
Computer & Network Security
 A topic at the intersection of three areas

 Computer Science
 Human Resources and Management
 Economics

 From security of ICT to risk assessment and
management of ICT

 Risk management = an approach strongly
related to probability, impact, cost
effectiveness of solutions

Why security is important
 Any organization strongly depends upon

 Its private ICT resources
 The ICT resources of its partners
 The ICT systems that connect its private resources

with the partners' resources
 Any organization should be able to prove to other

ones that it controls its ICT resources
 Anytime the organization has to prove that it

satisfies some standards (not only an ICT one) it
needs to prove that it controls its ICT resources

Information Security
 Confidentiality

An information can be read only by those that are
entitled

 Integrity
An information can be updated only by those that are
entitled

 Availability
 An information can be read and updated by those

that are entitled when they require the operation
 An ICT resource should be available to those that

are entitled to use it

Other properties
 Traced

 Who has invoked an operation
 Accountability

 Pay for what you have used
 Auditability

 Evaluate the effectiveness of security solutions
 Forensics

 Can we prove that some laws have been violated?
 Privacy

 Protection of personal information (stronger
requirements)

Vulnerability

 A key concept for security
 A vulnerability is a defect (an error, a

bug) in a person, a component, a set of
rules that makes it possible to violate a
security property

 While all vulnerabilities are bugs
(errors...) not all bugs are vulnerabilities

Attack against an ICT system
 An attack is a sequence of actions to gain the

control of (a subset of) an ICT system
 The actions can be implemented by a program
 Each attack exploits some vulnerabilities of the

system that is attacked
 Who controls an ICT (sub)system can

 Collect any information in the (sub)system
 Update any information in the (sub)system
 Prevent someone from accessing any

resource/information in the (sub)system

Our perspective

 Attack focused= a cost effective defence
from attacks to an ICT system

 Why attacks may be successful
 How attacks can be managed

(prevented, reduced, reduce their
damage ...)

 Cost, return, investment,

Alternative approaches

 Unconditional security
 Any vulnerability in the system can be

exploited by an attacker
 Conditional security (risk management)

 Discover which vulnerabilities are convenient
for those interested in attacking the system

 Some vulnerabilities are not exploited due to
their high cost for an attacker

Risk analysis
A modern approach to security:

1. Asset analysis (resources to be protected)
2. Vulnerability analysis
3. Attack analysis
4. Threat analysis (sources of attacks)
5. Impact analysis (damages)
6. Risk management =

– Define acceptable risk
– Select and implement countermeasures

Asset Analysis

• Which logical and physical resources of the ICT
system that are to be protected

• Who is entitled to access these resources and
which operation they are entitled to invoke

– Who is entitled to read an information
– Who is entitled to update an information
– Who is entitled to run a given application

.....

• The analysis defines the goal of our strategy:
which resources are we going to defend

Risk analysis and management

 Not all the attacks are worth preventing
 Economy driven solution

 Which attacks can be prevented
 Which of the previous attacks are worth

stopping
 A complete and coherent methodology is

not currently available
 Several partial solutions to be integrated

The steps of an attack
1. Collection of information about a system
2. Discovery of system vulnerabilities
3. Search or build of a program (=exploit) to

implement the attack (even partially)
4. Implementation of the attack 

Execution of the exploit +
 Execution of human action
5. Install tools to control the system
6. Remove any attack trace on the system
7. Access, update, control a subset of the system

information

Automated attack

 No human action is required, the
implementation of the attack is the execution
of the exploit

 This is the most dangerous kind of attacks
 Automated attacks characterize ICT security

with respect to security in other fields
 Execution time of an automated attack is

neglectable
 No know how or abilities are required to the

attacker to execute an exploit

Local vs remote attack

 An automated attack is
 Local if it can be executed provided that the

attacker can access an account on the
system

 Remote if it can be executed even if the
attacker cannot access an account

 A remote attack is obviously more
dangerous

Terminology and relations ...

