
Vulnerability Analysis

Vulnerability
 A defect in one system component or in

the way the component is used
 By exploiting the bug, a threat agent can

fire an unexpected behavior of the
component

 The behavior allows the agent to violate
the security policy

 This bug is a vulnerability

Vulnerability vs bug

 A bug may not result in a behavior that
violates the security policy

 A bug that results in such a behavior is
a vulnerability
=
any vulnerability is a bug but not the
other way around

Taxonomies

 Several vulnerability taxonomies have
been defined and may be adopted

 Each taxonomy has a goal (location
discovery, evaluate the effects …)

 Before applying a taxonomy we need to
understand whether it satisfies with our
goals

Location of the vulnerability
 Actions that are executed

 Procedural
 People executing the action

 Organization
 Hardware or software tools

 ICT tools that are used

Some examples

 Action
 A password communicated in an envelope that is not

sealed
 People

 Several administrators for the same machine
 Task assigned to people that are not trained

 Tool
 A password transmitted in clear on a netwok
 No bound controls on a vector index

Taxonomy on tool vulns

A further classification, useful but not very
rigorous
 Specification

 A tool that is more general than required (more
functions, more parameters ...)

 Implementation
 A coding error in the program of the tool

 Structural
 The anomalous behavior arises when several

components are integrated

Examples
 Specification = programming-in-the-large

 A library is used that include more functions than
those that are required

 If someone succeeds in invoking some of the
“useless” functions, anomalous behaviors may
arise

 Code reuse may introduce in a system some
vulns in the code that is reused

Examples
 Implementation =

– Well behaved input
– No control on input parameters
– Data and program confusion = jump into a data

structure = stack /buffer/heap overflow
 These vulnerabilities are strongly dependent upon

the native control in the language type system
and in the language run time system
= no overflow with strong data types

Examples
 Structural: due to the composition of several

components that are
– Correct in isolation
– Uncorrect when component

 Problems in the TCP/IP stack
 Some components delegate security checks to

other ones, their correctness depends upon
checks in other components

Another classification
 It considers an attack that exploit the

vulnerability
 Who can implement the attack

 Those who own a local account
 Those who can interact with the machine
 …

 What can be achieved by the attack

Searching for vulns

 Any system can be described as the
composition of standard and specialized
(not standard) components

 Vulns and exploits for standard
components are well known

 The search should focus on
 Not standard components
 Structural vulns due to the composition of

standard components with not standard ones

Vulns and vulnerability scanning

 A vulnerability scanner is a tool that returns a set of
vulns for each computer node in a network

 The scanner identifies the OS and the applications
running on the node through a fingerprinting
algorithms

 Then it access a database that maps each OS and
application into a set of of pubblic vulns

 Vulnerabity scanning is a proper subset of a
vulnerability analysis, the easiest one

Fingerprint

• The main mechanism to identify the OS and the
application is the transmission of IP packets
that violates the specifications

• All the applications and the OS reply in a standard
way to a standard packet

• Each OS and application has its own reaction to a
wrong packet that is not defined in the TCP/IP
specification

• Several packets may be required to solve any
ambiguity

False and true positive

• The scanner will signal a vulnerability even
if the component has been patched

• This is what is called a false positive
• The only strategy to distinguish false and

true positive is to actually implement an
attack that exploits the vulnerability

• Not always possible on production systems

Not a boolean world

Test
outcome

Y

N

Existence (gold standard)

Y N

True
positive
True
positive

True
Negative

False
negative

False
Positive

The problem arises anytime we can only deduce the existence of
an object from some symptoms and do not have a direct access to it

Not a boolean world

Useful overflow

• It is worth attacking a procedure if it is
executed with a large set of rights

• The attack may be implemented provided
that there is a input value that is copied
into a parameter of the procedure without
checking its length

• If any condition is not satisfied the
procedure will not be attacked

Tainting analysis

• A static analysis that returns the set of
program variables that may receive an
input variable and so be overflown

• It returns a larger set than the actual
one, worst case

• It can be improved by taking into
account the procedure that is used to
copy the input value

Tainting analysis

• if x (y=input)
else (y=z);
w=y

• A tainting analysis
tell us that w may
have been tainted
with an input value

• if x (y=input)
else (y=z);
copy (w, y)

• If copy checks the
length of y
before copying it
into w, tainting
but less danger

Non standard vulns in general
 To discover other vulns in a component, we

consider that the vulns in a component defines a
systemic property, the robustness of the
component

 Systemic = it depends upon the component and
the relation among components

 There is a relation among
 Search of vulns
 Robustness

Robustness in ICT

 Robustness of a component =
The ability of the component of avoiding
damage to the overall system when the
component specifications are violated

 Violation of the specifications =
 Inputs differs from the specified one
 Available resources differs ...
 … (enumerating badness)

Robustness in biology
 Redundancy
 Feedback

 Monitoring of the behavior
 Tuning of the beheavior

 Modularity
 Confinment of anomalous behavior
 Uncorrect components are removed and replaced
 No single point of failure

If any of these features is not satisfied a vuln arises

Robustness vs Vulnerability

• Any set of rules that defines how to
build a robust component also defines
a set of rules to discover vulnerabilities

• If the rules are violated, then the
component is not robust, then there
are some vulnerabilities

Robustness
 It differs from performance, efficiency,

ease of use,
 It can be increased only by decreasing

performance, efficiency, ease of use, ...

