
Countermeasures Analysis

The goal of this steps is to determine
how risk can be reduced

Countermeasures
A first classification

 Proactive
 They are applied before an attack

eg a vulnerability is removed
 Dynamic

 They are applied as soon as an attack is detected
 eg a vulnerability is removed
 eg a connection is killed

 Reactive
 They are applied after a successful attack
 eg a vulnerability is removed
 eg a password is changed

Detection?

A more detailed taxonomy

Prevent Resist Detect Recovery React

Deception
Honeypot

Resiliency
Robustness

Intrusion Detection
Consistency Checks

Heterogeneity
Cold/Hot Redundancy

Change to
1. Configuration
2. Architecture
3. Application

Identification, authentication, right management

Implementation mechanisms
 Countermeasures are implemented through

a set of common mechanisms
 A set of shared mechanisms

 It can increase the cost effectiveness of
countermeaures

 It should be highly robust because a vuln may
affect several countermeasures

Base mechanisms

 The mechanisms are defined on top of
a security kernel (= TCB) that manages
 The user identities
 User authentication (identity checks)
 User rights

 This should not be confused with the
minimal system that is discussed in the
following

Countermeasures Glossary- I
 Deception = no information about the system

design is available = S&S, open design
 Honeypot = fake systems are introduced to

increase the complexity of discovering nodes to
be attacked

 Resiliency/Robustness = prevent a single
vulnerability from enabling a successful attack
(S&S, least privilege etc)

 Intrusion Detection/ Consistency Check = a set
of checks to discover current or previous
attacks

Countermeasures Glossary - II
 Redundancy = spare components to replace the

attacked ones. The impact is reduced and control
on the system is not lost
 Cold = Stand by spare components
 Hot = Spare components are in use (oversize system)

The underlying problem is a properly evaluation of
expected performance

 Heterogeneous components = genetic diversity =
the vulns of spare components differs from those
of standard components

 A generalization of triple modular redundancy

Triple Modular Redundancy

Module M copy 1

Module M copy 2

Module M copy 3

Voter

Safety, not security
because the three copies
share the same vul

If the three versions have
a different implementation
some security is achieved

Countermeasures Glossary- III

 Minimal system
 A subset of components
 More robusted
 More severe checks

 Control of the minimal system should
never be lost

 It is a starting point to gain back control
on the whole system

 Strongly related to impact/power law

Countermeasures Glossary- IV
 Reaction = Updates to

 The configuration of the OS and applications
 System architecture
 Enabled application
 Patch

 The reaction should involve (work on) the
target system rather than the attacking
one

No action on the attacking sys?
 Stepping stone = a chain of hosts that starts at

the one of the attacker and that are, illegally,
controlled by the attacker =botnet

 The chain enables the attacker to hide his/her
location

 The attack is implemented by the last node of the
chain to hide the first one

 Any node connected to the internet has a value
as it can be used as a stepping stone

 How can we discover a stepping stone?

Stepping stone - 1

 An analysis of input/output node channel to
evaluate their correlation

 If there are an input channel and an output one
that are correlated as far as concerns
 Time = when a communication occurs
 Data = size of exchanged data

 then the node may act as a stepping stone
 By repeating the analysis for the sender/receiver of

the two channeld, the whole chain of stepping
stones may be discovered

Stepping stone - 2

 The proposed analysis is a traffic analysis
that can be applied even to encrypted flows
because it does not consider the information
content of the two flows

 It is almost impossible that the flows in a
stepping stone chains are in clear

Deception
 Its importance has increased because of the developing of

virtualization technologies that minimizes its cost
 It increases the complexity of attacks that use a

vulnerability scanner to discover nodes in a network that
can be attacked

 For each address generated by the scanner a new fake
virtual node is created that has to be analyzed by the
attacker

 Useless virtual nodes are introduced that, as far as a
scanning is concerned, behave like real nodes

 The fake nodes replies to the fingerprinting are slower and
slower to slow down the scanning

 An alarm is raised

Countermeasures - Deception
 Cryptography algorithms
 Information is coded so that only who knows

a further info, the key, can access it
 Already discussed

Just a reminder ...
 Cryptography does not solve the problems, it

only simplify the solution
 It is very difficult to safely store a 2 gb file
 It is rather simpler to encrypt the file through

a 256 bit key and safely store the key
 The same problem has to be solved (safely

store an info) but now the solution is simpler
because the problem size has been reduced