Vulnerability

Attacks

Attackers

Impact

Countermeasures

Risk

enable

take
advantage of

results in

related to
the probability of

implement

prevent

may
remove

are interested
in

Threat, threat agents

Partial points view on sec– I
 Security = Confidentialy

 Cryptography
 A set of algorithm to hide information so

that only those who know another
information (the key) can read it

 A fundamental but partial information
because it cannot guarantee availability

 It simplifies but not solves a problem

Partial points of view – II
• Several security problems are related to the triple

<user, resources, rights=operations on the res>
that determines who can execute what

• Several security mechanisms are related to the
solution of these problems

1. Identifying the user
2. Identifying the resource
3. Discover the user rights on the resources

• Sophisticated identification system (biometrics etc.)
can solve 1 but neither of the other ones

Partial point of view - III

• Security is not safety
• A system with 10n -1 safe state e 1 unsafe state,

has a probability of an unsafe behavior = 1/10n

the system safety increase with n
• If the same system has one state out 10n that is

not secure, the attacker goal is to force the
system to enter such a not secure state

• The system security depends upon the success
probability of the attacker rather than on the
overall number of states

Some examples
 Vulnerability
 Attack
 Some countermeasures

We describe a stack overflow, a popular
attack that is an instance of buffer
overrun

Buffer overflow

 The buffer overflow problem is surely the most common problem among all the
vulnerability of C code while it does not arise in all those high level languages
where the programmer is not involved in memory management

 The buffer overflow problem is the most important security issue in the last 10
years and it is based on a forced write of some data with a size larger than
expected. If the program type system does not discover this inconsistency, then
some data is replaced in memory.

 In this way, some program can be inserted (code injection) into a system that
can, among other execute some shell command. If the program is executed at
root level, then it fully control any system function.

 A buffer overflow can exploit any of the following areas stack, heap e bss (block
started by symbol) static variables that are allocated by the compiler.

Text

Data

Stack

Low memory addresses0x00000000

0xFFFFFFFF

A process memory

• To understand buffer overflow, we have to recall the structure of a process
memory.

• A process memory is partitioned into three segments: text, data and stack.
• The text segment is fixed, stores the program code and it is read only. Any

write attempts results in a segmentation error (segmentation fault – core dump)
• The data segment stores the process static and dynamic variables
• The stack segment stores the data to manage function calls and returns

High memory addresses

Low addresses

High addressesi

Text

Dati

BSS

Heap

Stack

code

costants

Static and global variables

Dynamic variables

Local variables
Return addresses etc

A process memory

c
b

a

push(x)x=pop

1) x=a, 2) x=b, 3) x=c1) x=c, 2) x=b, 3) x=a
Stack

 Stack

• A Lifo (Last In First Out) data structure that stores a dynamic
amount of information

• It is used to manage function calls and returns (call assembly
instruction).

• The stack memory area is logically partioned into records (stack
frame) one for each call

Stack and system registers

• The memory address of the instruction to be executed is stored
in the EIP (Extended Instruction Pointer) register

• EBP (Extended Base Pointer) points to the beginning of a stack
frame while ESP (Extended Stack Pointer) points to the end of
the stack frame

• When a function is called, the system

– pushes onto the stack

• the return address = EIP+4,

• the base address of the current frame = EBP

– copies ESP into EBP to initialize the new stack frame.

Stack and system registers

 New frame

activation
record

extended base pointer

extended stack pointer

Stack and system registers

Old New

C: an example

This is a simple example to see how all the stuff works

SFP = saved frame pointer = it is used to restore the original
value of EBP on a return

Return addressReturn address

Return addr

buffer

flag

SFP*

Return address (ret)

a

b
High
addr

Low add

EBP

The stack frame

• Local variable of test_function are
addressed by subtracting a
displacement from EBP while the
function parametes are addressed by a
positive displacement

• When a function is called EIP points
to the function code.

• The stack stores both local variables
and parameters of a function. When
the function ends, the whole stack
frame is removed before returning
(ret).

This C code results in a stack overflow:

void overflow_function (char *str) {
 char buffer[20];

 strcpy(buffer, str); // This function copies str into bufferr
}

int main() {
 char big_string[128];
 int i;

 for(i=0; i < 128; i++)
 {
 big_string[i] = 'A';
 }
 overflow_function(big_string);
 exit(0);
}

This results in an overflow!

Overflow: an example

buffer

SFP

Return address (ret)

*str (parameters)
high

low low
addresses

A
A
...
A
A

A

A

A

} 20 byte

} 108
 byte

1)The first call to overflow_function
correctly initializes the stack frame

2) When overflow_function ends, the return
address has been overwritten by the character
A (segmentation fault!)

Segmentation fault

The previous code results in a segmentation fault

What happens if the return address (ret) stores a valid memory
address?

• In this case no exception is signalled and the process
continues by executing the instruction pointed by ret.