No Free Lunch Theorem

Robustness
 Let us consider a program that given the

name of a worker returns the worker's salary
 The program is

- correct if the salary is correct for any worker
- high performance if the salary is computed in
 a very short time

 - easy to use if you learn to use it in a short
 time

- robust ????

Robust what happens if
 Wrong record format in the file
 No worker with the name
 The name is 457 characters
 The allocated memory is smaller than

expected
 No file with the worker names
 No file with info to compute the salary
 No disk

How much robustness
 It is almost impossible to define in advance any

violation (this is a case of enumerating badness)

 Robustness is not a 0/1 property

 A robustness measure lies in the range 0..1

 1 is an asimptotic values

 The value depends upon the number of checks in
the program of the component to discover whether
the specs are satisfied or not before using a given
input or a given resource

How much robust?

Number of checks on the specs

R
ob
us
tn
es
s

1

How much robust?
 The value depends upon the number of checks
 Robustness 1 if the number of checks
 Usually the checks are useless because the

probability of violating the specs is very, very low,
provided that the specs are corrects

 A compromise is required because the number of
checks reduces the component performance

 they slow downs the component because they are
implemented through instructions as any other
function of the components

Robustness
 It has been experimentally confirmed

that even trivial checks can improve the
component robustness

 This implies that complex checks should
be adopted only after trivial ones

 Most efficient checks are those related
to data types

Robustness vs Vulns

 We can define an ideal system as one where the
components implement any control

 The ideal system is the asymptote of those that apply more
and more checks

 Any difference between the ideal system and the current
one may be a vulnerability

 If it is a vulnerability depends upon the context and the
cost of the control

 Any set of guidelines to build a system also defines the
potential vulns of the system

Robustness vs Vulns

 Some differences between the ideal system and the
current one cannot be avoided if some controls have
not been adopted to satisfy some performance
requirements

 Other differences may be unrelated to performance
and, hence, controls should be introduced

 The key strategy to discover vulnerabilities is to
evaluate the cost of missing control and contrast it
against the required efficiency

How much robust?

Number of checks

R
ob
us
tn
es
s

1

Largest number of checks
that can be adopted

Current system

Potential vulns

Safety vs Security

• Robustness may also be adopted to
evaluate the safety of a system

• Security differs because we are
interested in robustness with respect
to intelligent attacks rather than to
random failures

Safety vs Security

• Safety is proportional to the ratio of anomalous
behaviors vs the overall number of behaviours

• A fault results in an anomalous behavior but, if faults
are not related with one another, then the ratio
shows the cases where faults are not controlled and
confined

• In security, the attacker tries to force the system to
behave in an anomalous way by attacking those
components that influence the behavior of interest

• Safety = random faults / Security = intelligent faults

Safety vs Security

• Both applies the notion of probability and of
risk

• Safety is focused on independent probability
distribution

• Security is focused on conditional probability
– There are some vulns, hence
– There are some attackers, hence
– The attacker can implement the attacks ...

Design principles for robustness (Saltzer&Schroder)
or rules to discover vulnerabilities

 Economy of mechanisms
 Fail safe default (Default deny)
 Complete mediation
 Open design
 Separation of privilege
 Least Privilege
 Least common mechanism
 Psychological Acceptability
 Work factor
 Compromise recording

8 or 10 principles?
 After introducing the first 8 principles, S&S

say:
Analysts of traditional physical security
systems have suggested two further design
principles which, unfortunately, apply only
imperfectly to computer systems

 The principles applies to both a system and
the mechanisms we introduce to secure the
system

P1-Economy of mechanisms
Keep the design as simple and small as
possible

 Simple implies that less things can go wrong
and when errors occur, they are easier to
find, understand and fix

 Vulns are proportional to the complexity of a
mechanisms and to the code to implement it
 cyclomatic number to find software bug

 Complexity can be achieved by composition
 SO Hardening = remove useless OS

functionalities for applications of interest

P1- Economy of mechanism
 Esokernel and microkernel=

Avoid the implementation of complex
functions in the kernel

 A strong integration between the OS
kernel and the applications not only
violates modularity principles but helps
the spreading of errors (cascade
failures)

P1- Economy of mechanisms
 Simplify the interface
 Complex operations should be implemented by

composing simple operations
 If the operations are rather complex (and hence

powerful), we may be forced to allow a user to
invoke a powerful operation even to implement
simple operations and this increases the user
rights (related to the least privilege principle)

P2-Fail safe default (Default deny)
 Base access decisions on permission rather

than exclusion

 Burden of proof is on the principal
seeking permission

 If the protection system fails, then
legitimate access is denied but this
also denies illegitimate access

 The initial state of the system is
correct

P3-Complete Mediation

 Every access to every object must be checked for
authority

 Usually it is done once, on first access, but if
permissions change after, unauthorized acceses
are possible

 Performance gains achieved by caching the result
of an authority check should be examined
skeptically

 Each operation that is not controlled is a potential
vuln as it may be invoked without authority