Resist – Robust programming

 Validate program inputs
 Prevent buffer overflow
 Robust implementation
 Check the invocations to other

resources
 Check returned results

Robust programming – Input validation

Input validation + default deny (S&S)
 Define the input legal structure
 Check that any input satisfy the defined

structure
Example: Strings

 A grammar that defines the structure
 Longest input string
 Define which special characters are legal
 Check that any input satisfies 1-2-3

Robust programming – Input validation

 The ability of defining a set of checks to validate
the input should be considered when the
program is specified rather than after the design
of the application

 In the correct approach, the application is
specified and designed to simplify the definition
and the implementation of the checks through a
simple grammar, eg LR grammar, that means
controls implemented by finite state automat

 A complex control may be useless if we are not
confident that it has been correctly implemented

Robust programming – Input validation

 Parameters to be validated
 Environment variables
 File names (blanks , .., /,)
 Email addresses
 URL
 Html
 data

 Several languages define built in function to
match a string against a predefined pattern
(regular expression etc.)

Robust programming – no buffer overflow

 Do not use any library function that does not
check it input parameters

 Use only those functions that check the
length of their input strings

 Dynamic memory allocation of a data
structure rather than static allocation of the
largest data structure

Robust programming –
robust implementation - I

 Satisfy S&S
 Rigorous definition of the program interface
 Do not assume that input/output values are related

 If a function of a library returns a pointer and another
function of the same library has a pointer parameter, there
is no reason to assume that the one transmitted to the
second is the one that has been returned by the first one

 If an input parameter of a function should be equal to the
output of another function, the parameter has to be defined
so that this relation can be checked

 Data and instruction should be different
 The data that each function can access should be

minimized

Pointer - I

Proci

Prock

punt

punt

Package that should
be robust

Procp

Prock

Pointer array

i

i

An index is transformed into a
pointer by accessing the

pointer array

A more robust version

Pointers - II
 By replacing an array of pointers with an

array of records we can
 Introduce fields in the records to discover

whether each element is properly initialized
 Check access to the array
 Define some check on the input output relation

of a pointer
 This is a simplified, redundant version of an

access control matrix for the pointers

Pointers - III
 We can also return an encrypted index to the

pointer array rather than the real one
realpositioin= m*returnedpos+cost

 It simplifies the detection of pointer
manipulation

 Access control does not change

Robust Programming –
robust implementation - II

 Safe variable initialization
 Avoid critical runs by parallelizing operations

and consistency checks
 Time- to-check/time-to-use
 Open file;checks;close;open;use

 Atomic transaction on the file system
 Lock to guarantee consistency but time out to

prevent starvation
 Quota mechanisms for shared resources

Robust programming – check
invocations

 Only safe functions should be invoked
(eg functions that checks their input/output
parameters)

 Check
 the correctness of transmitted parameters
 of metadata in transmitted parameters
 the values that are returned

 Hide and protect critical information

Robust programming – check
returned results

 Do not leak information before the user is authenticated
(banner etc)

 Do not return too much information (yes or no without
explaing why)
 Do not say if the user or the password does not exist but just that

the pair (user, password) does not exist
 Information useful for the debugging should be returned

in log files in the node rather than in the user interface
 Avoid dependency on the user to prevent DOS attacks

 Avoid synchronous communications,
 If synchronous communications are required, introduce a sacrifical

thread

Robust programming vs
programming language

 Most of the previous constraints can be
 Enforced by the program run time support (Java)
 Be satisfied because a discipline is imposed on the

programmer (C)
 Both solutions are acceptable, one privileges

performance the other security
 The only solution to be avoided is a support that

has a low performance even if it does not
enforce the constraints

A distinct perspective

 The 2011 CWE/SANS Top 25 Most Dangerous
Programming Errors is a list of the most significant
programming errors that can lead to serious software
vulnerabilities.

 They occur frequently, are often easy to find, and easy
to exploit.

 They are dangerous because they will frequently allow
attackers to completely take over the software, steal
data, or prevent the software from working at all.

The 25 errors

 Aree partitioned into three classes
 Unsafe interactions among components
 Risky resource management
 Porous defenses

 Selected according to
 Frequency
 Danger

Attributes of each error

 Weakness Prevalence: diffusion
 Attack Frequency: how often the weakness occurs

in vulnerabilities that are exploited by an attacker.
 Ease of Detection: how easy it is for an attacker to

find this weakness.
 Remediation Cost: the amount of effort required to

fix the weakness.
 Attacker Awareness: the likelihood that an attacker

is going to be aware of this particular weakness,
and of methods for detection and for exploitation.

