huge files that are mostly appended and read

feel free to relax and extend FS interface as required

go for simple solutions (e.g., single master)

GFS has met Google’s storage needs… it must be good!

54

F.Baiardi – Security of Cloud Computing – Supporting Tech

What’s

• Framework for running applications on large clusters of
commodity hardware

• Scale: petabytes of data on thousands of nodes
– Storage: Hadoop Distributed FS
– Processing: MapReduce Requirements
– Economy: use cluster of comodity computers
– Easy to use

• Users: no need to deal with the complexity of
distributed computing

– Reliable: can handle node failures automatically

55

F.Baiardi – Security of Cloud Computing – Supporting Tech

Hadoop: Motivation

• Previous discussion shows that several parallel algorithms can be
expressed by a series of MapReduce jobs

• But MapReduce is fairly low-level: must think about keys, values,
partitioning, etc

• Can we capture common “job building blocks”?

• Hadoop was inspired by
• MapReduce
• Google File System

56

F.Baiardi – Security of Cloud Computing – Supporting Tech

Hadoop Components

Distributed file system (HDFS)

Single namespace for entire cluster

Replicates data 3x for fault-tolerance

MapReduce framework

Executes user jobs specified as “map” and “reduce” functions

Manages work distribution & fault-tolerance

57

F.Baiardi – Security of Cloud Computing – Supporting Tech

Typical Hadoop Cluster

Aggregation switch

Rack switch

40 nodes/rack, 1000-4000 nodes in cluster

1 Gbps bandwidth within rack, 8 Gbps out of rack

Node specs (Yahoo terasort):
8 x 2GHz cores, 8 GB RAM, 4 disks (= 4 TB?)

Image from http://wiki.apache.org/hadoop-data/attachments/HadoopPresentations/attachments/YahooHadoopIntro-apachecon-us-2008.pdf

58

F.Baiardi – Security of Cloud Computing – Supporting Tech

Hadoop Distributed File System

Files split into 128MB blocks

Blocks replicated across several datanodes
(usually 3)

Single namenode stores metadata (file
names, block locations, etc)

Optimized for large files, sequential reads

Files are append-only

Namenode

Datanodes

11
22
33
44

11
22
44

22
11
33

11
44
33

33
22
44

File1

59

F.Baiardi – Security of Cloud Computing – Supporting Tech

HDFS

• Hadoop implements MapReduce using the Hadoop
Distributed File System (HDFS)

• MapReduce divides applications into many small
blocks of work = HDFS creates multiple replicas of
data blocks for reliability, placing them on compute
nodes around the cluster so that MapReduce can
then process the data where it is located.

• Hadoop has been demonstrated on clusters with
2000 nodes. The current design target is 10,000
node clusters.

60

F.Baiardi – Security of Cloud Computing – Supporting Tech

Hadoop Architecture

Data
Data data data data data
Data data data data data
Data data data data data

Data data data data data
Data data data data data
Data data data data data

Data data data data data
Data data data data data
Data data data data data

Data data data data data
Data data data data data
Data data data data data

Results
Data data data data
Data data data data
Data data data data
Data data data data
Data data data data
Data data data data
Data data data data
Data data data data
Data data data data

Hadoop Cluster

DFS Block 1

DFS Block 1

DFS Block 2

DFS Block 2

DFS Block 2

DFS Block 1

DFS Block 3

DFS Block 3

DFS Block 3

MAP

MAP

MAP

Reduce

61

F.Baiardi – Security of Cloud Computing – Supporting Tech

HDFS

• HDFS assumes that hardware is unreliable and will
eventually fail.

• Similar to RAID level except HDFS can replicate data
across several machines

• Provides Fault tolerance

• Extremely high capacity storage

• Moving Computation is cheaper than moving data=
HDFS is said to be rack aware.

62

F.Baiardi – Security of Cloud Computing – Supporting Tech

Hadoop Map-Reduce Architecture

 Master-Slave architecture

 Map-Reduce Master “Jobtracker”
 – Accepts MR jobs submitted by users
 – Assigns Map and Reduce tasks to Tasktrackers
 – Monitors task and tasktracker status, re-executes

tasks upon failure

 Map-Reduce Slaves “Tasktrackers”
 – Run Map and Reduce tasks upon instruction

from the Jobtracker
 – Manage storage and transmission of

intermediate output

63

F.Baiardi – Security of Cloud Computing – Supporting Tech

Scheduling

• FIFO to schedule jobs from a work queue other schedulers share resources
among users

• Fair scheduler
– Provides fast response times for small jobs and QOS for production jobs.
– Jobs are grouped into Pools, a default one for uncategorized jobs
– Each pool is assigned a guaranteed minimum share.
– Excess capacity is split between jobs.
– Pools specify the minimum number of map slots, reduce slots, and a limit on

the number of running jobs.
• Capacity scheduler

– supports several features which are similar to the fair scheduler
– Jobs are submitted into Queues
– Queues are allocated a fraction of the total resource capacity
– Free resources are allocated to queues beyond their total capacity
– Within a queue high priority jobs will have access to the queue's resources
– There is no preemption once a job is running.