Access control matrix

subject

object

rights

Which object
operations the
subject is entitled
to invoke

Condition
1. necessary
2. not sufficient
For a secure system

Access control matrix

• Security requires this matrix exists for each
system layer

• Furthermore, there is also a matrix for
each application or virtual machine at the
application layer

• Coherency among these matrices
• A matrix may be so large that it has to be

stored on a secondary storage

Rights in acm[i,j] -I
 DAC security policy = assigned by the owner of

the j-th object
 MAC security policy = they also depends on the

levels of the i-th subject and the j-th object
 In both cases further constraints may have to be

satisfied before the subject can actually exploit
the rights that have been assigned

Rights in acm[i,j] -II
 The access control or protection matrix is a

highly dynamic data structure
 Dynamicity is due to

 Dynamic creation and distruction of subjects
and objects

 Some security policies dynamically updates the
rights of each subject according to the
operations the considered subject has invoked

Acm: a typical implementation

acm

Security
Kernel

Security policy

subject1

subject2

subject3

subjectn

…

object1

object2

object3

objectm

…

The security kernel or reference monitor
(TCB) mediate the subject attempts to
invoke the operations defined by the objects

Access Control Matrix
 This is a logical data structure for which a large

number of concrete implementations is possible
 Sometime the acm is not implemented by a

matrix
 Problems arises when no all the subjects are

known in advance (network services)
 In this case, a row of the acm is paired with a class of

subjects
 Rules to map each subject into a class have to be

defined

Security Kernel o Reference Monitor

 It belongs to the Trusted Computing Base (TCB)
= its correctness is a necessary condition for the
correct implementation of the security policy

 As small as possible to apply formal techniques
to prove its correctness

 A basis for induction proof of security properties
 In some systems it is stored in a tamper proof

memory to prevent illegal updates

Tamper proof

• A component where any physical attack is
– Prevented or at least
– Detected

• All the components are glued with silicone
• Memory chipes are protected by an electrified grid

that cancel any information as soon as an attack
is attempted

Silicone tamper proof

Silicone

Secure Coprocessor

Complete mediation + fail safe
default

• If both principles are applied
– The system starts in a secure state
– Provided that the security kernel is correct,

only secure transictions are enabled
• Induction proofs on reachable states
• If fail safe default does not hold no induction

basis exists

Complete mediation+ fail safe
default

 Let us assume that to grant a right R on an
operation op the object Ob(op) has to be updated
– In the initial state no subject owns the right of

updating Ob(op)
– No subject can grant this right
– Hence no subject can be granted this right

Access control matrix
 An implicit assumption is that the identity of the

subject is checked before accessing the matrix
 how can we control that a subject that

 claims of being A is A

 Explicit check in the security kernel
 Password
 One-time password
 Challenge response
 Electronic signature

One time password

• A function F with at least two parameters
– S a secret value
– N the number of received requests (defined

in an implicit or explicit way)

• The subject to be authenticated computes
and transmits F(S, N)

• The receiver computes again F(S, N) and
checks

• Synchronization on the value of N

Challenge - response

• Partners agree on a function F and keep
it secret

• F has an input parameter x
• One of the partners sends y (challenge)
• The receiver computes F(y) and sends

back the result
• Also the challenger computes F(y) to

check whether the response is correct

Complete mediation: problems

• High performance in the access to acm is
required due to the huge number of checks

• An implementation where a centralized
data structure is shared among all the
subjects and the objects usually cannot
achieve an acceptable performance

• A distributed solution is to be preferred so
that the overhead is independent of the
number of objects

Solutions - 1
 Capability list= a row based organization of

the matrix
– A capability is a pair

<object address , rigths>
 = a generalization of pointer also know as a

protected pointer
– When invoking an operation, the subject

specifies which of its capability has to be used
for the operation

Acm as capability lists

Security policy

subject1

subject2

subject3

subjectn

…

obect1

object2

object3

objectn

…

The capability is transmitted
to the security kernel that checks
whether it enables the operation
The SK does not manage the ACM

Security
Kernel

List1

List2

List3

Listn

Capability -I
 Invocation opi(objj, par, n) = execute the i-th

operation of the j-th object as enabled by the n-
th capability in the subject list

 By transmitting the capability to another subject
S the subject can delegate S to invoke an
operation it is not entitled to

 Capability = ticket for an object
 It increases the number of instances of a given

rights that increases the complexity of right
revocation

Capability - II
 Capabilities are generated by the security kernel

that distributes them to the subject
 A subject should only be able

– to store
– to read (use)
– to copy (delegation)
– but not to update a capability

 Only the kernel can update a capability
 The probability of a successful attack against the

security policy increases since rights are stored in
the subject

Capability -III
 In some cases the MMU may implement an

efficient hw/fw support for capabilities at
the OS levels

 The capability list is stored in the MMU
 The MMU

– checks the rights in parallel with the
address translation

– prevent a subject from updating its list

Capability -IV
 Address translation exploits a segment/page

table that store the physical address
 For each segment/page some operations are

defined among a predefined set
 (read, write, fetch)

 Some processors do not check the rights if
the segment/page is already stored in the
cache or if the address has already been
traslated