 Consequences = Potential impact

The list

 C:\Users\Hp\Dropbox\didattica\corsimiei\corsopisa\cloudlucidi\2011_cwe_sans_top25.pdf

file:///C:/Users/Baiardi/Documents/CloudMe/lauramagistrale/didattica/corsimiei/2011_cwe_sans_top25.pdf

Countermeasures - Resist
 Correct configuration (hardening) of

standard software component (OS,
packages)
 Determine useful functions
 Remove useless functions
 Remove any standard account or at least

update its password

Countermeasure - Resist

The confinement
principle

Running untrusted code

We often need to run buggy/unstrusted code:

– programs from untrusted Internet sites

– old or insecure applications: ghostview, outlook

– legacy daemons: sendmail, bind

– Honeypots

Goal: if application “misbehaves” kill it⇒

Approach: confinement

Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:

– Hardware: run application on isolated hw (air gap)

 ⇒ difficult to manage

air gap network 1Network 2

app 1 app 2

Approach: confinement

Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:

– Hardware: run application on isolated hw (air gap)

 ⇒ difficult to manage

air gap network 1Network 2

app 1 app 2

Approach: confinement

Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:

– Hardware: run application on isolated hw (air gap)

 ⇒ difficult to manage

air gap network 1Network 2

app 1 app 2

Implementing confinement

 Key component: reference monitor

 Mediates requests from applications

 Must always be invoked:

 Every application request must be mediate
 Tamperproof:

 Cannot be killed or if killed, then monitored process is killed
too

 Small enough to be analyzed and validated
 Old implementation : jail

Not all programs can run in a jail

Programs that can run in jail:

• audio player

• web server

Programs that cannot:

• web browser

• mail client

Problems with chroot and jail

Coarse policies:

– All or nothing access to parts of file system

– Inappropriate for apps like a web browser

• Needs read access to files outside jail
(e.g. for sending attachments in Gmail)

Does not prevent malicious apps from:
– Accessing network and messing with other machines

– Trying to crash host OS

System Call
Interposition

Isolation

System call interposition

Observation: to damage host system (e.g. persistent changes)
app must make system calls:

 To delete/overwrite files: unlink, open, write

 To do network attacks:socket, bind, connect, send

Idea: monitor application system calls to block unauthorized calls

Implementation options:
– Completely kernel space (e.g. GSWTK)
– Completely user space (e.g. program shepherding)
– Hybrid (e.g. Systrace)

Initial implementation (Janus)

Linux ptrace: process tracing

process calls: ptrace (… , pid_t pid , …)

and wakes up when pid makes sys call.

Monitor kills application if request is disallowed OS Kernel

monitored
application
(browser)

monitor

user space

open(“/etc/passwd”, “r”)

Complications

• If app forks, monitor must also fork

– forked monitor monitors forked app

• If monitor crashes, app must be killed

• Monitor must maintain all OS state associated with app

– current-working-dir (CWD), UID, EUID, GID

– When app does “cd path” monitor must update its CWD

• otherwise: relative path requests interpreted incorrectly

Problems with ptrace

Continued

– Trace all system calls or none
– Monitor cannot abort sys-call without killing app

Security problems: race conditions
– Example: symlink: me mydata.datproc 1: ⟶

1: open(“me”) monitor checks and authorizes

 2: me /etc/passwd ⟶

OS executes open(“me”)
Classic TOCTOU bug: time-of-check / time-of-use

Alternate design: systrace

• systrace only forwards monitored sys-calls to monitor (efficiency)
• systrace resolves sym-links and replaces sys-call path arguments by

full path to target
• When app calls execve, monitor loads new policy file

OS Kernel

monitored
application
(browser)

monitor

user space

open(“etc/passwd”, “r”)

sys-call
gateway

systrace

permit/deny

policy file
for app

Policy

Sample policy file:

path allow /tmp/*
path deny /etc/passwd
network deny all

 Manually specifying policy for an app is difficult:
 Systrace can auto-generate policy by learning how app behaves

on “good” inputs
 If policy does not cover a specific sys-call, ask user … but user

has no way to decide
 Difficulty with choosing policy for specific apps (e.g.

browser) is the main reason this approach is not widely
used

Isolation via
Virtual Machines

Isolation

Classification

Our focus on system VMs

A new software layer is introduced that honors the existing ISA to
create distinct physical machines

Alternative solutions

Software VMM

Solution adopted by VMware

Virtual Machines

Virtual Machine Monitor (VMM)

Guest OS 2

Apps

Guest OS 1

Apps

Hardware

Host OS

VM2 VM1

Example: single HW platform used for both classified and unclassified
data (two levels of a MAC policy)

Why so popular now?