64

F.Baiardi – Security of Cloud Computing – Supporting Tech

Process Diagram

65

F.Baiardi – Security of Cloud Computing – Supporting Tech

Example Data Analysis Task

user url time

Amy www.cnn.com 8:00

Amy www.crap.com 8:05

Amy www.myblog.com 10:00

Amy www.flickr.com 10:05

Fred cnn.com/index.htm 12:00

url pagerank

www.cnn.com 0.9

www.flickr.com 0.9

www.myblog.com 0.7

www.crap.com 0.2

Find users who tend to visit “good” pages.

PagesVisits

. . .

. . .

66

F.Baiardi – Security of Cloud Computing – Supporting Tech

Canonicalize
urls

Join
url = url

Group
by user

Compute Average Pagerank

Filter
avgPR > 0.5

Load
Pages(url, pagerank)

Load
Visits(user, url, time)

(Amy, cnn.com, 8am)
(Amy, http://www.snails.com, 9am)
(Fred, www.snails.com/index.html, 11am)

(Amy, www.cnn.com, 8am, 0.9)
(Amy, www.snails.com, 9am, 0.4)
(Fred, www.snails.com, 11am, 0.4)

(Amy, { (Amy, www.cnn.com, 8am, 0.9),
 (Amy, www.snails.com, 9am, 0.4) })
(Fred, { (Fred, www.snails.com, 11am, 0.4) })

(Amy, 0.65)
(Fred, 0.4)

(Amy, 0.65)

(www.cnn.com, 0.9)
(www.snails.com, 0.4)

(Amy, www.cnn.com, 8am)
(Amy, www.snails.com, 9am)
(Fred, www.snails.com, 11am)

C
on

ce
pt

ua
l D

at
af

lo
w

67

F.Baiardi – Security of Cloud Computing – Supporting Tech

System-Level Dataflow

.

Visits Pages
. . .

. . . join by url

the answer

loadload

canonicalize

compute average pagerank
filter

group by user

68

F.Baiardi – Security of Cloud Computing – Supporting Tech

In General

Users’ data processing tasks:
K steps, N inputs, M outputs
Mix of standard operations (e.g., filter, join) & custom operations (e.g.,

sentence segmentation)

Map-Reduce programming model:
2 steps, 1 input, 1 output
Users chain together Map-Reduce jobs by hand
Users hack to get multiple inputs/outputs
Users code standard operations, e.g. join, by hand

Needed: dataflow programming model on top of Map-Reduce, e.g., Pig
Latin to avoid doing everything by hand

69

F.Baiardi – Security of Cloud Computing – Supporting Tech

Pig Latin Program
(textual representation of conceptual dataflow)

 Visits = load ‘/data/visits’ as (user, url, time);
 Visits = foreach Visits generate user, Canonicalize(url), time;

 Pages = load ‘/data/pages’ as (url, pagerank);

 VP = join Visits by url, Pages by url;
 UserVisits = group VP by user;
UserPageranks = foreach UserVisits generate user, AVG(VP.pagerank) as avgpr;
 GoodUsers = filter UserPageranks by avgpr > ‘0.5’;

 store GoodUsers into '/data/good_users';

70

F.Baiardi – Security of Cloud Computing – Supporting Tech

Pig Takes Care of …

• Schema & type checking

• Translating into efficient physical dataflow
 (sequence of one or more Map-Reduce jobs)

• Exploiting data reduction opportunities
(e.g., early partial aggregation via a “combiner”)

• Executing the physical dataflow (M-R jobs)

• Tracking progress, errors, etc.

71

F.Baiardi – Security of Cloud Computing – Supporting Tech

Pig Latin ≠ SQL

A dataflow language, not a constraint language
User specifies order of operations
Does not rely on a query optimizer

Custom code is a first-class citizen
Can stream records through any user-supplied executable, as part of

dataflow

Users retain control of their data
Operates directly over user files (can be any format)
User supplies file format & schema at runtime

72

F.Baiardi – Security of Cloud Computing – Supporting Tech

Ways to Run Pig

Interactive shell

Script file

Embed in host language (e.g., Java)

soon: Graphical editor

73

F.Baiardi – Security of Cloud Computing – Supporting Tech

The Big Picture

(SQL)

Pig

Hadoop M-R

 cluster

automatic
rewrite +
optimize

or

or

user

Scalability is achieved through a
highly parallel memory

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	“Fault” Tolerance
	Speculative execution
	Diapositiva 26
	Hadoop’s scheduler
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73