Complete Mediation - 2
 Access control list = a column based

organization of the acm
 One list for each object
 Each list element stores the rights of a

distinct subject
 Even in this case the control may be

implemented by the Security Kernel
 A centralized structure for each object

ACM: ACL

Security
Kernel

Security Policy

subject1

subject2

subject3

subjectn

…

object1

object2

object3

objectk

…

the security kernel checks through
the object ACL that the security policy
is satisfied

Acl1

Acl2

Acl3

Aclk

Access control list
 A more flexible solution may be achieved through

 Partition of the subjects
 The sequential scanning of the list (no direct access is

possible because the subject does not know its position)
If subject Set1 then {op1, op2}

 else If subject Set2 then {op3, op4} this is an ACL!
else {op5}

 - the subjects are partitioned into three sets
 - in this way we can rights even to subjects not known

in advance. This is not possible for capabilities and
makes it possible to define acls for web services

HW/FW support for ACL

 Associative memory where the key may
be
 Subject set of rights
 Subject, operation boolean

 FPGA that implements a function that is
a chain of if conditions about
 Sets of users
 Priority among sets

ACL vs Unix files

The bit array paired with each file and
that defines

 Owner rights
 Group owner rights
 Other users rights

Is an implementation of the file ACL

ACL and file descriptor

struct stat {

mode_t st_mode; // File type & mode access control list + set uid bit

ino_t st_ino; // i-node number

dev_t st_dev; // device number (file system)

dev_t st_rdev; // device n. for special files

nlink_t st_nlink; // number of links

uit_t st_uid; // user ID of owner

gid_t st_gid; // group ID of owner

off_t st_size; // size in bytes, for reg. files

time_t st_atime; // time of last access

time_t st_mtime; // time of last modif.

time_t st_ctime; // time of last status change

long st_blksize; // best I/O block size

long st_blocks; // number of 512-byte blocks

}

Unix/Linux -I
 ACL are defined in terms of process

identifier
 Real user ID owner
 Effective user ID
 Saved user ID

in Linux we also have
 File system ID

ACL vs Router
 Router ACL are built by composing two cases

IP Range1 route
 messages from these nodes are routed

IP Range2 drop
 messages from these nodes are dropped
 A list for each input/output connection can be built

that specifies the IP addressed paired with the
traffic that can cross any router connection

 The address have not to be known in advance

ACL & Router
 ACL of input 1

 131.114.*.* route
 131.4.5.6 route
 131.4.*.* drop

Only traffic from 131.4.*.* is dropped but
that from 131.4.5.6

 ACL of output 1
 131.114.*.* drop
 131.4.*.* drop

No address in 131.4.*.* can send traffic to
the network connected to output 1

Routing in Linux: iptables
 Input chain: rules for the packets

addressed to the node
 Output chain: rules for the packets

produced by the node
 Forward chain: rules for the packets

that cross the node
 Default allow

Nat table
 Prerouting chain= any input packet
 Postrouting chain = any output packet
 Output chain = any produced packet

Routing in Linux
 Drop
 Route
 Return – return to the invoking chain
 Queue – transmit to user space
 Log
 Reject
 Dnat/Snat/Masquerade

Routing in Linux
 Drop
 Route
 Return – return to the invoking chain
 Queue – transmit to user space
 Log
 Reject
 Dnat/Snat/Masquerade

Examples
 iptables –A INPUT –p UDP drop

A new rule is inserted in the input chain to
drop any UDP packet

 iptables –A INPUT –p TCP –dport 156 drop
Drop any TCP packet addressed to port 156

 iptables – N newcontrol
Create a new chain where new controls can
be later inserted

An important point

• Anyone is aware and agrees of the
importance of controlling the network
traffic that enters a network

• Hence these controls are critical in the
border router that connects a network
to a pubblic one

• Are there any reasons to check the
traffic leaving a network?

Controlling the output traffic

• The control of output traffic is an important
mechanism to discover successful attacks
against the network (egress filtering)

• If someone is controlling a node and
stealing information in the node we can
discover illegal connection of the node to
some outside network

• A ping attack can be discovered

ACMatrix, subjects and objects

• As the number of subjects and objects
increases, the complexity of

– defining the ac matrix
– checking its correctness
– achieving full mediation

 strongly increases
• Some solutions have been proposed to

simplify the definition of the matrix

Role vs subject
 When (subject = a final user) we can apply the notion of role
 Role =

– A professional profile and the corresponding rights
– Strongly depends upon the applicative environment

 Any role is paired with
 A set of users that can be assigned that role
 A set of rights

 Role Based Access Control
 Rights are not assigned to users but to roles
 A user U acquires the rights when U is assigned a given role
 When U leaves the role, the rights are lost

Role- II
 Rules are defined to specify when a role

may be assigned and when it is lost
 The rules may take into account

previous operations executed by the
users

 Any role change may require a
password to identify the user

Role hierarchy - I
 Role may be partially order
 A role is larger than other one if it

includes all its rights

Hierarchy II

Other models (defined in the
following)

Attribute Based Access Control

• Each subject is paired with a set of attributes
• The right of invoking an operation is a function

of the current values of the attributes
• Not supported by OS but only at the application

level
• To support it at the OS level a standard set of

attributes for all the user has to be defined

ABAC

• Attributes =
– Role
– Security level
– IP address of the user system

• As an example the operation can be executed if
– Role= system manager
– (Role= system manager) AND (ip = local)
– (Level > confidential) AND (ip = local) AND