• A stack based buffer overflow exploits this opportunity by
replacing ret with a pointer to some code injected by the
attacker maybe into the stack itself

• How can we update the return address and inject some code
 in the system?

Buffer (stack) overflow

A Buffer Overrun

• It occurs when some variable is larger than expected and it
overwrite other variables

• It may be implemented if the language lacks a typing
system

• Four kinds:
• Stack based buffer overrun
• Heap based buffer overrun
• V-table and function pointer overrun
• Exception handler overrun

• Rather popular among computer worm

Stack Overflow
 By copying x into the stack we destroy (update ??)

 The return address
 Other values on the stack

 The values that are copied codify a program
 The new return address points to the program we

have copied onto the stack
 Overall result: an administrative shell
 This is possible only if the procedure that is attacked

is executed in root mode

Stack overflow

Vulnerability = distinct perspective
1. Lack of control on the size in the program
2. Bad type system
3. Uncorrect memory operation
4. Growth direction of the stack
5. …

Overflow: countermeasures

 Strong typing
 Controls on string lengths
 Insert a “canary” into the stack
 Not executable stack
 Ad hoc checks in the compiler

Canary
 A value that is updated at each invocation
 Inserted into the stack before any

parameters
 Before returning we check that the canary

has not been updated
 Updated at each invocation so that the

attacker does not know its value

Not executable stack
 Controls when fetching an instructions,

they can be supported by the MMU
 No data structure can store instructions
 It does not work with Linux that stores

some drivers in the stack to manage i/o
devices

Cost of the countermeasures
 Each countermeasure has a distinct cost

 Strong typing = 10-30% run time overhead
 Checks on string length = large cost but lower

than the previous one
 Canary = specialized control, low cost
 Not executable stack = lowest cost because it

exploits an hardware/firmware support

Structural vulnerability TCP/IP

• When the TCP/IP stack has been defined, the
main goals was resilience against physical
attack against the network (attack = bombing)

• Main goal = availability
 Some mechanism have been defined to

discover whether some nodes are alive and
reachable

 No mechanism is available to guarantee \
(authenticate) the source of a message

Structural vuln: an Example

1. To check whether a node is alive and
reachable, another node can send an ECHO
message. The receiver reply with the same
message

2. The sender can specify a partial IP address to
broadcast a message to some other nodes

3. There is no control on the fields of an IP packet

All toghether now ..
 R is a network with 1000 node, X is a partial IP

address that matches the addresses of all nodes of R
 A sends a ECHO message to the address X but it

specifies the address of B as the sender address of the
packet

 Any node in R replies to B
 B cannot interact with other nodes because its

communication lines are overflown by the ECHO
messages

Distributed Denial of Service

Security as an holistic property

• The security of a composition is not
related the one of its component

• Even if each of the component is secure
the overall composition is not be secure

• In a virtual machine hierarchy the
security of a machine may be
undermined by a lower one

Impact and countermeasures

 The impact
– depends upon the numbers of nodes, zombies,

whose address matches that in the message
– may be amplified by further messages

 Very few effective countermeasures exist and
B is not aware that the attack is going on till
it starts to receive messages

 A structural vulnerability, it depends not upon
the pieces but upon the composition

Design approaches

 When designing and building a system two
approaches may be adopted

a) pretend there are no vulnerabilities in
the components (penetrate and patch)

b) be aware that there are vulnerabilities
and try to anticipate them even if we still
do not know which vulnerabilities
(proactive approach)

Penetrate and patch

 Vulnerabilities have not been anticipated
 Since we have assumed that components

are free from vulnerabilities, a vulnerability
should be removed as soon as it is
discovered.

 There is a competition between
– discovering and exploiting vulnerabilities
– patching the system to remove them

Penetrate and patch

 Vulnerabilities have not been anticipated
 Since we have assumed that components

are free from vulnerabilities, a vulnerability
should be removed as soon as it is
discovered.

 There is a competition between
– discovering and exploiting vulnerabilities
– patching the system to remove them

Security Patch (wikipedia)

• A security patch is a change applied to an asset (OS, application, ...) t
correct the weakness described by a vulnerability.

• This corrective action will prevent successful exploitation and remove or
mitigate a threat’s capability to exploit the vulnerability to attack an
asset.

• Security patches are the primary method of fixing security vulnerabilities
in software. Currently Microsoft releases its security patches once a
month, and other operating systems and software projects have security
teams dedicated to releasing the most reliable software patches as soon
after a vulnerability announcement as possible.

• Security patches are closely tied to responsible disclosure.