VMs in the 1960’s:

– Few computers, lots of users
– VMs allow many users to shares a single computer

VMs 1970’s – 2000: non-existent

VMs since 2000:

– Too many computers, too few users
● Print, Mail, Web, File server, Database ,

– Wasteful to run each service on different hardware
– More generally: VMs heavily used in cloud computing

VMM security assumption

VMM Security assumption:

– Malware can infect guest OS and guest apps

– But malware
● cannot escape from the infected VM
● Cannot infect host OS or other VMs on the same

hardware

Requires that VMM protect itself and is not buggy
– VMM is much simpler than full OS

 … but device drivers run in Host OS

Problem: covert channels

• Covert channel: unintended communication channel
between isolated components

– Can be used to leak classified data from secure
component to public component

Classified VM Public VM

secret
doc

m
alw

are

listener
covert

channel

VMM

An example covert channel

Both VMs use the same underlying hardware

To send a bit b {0,1} malware does:

– b= 1: at 1:00am do CPU intensive calculation
– b= 0: at 1:00am do nothing

At 1:00am listener does CPU intensive calc. and measures
completion time

 b = 1 completion-time > threshold
Many covert channels in running system:

– File lock status, cache contents, interrupts,

– Difficult to eliminate all (reduce bandwidth)

Subverting VM
Isolation

Isolation

Subvirt [King et al. 2006]

Virus idea:

– Once on victim machine, install a malicious VMM

– Virus hides in VMM

– Invisible to virus detector running inside VM

HW

OS

HW

OS

VMM and virus

anti-virus

anti-virus

The MATRIX

VM Based Malware (blue pill virus)

• VMBR: a virus that installs a malicious VMM (hypervisor)

• Microsoft Security Bulletin: (Oct, 2006)

– Suggests disabling hardware virtualization features

by default for client-side systems

• But VMBRs are easy to defeat

– A guest OS can detect that it is running on top of VMM

VMM Detection

Can an OS detect it is running on top of a VMM?

Applications:

– Virus detector can detect VMBR

– Normal virus (non-VMBR) can detect VMM

• refuse to run to avoid reverse engineering

– Software that binds to hardware (e.g. MS Windows) can
refuse to run on top of VMM

– DRM systems may refuse to run on top of VMM

VMM detection (red pill techniques)

• VM platforms often emulate simple hardware

– VMWare emulates an ancient i440bx chipset

… but report 8GB RAM, dual CPUs, etc.
• VMM introduces time latency variances

– Memory cache behavior differs in presence of VMM

– Results in relative time variations for any two operations

• VMM shares the TLB with GuestOS
– GuestOS can detect reduced TLB size

• … and many more methods [GAWF’07]

VMM Detection

Can an OS detect it is running on top of a VMM?

Applications:

– Virus detector can detect VMBR
– Normal virus (non-VMBR) can detect VMM

• refuse to run to avoid reverse engineering
– Software that binds to hardware (e.g. MS Windows) can

refuse to run on top of VMM
– DRM systems may refuse to run on top of VMM

Isolation

Software Fault
Isolation

Software Fault Isolation [Whabe et al.,
1993]

Goal: confine apps running in same address space

– Codec code should not interfere with media player

– Device drivers should not corrupt kernel

Simple solution: runs apps in separate address spaces

– Problem: slow if apps communicate frequently

• requires context switch per message

Software Fault Isolation

Partition process memory into segments

• Locate unsafe instructions: jmp, load, store

– At compile time, add guards before unsafe instructions

– When loading code, ensure all guards are present

code
segment

data
segment

code
segment

data
segment

App 1 App 2

Software Fault Isolation

Segment matching technique

Designed for MIPS processor. Many registers available.

• dr1, dr2: dedicated registers not used by binary

– compiler pretends these registers don’t exist

– dr2 contains segment ID

• Indirect load instruction R12 [R34] becomes:

dr1 R34
scratch-reg (dr1 >> 20) : get segment ID
compare scratch-reg and dr2 : validate seg. ID
trap if not equal
R12 [dr1] : do load

Address sandboxing technique

• dr2: holds segment ID

• Indirect load instruction R12 [R34] becomes:

dr1 R34 & segment-mask : zero out seg bits
dr1 dr1 | dr2 : set valid seg ID
R12 [dr1] : do load

• Fewer instructions than segment matching

… but does not catch offending instructions
• Similar guards places on all unsafe instructions