(8 <local time <16)

Risk Based Access Control

• The risk posed to the system because of
the operation is evaluated

• The evaluation takes into account
attributes of the system, of the user etc to
decide whether the rights should be
granted

• No reasonable implementation

P4-Open Design - I

 The design should not be secret
or
 The security should not depend on the

secrecy of the design or of the
implementation

 Popularly misunderstood to mean that
source code should be public

P4-Open Design - II
 A system peer review is fundamental to discover

vulns in the design and/on in the implementation
 This implies that the disclosure of the design and

of the implementation is useful only if
– it results in a peer review
– any peer that discovers a vulnerability

communicates it to the owner
 If there is not a peer review (no peer) or if the

vulns are not reported to the owner then the open
design is useless

 Strength and weakness of open source

Vulns vs open design

P5 - Separation of privilege

 Where feasible, a protection mechanism that
requires two keys to unlock it is more robust and
flexible than one that allows access to the presenter
of only a single key

or

 Require multiple conditions to grant privilege

 Separation of duty
 Defence in depth

P5 – Separation of privilege

 A complex operation should be decomposed
into simpler operations

 Each simple operation is enabled by a proper
rights

 We can control that the subject owns both
– The right of invoking the complex op
– The right of invoking each simple op

Example

• Op = trasfer some money from account1 to account2
• 5 rights

– Transfer money
– Read account1
– Update account1
– Read account2
– Update account2

• Someone can transfer money but not from account1
or to account2

P6 – Least privilege - I
Every subject should operate using the least set of
privileges necessary to complete its job

or

 A subject should be given only those privileges it
needs to complete its task and only for the time to
complete it

 A useless right is a vuln
 Rights granted as needed, revoked after used
 The ac matrix is a dynamic data structure
 Rights are assigned and revoked as the computation

evolves

P6 – Least privilege - II
 This principle should be applied even if the security

policy is static as it defines how rights should be
managed rather than how they are assigned to
each subject

 If, in a given time interval, a subject does not need
a right then the right should be revoked and the
acm should be updated to prevent the subject from
using the right in the interval

 The right is granted at the end of the interval
 Extreme version of can know/need to know

 Least Privilege - III
 Protection Domain Switching = the same subject is

executed but the rights in the proper positions of the
acm are updated

 Protection Domain Switching = update of an acm row
 We can have a PD switching even without a context

switching
 The corresponding overhead is a function of the

implementation level and the adopted
implementation of the acm (capability vs acl)

 Revoking a right is not simple with capabilities

Least Privilege - IV
 An alternative definition is focused on the

small protection domains
 As the size of the protection domain

decreases, it also decreases the risk due to
an attack against the considered subject

 If the protection domains are not small
then revoke grants when not needed and
grant when needed

Least Privilege - V
 The system designer has to choose the

proper compromise because a full
application of this principle may result in
low performances
 for each command that is executed,

the acm should to be updated
 the asymptotic system is too slow

Least privilege – In principle

When/how the domain switching is fired
1) Through further, proper instructions
2) Some language constructs also fire the

domain switching

Least Privilege – Common solution

 In the classical solution pairs a domain switching
occurs when
 A procedure (method) is called
 A procedure (method) returns

 A new row is created (call) and destroyed (retun)
rather than updating a row
 When the procedure is invoked, a new row that defines

its rights is created
 The row is destroyed when the procedure returns
 Rights are paired with the instance of a procedure

executed by (or on behalf of) a subject rather than with
the procedure code or with the subject

History of the ac matrix

Row paired
with the new instance
subject=new instance

Procedure
called

Procedure ends

Rows created and destroyed
Rather than updated

Least Privilege – Common solution
 The rights in the new row are a function of

 The private variables of the method (they
depends upon the variable types),

 Input parameters (type of the parameters and
the kind of access to the parameters)

 The structure of the program into classes/
methods defines the strategy to manage the
rights granted to the subiects on the program
data structures

 The programmer can choose the size of each
protection domain

 Domain switching is handled in an automatic way

Example
Op(x, y)

a : ….

 If two subjects (programs) invoke this op, each program
has its own row, we have two local copies of a or one copy
if shared variables are supported (depends upon the type
of a)

 Each row enables the program to access its own
parameters and to non shared local variables

 If a static acm is adopted, the management of rights is
rather more complex and access of a program to the
parameters of the other program is simplified

Least Privilege - Amplification
 It may be useful if the set of rights of the invoked

procedure differs from that of the invoker
As an example, consider the case where the
procedure knows the implementation of the
object

 Rights are amplified: provided that some rights
are owned, other may be granted

 Term is misleading because the set of rights that
is granted may differ from the original one rather
than including it

Least privilege vs objects
 The domain decomposition principle is fully

coherent with an object oriented methodology
 A simple object defines a small protection domain

(a few internal variables) that can be managed in a
simple way

 Even if a simple object is successfully attacked, the
attack has a low impact and can be easily detected

 Sharing among objects should always be
minimized

Least privilege – message passing

 In the case of message passing, subjects are
processes/threads interacting through ports or
channels