Patches: problem

• Any patching updates a software component
and changes its behaviour

• The change may influence the users
• A patch can be applied only after checking

that the changes can be accepted
• Sometime a patch cannot be applied, eg

certification of a system where the
software is just one component

Number of vulnerabilities
discovered

Browser vulnerability

Top 10 Vulnerabilities - Windows Systems

1. Internet Information Services
2. Microsoft SQL Server
3. Windows Authentication
4. Internet Explorer
5. Windows Remote Access Services
6. Data Access Components(MDAC
7. Windows Scripting Host
8. Outlook and Outlook Express
9. Peer to Peer File Sharing
10. Simple Network Management

Top 10 Vulnerabilities - Unix Systems

1. BIND Domain Name System
2. Remote Procedure Calls (RPC)
3. Apache Web Server
4. Accounts with No Passwords or Weak Passwords
5. Clear Text Services
6. Sendmail
7. Simple Network Management Protocol
8. Secure Shell (SSH)
9. Misconfiguration of NIS/NFS
10. Open Secure Sockets Layer (SSL)

Other lists - I
 Top Vulnerabilities in Windows Systems

 W1. Windows Services
 W2. Internet Explorer
 W3. Windows Libraries
 W4. Microsoft Office and Outlook Express
 W5. Windows Configuration Weaknesses

 Top Vulnerabilities in Cross-Platform Applications
 C1. Backup Software
 C2. Anti-virus Software
 C3. PHP-based Applications
 C4. Database Software
 C5. File Sharing Applications
 C6. DNS Software
 C7. Media Players
 C8. Instant Messaging Applications
 C9. Mozilla and Firefox Browsers
 C10. Other Cross-platform Applications

Other lists - II
 Top Vulnerabilities in UNIX Systems

 U1. UNIX Configuration Weaknesses
 U2. Mac OS X

 Top Vulnerabilities in Networking Products
 N1. Cisco IOS and non-IOS Products
 N2. Juniper, CheckPoint and Symantec Products
 N3. Cisco Devices Configuration Weaknesses

Hippa vulnerabilities
 Firewall and System Probing
 Network File Systems (NFS) Application
 Electronic Mail Attacks
 Vendor Default Password Attacks
 Spoofing, Sniffing, Fragmentation and Splicing
 Social Engineering Attacks
 Easy-To-Guess Password
 Destructive Computer Viruses
 Prefix Scanning (Illegal Modem)
 Trojan Horses

Life cycle of a vulnerability in a
penetrate and patch world

State of a vulnerability - 1

1. The vulnerability has been discovered
2. Both the vulnerability and an exploit that

takes advantage of the vulnerability have
been discovered

3. Both the vulnerability and a patch that
removes the vulnerability have been
discovered (a race with 2)

4. The vulnerability, the exploit and the patch
have been discovered

State of a vulnerability - 2
 Sometimes a system is attacked even if a

vulnerability is in the last status
 It is well known that sometimes the owner

of a system does not apply a patch even if
it is available

 Asymmetry between the owner and the
supplier (applying the patch is the owner
responsibility rather than the supplier one)

Zero day exploit
 An exploit for a vulnerability that has been

discovered but not disclosed to all the users
 Sometimes those who discover a

vulnerability sell it to those interested in
attacking the system (black market of
vulnerabilities)

 Can we design a system that resists attacks
even when a vulnerability is discovered?

Potential impact of a vulnerability

Potential
impact

 unknown discovered attack patch apply

If the patch is not applied because of the owner
= organization vulnerability = window of exposure

Zero day?

Potential impact

 In the best case, a patch is available
before an attack is known

 If the owner does not apply the patch,
then any benefit of discovering the
patch before the attack is lost

 It is the application of the patch not its
definition that reduces the danger

Window of exposure

Number of vulnerability vs quality

 The number of vulnerabilities discovered = known
in a component is always lower than existent ones

 This number depends upon
 the availability of the source code
 the number of applications and of people using the tool
 the expected benefit of an attack against the tool

 If a tools is scarcely used, very few vulnerabilities
are known but this does not imply they do not exist

 The number of disclosed vulnerability cannot be
used as a quality index

Genetic difference
 A system is more robust if it composes

components from distinct suppliers
 The joint existence of vulnerabilities and a

monopoly in the supplying of components
can results in several problems because all
the instances of a component are affected
by the same vulnerabilities

 How much configuration influences
vulnerabilities (??!!)