Problem: what if jmp [addr] jumps directly into indirect load?
(bypassing guard)

Solution:

jmp guard must ensure [addr] does not bypass load guard

Address Sandboxing

Isolation: summary

• Many sandboxing techniques:

Physical air gap, Virtual air gap (VMMs),

System call interposition, Software Fault isolation

Application specific (e.g. Javascript in browser)
• Often complete isolation is inappropriate

– Apps need to communicate through regulated interfaces

• Hardest aspects of sandboxing:
– Specifying policy: what can apps do and not do

– Preventing covert channels

Countermeasures - Resist
 Firewall

 A system that connects two networks with distinct
security requirements

 It filters the information between the two networks and
the services each network can access in the other one

 It hides some components in the most critical networks
so that they cannot be accessed from the less critical
network

 It defends the most critical network from attacks
originating in the less critical and less protected one at
the expence of the bandwidth between the two networks

Introducing a Firewall

fw

Initial configuration

Local network
To be protected

Local network

Firewall

After introducing the fw

Dangerous
Network
Dangerous
Network

Dangerous
Network
Dangerous
Network

Introducing a Firewall
 A firewall CAN protect a network from

attacks from outside the network
 It prevents connection to critical nodes of

the network it protects
 It filters information that may be

transmitted through legal connections
 It can force stronger user authentication to

connect to enter or to leave the network it
protects

Introducing a Firewall
 A firewall CANNOT protect a network

from attacks
 Originating from within the network

(insider threat)
 That exploits lines it cannot control
 That exploits protocol that it does not

know (unless a default deny strategy is
adopted)

Introducing a Firewall
 The firewall behaviour fully depends upon

the adopted security policy
 The behaviour is based upon the distinction

inside/outside
 All the mechanisms are implemented in a

single point (controls are fully delegated to
the firewall)

 Fail safe or fault tolerance (redundancy) of
the firewall

Firewall: properties
 A firewall is characterized by

 The protocols it can analyze (stack layer it can analyze
to protect a network)

 Its implementation (router, dedicated node, router+
dedicated node)

 The two properties are distinct and fully orthogonal
and they determine the overall robustness of the
firewall = robustness enabled by the controls +

robustness in the control implementation

An example - I
 The same set of controls can be

implemented in
 A firewall that receives and transmits

through the same network interface
 A firewall that receives and transmits

through two distinct network interfaces
 A firewall with two interfaces that are the

only connections between the two networks

Some architectures - 1

fw
A hub

A physical connection exist

Routing tables
To filter
traffic

Some architectures - 2

fw

A physical connection does not exist

Some architectures - 3

fw

A physical connection does not exist
And two components have to be attacked

routers

Some architectures - 4
 In the simplest case we have a router with some

ACL (already seen in S&S) rather than a node = a
layer 3 firewall that can examine ports and hosts

 A layer 3 firewall does not remember the history of
a connection but can prevent that an outbound
connection is opened by checking the bits in an IP
packet

 It can be also implemented by a dedicated system
or a system with other functions, eg a Linux node
plus netchain and/or iptable

Packet filtering

Circuit level

Application Level

Proxy service

Dynamic filtering

Countermeasures – Resist & Recovery

 Defence-in-depth
 A network is segmented into several

subnetworks, each with a security level
 Networks with consecutive security levels only

are connected
 Any connection from a network to another one

is protected by a firewall
 Physical node connections may have to be

updated

Defence-in-depth

E-mail,
web server

E-mail,
web server

Accou
nting
Accou
nting

Resear
ch
Resear
ch

Local network

fw

fw

fw

Initial configuration Defence in depth

Firewall & Virtual Machine
 Virtualization technology supports the definition of virtual

network (overlay network)
 This makes it possible to spread information across a large

number of nodes and of networks
 Virtual networks are protected by (virtual) firewall
 Some applications can be protected by mapping the

corresponding virtual nodes onto distinct physical nodes
 The ability of introducing several nodes and distinct

networks simplify information management as each
network can manage a low amount of homogeneous
information from a security perspective

Checks are more rigorous as sharing may be minimized

Countermeasures – Personal
Firewall

 Initially , the target of the attack where the server systems

 Currently attacks are complex (eg sequences of attacks) and
one of the target of an intermediate step may be a client
system, eg to steal information used to authenticate users

 A personal firewall is a software component to protect the
client and the information exchange between the client and
the server

 A special purpose application may be useless because the
ability of defining a virtual network makes it possible to
protect the applications running on a client system through
standard components

Personal or real firewall?