 To satisfy the principle
 Distinct interactions are implemented through distinct

ports,
 Ports can be opened/closed (created/destroyed)
 If an interaction may occur, then the corresponding port

is open/created
 The port is closed/destroyed as soon as the interaction

is no longer possible

Least privilege – message passing

 Closed port (open port + mechanism to
discard messages)
 The overhead to discard messages is much

lower if the port is closed or if does not exist
 Messages can be discarded as they are

routed
 In the most dangerous case, the subject

can do nothing because it is always busy
to discard messages (Denial of Service)

Least Privilege – Unix - I
 The principle is violated because root has any

right (and it is the target of any attack)
 This strongly simplifies attacks, any procedure

executed by root is a target
 Management countermeasures such as having

distinct administrators for a system
 Further countermeasures are technological

such as recording (logging) any operation that
has been invoked by root (where???)

Least Privilege – Unix - II
 Chroot constrains the access to the file

system by defining a new root
 Jail (BSD) makes it possible to constrain

other operation such as network
connection

 These are implementation of sandbox =
a minimal environment for untrusted
application

Sandbox

• Definitely a bad idea
• Any sandbox implementation has been

violated
• When the subject succeeds in leaving the

sandbox, no other countermeasure exist

P7- Least common mechanism

Minimize the amount of mechanisms common
to more than one user and depended on by
all users

 Mechanisms should not be shared
– Information can flow along shared channels
– Covert channels

 Isolation
– Virtual machines
– Sandboxes

P7- Least common mechanism

 A powerful mechanism, if useful, should be
decomposed into simpler ones

 If just one mechanism is used to implement
several operations
 Several subjects will be granted the rights of invoking

the mechanism
 This hides the fact that there are several distinct

operations and several distinct rights
 The least privilege cannot be satisfied

P7 – Least common mechanism
 By decomposing operations into simpler ones

we can better satisfy separation of privilege
and least privilege

 Simpler operations makes it possible to assign
to each subject only the rights it needs and it
is entitled to

P8 - Psychological Acceptability

The human interface should be designed for ease of
use so that users routinely and automatically accept
the protection mechanisms correctly

or
Do not adopt policies users will surely violate

 Security mechanisms should not add to difficulty of
accessing resource

– Hide complexity introduced by security mechanisms
– Ease of installation, configuration, use

– Human factors critical here

Last two principles

• Recall they have been introduced
because even if the other are satisfied a
vulnerability is possible

• They are useful if some attacks are
successful

P9 – Work factor
Compare the cost of circumventing the mechanism with
the resources of a potential attacker

 The probability of a successful attack increases with the
resources the attacker can access

 The cost of circumventing a mechanism is the attacker
work factor

 A mechanism is better than another if it can be defeated
only through a larger amount of work

 Several mechanisms can be defeated only by indirect
strategies, such as waiting for an hardware failure

 Reliable estimates of the work are very complex anytime
several attacks are required to violate a system

P10 – Compromise recording

Mechanisms that reliably record a compromise of
information may replace more elaborate ones
that completely prevent loss

 If they produce a tamperproof record that is
reported to the owner, they support the discover
of unauthorized use.

 In computer systems it is difficult to guarantee
discovery after the system has been attacked.

 Logical damage (and internally stored records of
tampering) can be undone by a clever attacker

P10 – Compromise recording

 Useful to collect information about attacks,
goals and threat

 Any collected information can be used to
evaluate the robustness that a system may
offer as well as to improve the accuracy of
the various analysis in a risk assessment

Compromise recording
 A log file that records, at least, any of

 Login attempt
 Failed login
 Access to critical resources

 Protection of log file
 write once memory (e.g. paper)
 Insert a sequence number to discover log manipulation
 Insertion in a record of a value that is a function of all

the previous records
 Forensics = the file should be structured so that it

can be used to prosecute the attacker and as a legal
source of evidence in an investigation

Logging policies
What happen when a file is full?

 Throw away – all the data are
destroyed

 Reset – rotation within a file
 Rotate – rotation among several files
 Compress and archive – stored in a low

cost memory (there are some laws that
require that some data are preserved)

Throwing away log files
 The worst solution

 The files are a source of evidence and of
information about security

 They may also be useful for safety
 Even if the law entitles us to destroy the logs

shortly after they are collected, it is better to
preserve them for some months
 This is the interval of time that is required

to discover any intrusion

Rotating log files
 N distinct files

 logfile.1 , logfile.2, … logfile.n

 Each day a distinct file is used

Compress and archive

 Better solution that takes into account
 Forensics investigation
 Commercial problems with clients,

suppliers
 Log are copied onto low cost,

removable memory devices

Syslog
 A logging system to store information

produced by the kernel and by system
utilities

 It enables a classification of log
messages according to the source and
the critical level of the event