Defence in depth
 Any system component can be affected by a

vulnerability
 A security expert

 Does not need to know any vulnerability
 Can design a system so that the discovery of a

vulnerability in a component does not make the whole
system useless

 Layered defence or defence in depth = redundancies
and diversities in the controls

 Alternative approach from the application of a
patch

Adopted Approach -I
 A solution that tries to anticipate any vulnerability in

any component has an huge cost
 Hence some vulnerabilities cannot be anticipated
 According to their potential impact we want to

understand which vulnerabilities
– should be accepted
– should be anticipated
– Should be patched asap

 Problem: how to classify each vulnerability

Adopted Approach - II
 The classification (handling) of a

vulnerability depends upon the
corresponding risk

 Risk
1) Average impact if the vulnerability is

successfully exploited
2) Risk of a vulnerability = F(Pattsucc, Imp)

 Pattsucc = probability of a successful attack
 Imp = impact due to a successful attack

Adopted Approach - III
 Pattsucc is a function of several parameters

 Threat agents that
• are interested in implementing the attack
• Have the know how and the resources to

implement the attack
 Complexity of the implementation (automated

or not?)
 Are there other vulnerabilities that can be

exploited to reach the same goal?
 Are these attacks more or less complex?

Probability and impact
 A detailed evaluation of the success

probability of an attack is extremely
complex

– No historical information available
– Quick evolution of hardware and software
– Human factor

 Similar problems are to be faced for the
impact because of factors such has loss of
new clients, damage to the reputation etc

Probability - II
 Sometimes both the success probability

and the impact are evaluated in an
approximated way

 {low, medium, high} oppure
{low, medium-low, medium …}

 We also need a risk matrix that
approximates the risk given the input
approximated values

Risk Matrix

Prob
Impact VL L M H VH

VH H H H VH VH

H M H H H H

M L L M M M

L L L L M M

VL VL L M H VH

A critical problem

 Any probability assumes some information about
the past behavior of a system and of the
attackers

 From this information we can estrapolate the
future behavior under a continuity assumption

 A breakthrough in the technology for the attacker
or the owner can invalidate the continuity
assumption and results in distinct probabilities

Summing Up

• A risk attitude is defined by two of four parameters
– Penetrate and patch/Proactive (choose one)
– Conditional/Unconditional (choose one)

• If a vulnerability is discovered
a) conditional security = assess the risk and remove

only
• there is a non zero risk (Probsucc, Impact)
• if it is cost effective

b) unconditional security: remove
• Penetrate and patch: the number of critical vulnerabilities

(there is a risk) is much higher than in proactive

Evaluating risk with no data

• The current research of our group is
focused on the evaluation of risk when
no data is available

• How to produce accurate and realistic
data to replace historical one that, in
general, is not available or is not
pubblic

Risk Assessment

The formalization of the approach we have
described, it includes:

1. Asset analysis
2. Vulnerability Analysis
3. Attack Analysis
4. Threat Analysis
5. Impact Analysis
6. Risk Determination and Management = which

countermeasures are to be adopted

Risk Assessment

 The most modern approach to ICT security
 It consider the overall risk for an organization

and it frames the risk due to ICT system with
other risks

 A larger context has to be considered
because ICT security should not be seen as a
technological problem only

Return on investement ROI
 The security analyst should be able to justify the

cost of the countermeasures that are selected to
be implemented (deployed)

 A countermeasure should be adopted only for
those vulnerabilities that enable attacks that have
xxx

– A large success probability
– A large impact

= they have a large risk
 An interesting debate about (xxx= both) or (xxx=one of)

Return of investment

• It is the difference between
– The overall risk before the countermeasures
– The overall risk after the adoption of

countermeasures

• The difference is due to countermeasures
that decrease the success probability or
the impact of an attack

• The case where a vulnerability is removed
is a particular one

Return of investment=Earning

• It is the difference between the ROI
and the cost of countermeasures

• The difference should be larger than or
equal to zero

• An alternative definition consider the
ratio between the ROI and the
countermeasure cost

• The ratio should be larger than 1

Next steps
 Asset analysis
 Security policy
 Vulnerability Analysis
 Possible countermeasures
 Attack Analysis
 Risk Management = countermeasure

selection

Next Steps - II
 In principle, the security policy is a

countermeasure
 In practice it is defined independently of

the risk assessment because it also
defines the goal of a system and the rules
to use it

 Its satisfaction is one of the goal of the
assessment

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81