Client Virtual
Nodefirewall

Client node

Virtual machines

It can be
decomposed
into a virtual
network

Countermeasure - Detect

 Discover attacks against a node
 There are two cases of interest

 Discover ongoing attacks = discover a malware
trying to attack a node

 Discover malware that has been installed on a
node after a successful attack

 There are alternative strategies to discover
events of interest

Countermeasures - Detect

Detection – Anomaly Based

 The behaviour of the system to be protected
is observed for an interval of time (learning
the normal behavior)

 After the learning, any behavior that is too
“distant” from those that have been observed
is signalled as an anomaly

 The critical element is the amount of
information on the system acquired in the
learning phase

Detection – Anomaly Based

 Dynamic
 Information on a program behavior is collected to

discover attacks against it
 Static

 Information on the structure of a program or of file
record are collected

 Hybrid
 The expected behavior of the program is compared

against the actual one

Detection – Anomaly Based

In general the information that is collected makes it possible
to approximate the behavior of interest

Detection – Specification Based

 Normal behaviors are not learned, instead they are
specified by the security policy

 Dynamic
 Information on the program behavior are collected and

compared against the program specification
 Static

 A program is statically analysed and the results are
compared against the specification

 Hybrid
 The program compilation returns some specification to

be compared against the program behavior

Detection – Signature Based

 Main idea: there are some behavior that fully characterize and
identify a malware, they are a signature of the malware

 All the signatures are collected in a database that drives the
detection. This poses two problems
 The discovery of a signature
 The update of the database

 A malware can be discovered only if its signature is known = a 0-
day exploit cannot be detected = new attacks can be discoverd,
only if an anomaly detection approach is being implemented

 Alternative strategies can be adopted to define the signature

Detection – Signature Based

 A default allow strategy, anything that is different fro a
signature is allowed

 Dynamic
 Information on the program behaviour are collected and

compared against the signature
 Static

 The program code is analyzed and compared against the signature
 Used by antivirus tool

 Hybrid
 The two approaches are merged: a subset of the programs is

selected by a static analysis and the behaviour of these programs is
monitored

Detection

 Which events are used to define a
signature

 Events local to a node
 OS calls
 File operations

 Global network events
 Messagges
 Protocol events

Detection
 Intrusion Detection System

 It monitors either a host (host IDS) or a
subnet (network IDS) to detect attacks

 It integrates with a firewall to detect
 Attacks from the outside that escape the firewall
 Insider attacks that the firewall cannot prevent

 Unstable technology

IDS, false positive, negative…
 The behavior that the tool detects are an

approximation of those of interest. This implies that
some statistic notion may be very useful

 The problem arises because we do not have a
perfect test to discover if a system is being or has
been attacked

 There is a set of symptoms (behavior) that suggest
that the system has been or is being attacked

 However, we are not sure of the attack

False, true positive etc
 We define a test to discover whether

some one is ill
 4 cases are possible

 Test positive, illness = true positive
 Test positive, no illness = false positive
 Test negative, illness = false negative
 Test negative, no illness = true negative

The ideal test

No illness Illness

True neg True pos

Probability distribution
of the parameter, no illness

Probability distribution
of the parameter, illness

Output of the test

Any real test

No illness Illness

False negative false positive

True neg True pos

Any real test

False positive = false alarms False negative = missed intrusion

True neg True pos

Possible behaviors The test Intrusions

A real test

Ideal test = perfect
knowledege

A real test

True positive

Veri negativi
False negative True negative

False
positive

Ill No ill

Another case: biometrics

Sensitivity

Sensitive = probability of a positive answer in an
ill person

Ill

Specificity

No ill

Specifity= probability of a false answer if no illness

Likelyhood

LR+= ratio between the probabilities of
a positive test in one ill and one healthy
person
LR-= ratio between the probabilities of a
negative test in one ill and one healthy
person

Evaluating rules to detect intrusion

To each rule to detect an intrusion
• it sends at least x Mb/sec
• It open at least x connection in a sec
we can pair a point in this space according
the probability of false and true positive for
each value of x.
As x changes, we have a curve in ROC space

A rule low and left = conservative low number of false positives but
also a low detection capability

A rule high and right = good detection capability at the expense of a lot
of false positves and few true positive

A rule under the bisector = worse than random (= the bisector) it can
 be improved by negating it

ROC curve
receiver operating characteristics

The curve is drawn by considering a rule that depends upon a parameter for
distinct values of the parameter (it opens x connections in a second)
Each value results in a percentage of false and true positives
The bisector corresponds to a rule that chooses at random
Rule can be evaluated according to the surface they define, the larger, the better
No curve can be worse than the bisector because we can define a curve better
than the bisector by negating the rule