 Messages can be addressed to several
destinations

Syslog: 3 elements
 Syslogd /etc/syslog.conf

 A demon that implement the logging
 It is programmed through a configuration file

 openlog, syslog, closelog
 Procedures to produce event to be logged

 logger
 User command to produce a log

Syslog-aware programs

Entries in the file are produced using
 the functions in the syslog library

 /dev/log

syslogd /etc/syslog.conf

demon
reads Configuration info

Demon routes info to

Log
files

User
terminal

Other machines

Syslog

 Syslogd: configuration
 Configuration info in /etc/syslog.conf
 A text file

 White lines and those beginning with # are
ignored

 Selector <TAB> action
 mail.info /var/log/maillog

Selector
 Identifies

 The source – the program (‘facility’) that is
transmitting the message

 The message severity level
 Sintax

 facility.level
 facility names and severity levels have to

be selected in a predefined set

Facility names
Facility Used by

kern kernel
user user process, default
mail mail system
daemon System daemons
auth Security and authorization

related commands
lpr printer spooling system
news Usenet news system

Facility names
Facility Used by

uucp UUCP
cron cron daemon
mark Timestamps produced with a fixed

frequency
local0-7 local message
syslog syslog internal messages
authpriv Private or system messages
ftp ftp daemon, ftpd
* further facilities

Severity level

Level That means approx.
emerg (panic) Panic situation
alert Urgent situation
crit Critical condition
err other errors
warning warning
notice worth an analysis
info info
debug debugging info

Selector
 Several facilities separated by ‘,’

 daemon,auth,mail.level action
 The composition of several selectors by ‘;’

 daemon.level1; mail.level2 action
 The OR composition of selectors is expressed

through ‘|’ –un a message matches if it
matches at least one selector.

 ‘*’ or ‘none’, (all or none) can be used

 The level defines the lowest level of a logged
message
 mail.warning, matches any message from the mail

system with a level that is, at least, warning
 ‘none’ is used to neglect some facilities .

 *.level1;mail.none action
 Any facility, a level not smaller than level1 but neglect the mail

facility

Selector

Action: message handling

Action That means
filename Append the message to a local file
@hostname send the message to hostname
@ipaddress send the message to the node with the

specified IP address
user1, user2,… write the message on the screen of any

of these users if the user is logged
* write the message on any screen

syslog

Program Facility Levels Description
amd auth err-info NFS automounter
date auth notice Display and set date
ftpd daemon err-debug ftp daemon
gated daemon alert-info Routing daemon
gopher daemon err Internet info server
halt/reboot auth crit Shutdown programs
login/rlogind auth crit-info Login programs
lpd lpr err-info BSD line printer daemon

syslog

Program Facility Levels Description
named daemon err-info Name sever (DNS)
passwd auth err Password setting

 programs
sendmail mail debug-alert Mail transport system
rwho daemon err-notice remote who daemon
su auth crit, notice substitute UID prog.
sudo local2 notice, alert Limited su program
syslogd syslog, mark err-info internet errors,

timestamps

syslog
 openlog (ident, logopt, facility);

 Messages are logged as specified by logopt
 They all begin with ident

 Syslog (priority, message, parameters…);
 message is sent to syslog, that logs it

according to priority level
 close ();

Logopt
 LOG_CONS

Write directly to system console if there is an error while sending to system
logger.

 LOG_NDELAY
Open the connection immediately (normally, the connection is opened when the
first message is logged).

 LOG_NOWAIT
Don't wait for child processes that may have been created while logging the
message. (The GNU C library does not create a child process, so this option has
no effect on Linux.)

 LOG_ODELAY
The converse of LOG_NDELAY; opening of the connection is delayed until
syslog() is called. (This is the default, and need not be specified.)

 LOG_PERROR
(Not in POSIX.1-2001.) Print to stderr as well.

 LOG_PID
Include PID with each message.

Security vs ICT security

 All the principles previously discussed
do not fully characterize ICT security

 The two peculiar features of ICT
security are

– Automatic attack
– The virtual machine hierarchy

Virtual machine hierarchy
 Any ICT system is a hierarchy of virtual

machines
 Each virtual machines

 Defines a set of mechanisms that may be seen as
a programming language

 The defined mechanism abstracts and hides those
of the underlying machine

 Any machine can be a standard one, with all the
consequent implications on vulns

Why ICT security is difficult?
 Vulns may be discovered in the specs and in the

implementation of a virtual machine VM
 Vulns cannot be abstracted because a vulnerability

in VM results in attacks against any machine of the
stack on top of VM
 a vuln in the hardware architecture makes it
 possible to attack any VM running on it

 a vuln in the OS makes it possible to attack
any application it supports

Going down
 A trend in attack is attacking low level virtual

machine
 By controlling a low level of the hierarchy any

higher level can be attacked
 An interesting attack is the one that inserts a

further virtual machine in the hierarchy
 Difficult to be detected
 High impact from a security perspective

Blue Pill Attack

VMi

VMi-1

VMi

VMi-1

New
Virtual
Machine

Blue Pill Attack

The new machine can
– return fake information about the system

states to upper layer virtual machines
– transmit to the underlying machines

commands that differ from those received
by higher VMs

– Machine in the middle, a generalization of
man in the middle

Hierarchy and robustness - I
 Robustness at any level

 Each VM should include the checks on the subjects and the objects of
the corresponding level

 The distribution of checks at the various VMs is the simplest way to
minimize the overall overhead

 This also guarantees that the checks of a VM cannot be violated by
working at a lover level

If this strategy is not applied then either
 A VM does not execute any checks

or
 The checks of a VM are delegated to another one but this increases

the overall complexity
 Redundancy = checks are repeated in distinct VMs

Example - Capability
 VM(L), the machine at level L adopts a capability

based solution to manage the rights of a subject
 VM(L-1), the machine at level L-1

 Implements the subjects and the objects of VM(L)
 Manages some further objects that implement the

capabilities of VM(L)
 The acm of VM(L-1) should guarantee that the

subjects of VM(L) cannot manipulate their
capabilities

Capability

Subject

program1 data1

program2 data2

program3 data3

programn datan

…

object1

object2

object3

objectn

…

Security
Kernel

Lc1

Lc2

Lc3

Lcn

The implementation of a subject

Hierarchy and robustness - II
 Security policy and mechanism modularity in a hierarchy

of VMs:
 any VM defines a set of mechanisms that may be freely composed

by the user of the VM to implement a security policy

 Each VM exploits some assumptions on the security of these
mechanisms that has to be guaranteed by at least one of the
underlying VMs

 Example: to prevent a capability from being manipulated we can
apply

 Encryption
 Protection of a memory segment
 Protection of a data structure
 ….

 A distributed implementation of the TCB by several VMs

Hierarchy and robustness - III
 The robustness of a VM is a function of the

robustness of the underlying VMs
 Even machines that are functionally equivalent have

a very different robustness that may be due to
 The implementation of the machine
 The implementation of the underlying machines

Robustness does not agree with abstraction
Robustness can be evaluated only in terms of the
implementation

A common problem: example
 A memory area, in some memory in VMi is

shared among several applications by distinct
users of a VMi+k

 The applications that share the area are not
know in advance because they depend upon
the users that are sharing VMi

 An application that can access an area can
read in it some values left by another
application or by another user

Solution
 Any memory area that is either

 released by an application or
 garbage collected

Has to be reinitizialed to avoid any illegal
information flow between two applications

 (covert channel)
 This holds for any area

 cache,
 main memory,
 secondary storage

Solution
 In a system with severe security requirements, all

the resources are partitioned into pools each with
a distinct level

 The resource in a pool with a given level are
shared only among applications run by users with
the same security level

 Sharing is constrained to prevent, as much as
possible, unanticipated flow of information
between application with distinct security levels

A general principle …
 The previous example shows that sharing should

be avoided or at least minimized to improve the
security of a system

 A secure system
– is as simple as possible
– avoids sharing as much as possible

 This explains why a secure system is more
expensive of a less secure one

Examples
 Memory segments are partitioned into subsets,

each paired with a security level
 Traffic segregation = network channels are

partitioned into subset, security critical
information is transmitted only along some lines
 Switchs rather than hubs
 Partitioning of virtual lines created by tagging or by

encryption
 Distinc transmission frequency but low security

 It is important to understand that any system
manages at least two level of information

Two security levels
 User information
 Information to implement the security

policy
 Distinct mechanisms have to be applied

to protect the two kinds of information

Example
 A sniffer on a communication line reads any

information transmitted along the line
 If a user information is transmitted the sniffer

can read the information
 If a user password is transmitted and read by

the sniffer then all the user information is lost

Sharing and Cloud

• We have already seen that cloud
archictecure result in large saving is that
they are based upon pools of resources
shared among user

• Elasticity = when a resource is not used it
can be granted to any user that requires it

• What happens when a resource passes
from one user to another one?

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85
	Diapositiva 86
	Diapositiva 87
	Diapositiva 88
	Diapositiva 89
	Diapositiva 90
	Diapositiva 91
	Diapositiva 92
	Diapositiva 93
	Diapositiva 94
	Diapositiva 95
	Diapositiva 96
	Diapositiva 97
	Diapositiva 98
	Diapositiva 99
	Diapositiva 100
	Diapositiva 101
	Diapositiva 102
	Diapositiva 103
	Diapositiva 104
	Diapositiva 105
	Diapositiva 106
	Diapositiva 107
	Diapositiva 108
	Diapositiva 109
	Diapositiva 110
	Diapositiva 111
	Diapositiva 112
	Diapositiva 113
	Diapositiva 114
	Diapositiva 115
	Diapositiva 116
	Diapositiva 117
	Diapositiva 118
	Diapositiva 119
	Diapositiva 120
	Diapositiva 121
	Diapositiva 122
	Diapositiva 123
	Diapositiva 124
	Diapositiva 125
	Diapositiva 126
	Diapositiva 127
	Diapositiva 128
	Diapositiva 129
	Diapositiva 130
	Diapositiva 131
	Diapositiva 132
	Diapositiva 133
	Diapositiva 134
	Diapositiva 135
	Diapositiva 136
	Diapositiva 137
	Diapositiva 138
	Diapositiva 139
	Diapositiva 140
	Diapositiva 141
	Diapositiva 142
	Diapositiva 143
	Diapositiva 144
	Diapositiva 145
	Diapositiva 146
	Diapositiva 147
	Diapositiva 148
	Diapositiva 149
	Diapositiva 150
	Diapositiva 151
	Diapositiva 152
	Diapositiva 153
	Diapositiva 154
	Diapositiva 155
	Diapositiva 156
	Diapositiva 157
	Diapositiva 158
	Diapositiva 159
	Diapositiva 160
	Diapositiva 161