Sensitivity vs 1-specificity

Random answer

Applying ROC to select a strategy

Best solution
Always higher
Than the others

Pay attention to the
population size

 When considering an IDS the number of “people”
to be tested is fairly larger than in the case of a
medical test

 A test that produce a false positive with a
probability equal to 10-6 is almost ideal in the
medical field

 The same test, if applied to a network that
transmits 109 IP packet in one day, returns about
100 false positive a day, about 5 false alarms for
each our = the test is useless

Host IDS
 It monitors a single host
 It checks system and user process to discover

 OS commands that have been changed
 Attackers that impersonate legal users
 Attacks against the host

 Base mechanisms to define a monitor:
 Interception of OS calls

then either
 Analyze the call

or
 Produce a log with the calls and analyze it

Network IDS
 It monitors the network segment inbetween

two switches (a collision domain)
 The monitoring has to detect anomalous or

dangerous traffic
 The basic mechanism is sniffing, the same

one used by an attacker
 A dedicated host should be used for both

performance and security

NIDS + HIDS
 The two tools can cooperate through a

distinct interconnection network
 The real problem is how much one tool

can trust the other (mutual trust)
 The host running a tool may be attacked

and controlled by the attacker

NIDS+ HIDS = IDS = sensors+ engine
 The most coherent perspective consider a set of sensors and

an inference engine
 Each sensor monitors some components and transmits

information to the engine
 The engine applies a set of rules to the input from the

sensors to detect intrusions
 The communication among the engine and the sensors

exploits a segregated connection network
 It is important to determine whether two events are

independent because if several independent events signal an
intrusion, then the probability of a true positive increases

 Danger model = inspired by biology, rules that produces a
larger number of false positive may be applied as the
probability of an intrusion increases

IDS
 In any case, the adoption of an IDS has to be

trasparent for the user
 In several cases, the users should not to be

aware that an IDS has been adopted (it can
discover insider threats)

 Legal problems
 According to the italian law the adoption of any tool that

can be used to monitor a worker has to be authorized
by trade unions

IDS
 Which actions can be automatically taken as

soon as an IDS discover an attack?
 It is correct to take action on the target system: kill

an internet connection increase the amount of
data that are recorded in a log, ends some user
sections

 No action should be taken against other systems,
eg the attacker one, for two reasons:

 Stepping stones
 False positives

Intrusion Detection System

E-mail
 web
E-mail
 web

Accoun
ting
Accoun
ting

ResearchResearch

Local
Network

fw

fw

fw

Initial configuration Segmentation+Defence in Depth+IDS

nIDS

nIDS

nIDS

Intrusion Detection System

Local
Network

Initial configuration

Segmentation+Defence in Depth+IDS

fw

fw

fw

nIDS

nIDS

nIDS

Cooperation among nIDS

IDS+Virtualization

We can insert IDSs in virtual networks
 Increase the number of controls

 When crossing a network
 Within a, virtual, network

 By reducing the number of nodes within
a virtual network we can control in a
more rigorous way the traffic and the
protocol in the network

Sensors
 Two kind of sensors

 off-line: they analyze the system and user logs to discover attacks
that have been implemented and their impact

 real-time: they analyze the current system behavior to discover
ongoing attacks and stop them before they are successfull

 real time
 Some compromises have to be accepted = minimize the number

of control to avoid a loss of performance
 Hardware supports, eg similar to the routing one for NIDS

 Off line = CIDF, common intrusion detection framework
standard for logs

 NIDS vs HIDS sensors
 hIDS

 It filter the requests from a user process to the OS,
the OS executes only requests that have not been
rejected

 It may slow down a host but any request is controlled
 nIDS is not involved in the service that manages

a given packet, there is no way to slow down the
receiving host
 NIDS has to be executed on a dedicated
host to analyze all the information flows

hIDS and nIDS technologies
 Anomaly detection

 By observing a system, a database is built that stores the normal
system behavior

 Behaviors that differ more than a predefined threshold are
signalled

 Zero day exploit

 Signature specification based
 Default allow (attack signatures have to be specified)

 A database storing attack signatures
 At run time any behavior matching one in the database is

signalled
 The update of the database is critical

 Default deny = legal behavior has to be specified

hIDS and nIDS technologies
 Base element that is analyzed

 IP packects and protocol events for a nIDS
 OS call for a hIDS
 They can be generalized if the hierarchy of

virtual machines is considered
 String of vm invocations for a hIDS
 A stream of information for a nIDS

 nIDS: some problems
 Fragmentation of IP packets
 Analysis of a TCP stream (reordering ..)
 Protocol analyis
 Normalization of a protocol to handle all

those cases that are not defined by a
standard (overlapping IP packets)

N&H-IDS: anomaly detection
First step: interesting measures
 Number of open file

 global & for each user
 Number of open port

 global & for each user
 Frequency of commands
 Number of connected user
 Time when a user connects
 Usage of system resources

N&H-IDS: anomaly detection
 An histogram is built by observing the system and by using a

number of intervals (eg 32)
 The intervals are chosen so that the last one include less

than 1% observations
 We monitor the system for a time interval (we observe the

value of interest at each minute, for 30 days) and build the
distribution that pairs each interval with a probability = long
term distribution

 We monitor the system for a shorter interval (eg. at each
minute for two hours) and build a short term distribution

 An anomaly arises if the two distributions differs

Generating a distribution
 Defined starting from an histogram of

the observations

1 2 31 32

Number of
Observations in the
corresponding
interval

The probability
is computed
by normalizing

N&H-IDS: anomaly detection
 The difference between two distributions is

defined as the sum of the absolute differences
between two correspoding intervals

 Several distributions of the same measures can
be generated by distinct observation frequency
or for distinct cases
 Open files

 The number can be read at each minute or at each hour
 The number can be read for each user or for each group of

users

N&H-IDS: anomaly detection
 The IDS raises an allarm anytime the absolute

difference is larger than a user defined threshold
 The observations collected to build the short

term distribution are used to
 Discover anomalies and signal attacks
 Update the long term distribution to mimic the system

evolution (a weigthed sum is used)
 The long term distribution is updated at predefined

times (eg at the end of the day) rather than in real
time

N&H-IDS: anomaly detection
 The overall system behavior may be

seen as a learning system
 Initially, the system learns its normal

behavior
 The learning and the discover of

anomalous behavior are a life long
property of the system

N&H-IDS: anomaly detection
 The definition of anomaly is related to a user

defined threshold
 A large threshold corresponds to a large

difference among behaviors
A few false positives, several false negatives

 A small threshold corresponds to a small
difference among behaviors

 A few false negatives, several false positives
 Different measures, different set of meausures

correspond to distinct ROC curve

The threshold ...

No illness Illness

False negative false positive

True neg True pos

Thresold value

Anomaly detection: an
example
 Nides = next generation intrusion detection

system
 To protect military systems
 First attempt to define in a rigorous way long

and short term distributions
 Measure

 Continuous = any value
 Categorical = one value in a predefined range
 Binary
 IDS related = The IDS activity is measured as well

NIDES - SRI - Continuous - I
 UCPU User CPU time
 SCPU System CPU time
 IO Number of character exchanged

in an application execution
 MEMCMB Largest amount of memory to

 execute the application
 MEMUSE Sum of the amount of memory

used multiplied by the time it
has been used = KByte*seconds.

NIDES - Continuous -II

 TEXTSZ Size of a segment
 OPENF Number of open file
 PGFLT Number of memory faults
 PGIN Number of disk pages read
 PRCTIME Elapsed time
 SIGNAL Number of received signals

NIDES - SRI - Categorical

 UID New user name if changed
 HOUR Hour when the application

began
 RNETHOST Name of the remote host that

has invoked the program
 LNETHOST Name of the local host that

has invoked the program
 RNETTYPE Name of the application

invoked by the remote host

NIDES – SRI - Binary
 RNET Application executed on a

remote host
 LNET Application executed on a

local host

NIDES – IDS related
 INTARR continuous Seconds from the last

record
 I60 continuous Number of audit records

produced in 1 min
 I600 continuous Number of audit records

produced in 10 min
 I3600 continuous Number of audit records

produced in 1 hour

NIDES – Learning time - I

NIDES – Learning time - II

N&H-IDS: signature detection
 The overall behavior strongly resembles an

antivirus tool
 A pattern database (signature) for known

attacks, each action is compared against the
components of each pattern

 Any matching is recorded
 Anytime a pattern has been fully matched, an

alarm is fired

N&H-IDS: signature detection
 Wrt to Antivirus some differences:

 The elements to be matched against the
patterns are dynamically generated

 The time inbetween the geneation of two
consecutive elements is unknown

 An element can match several patterns
 The complexity is much higher for IDSes

than for antivirus where we match a
sequence of characters in a file against a
set of patterns

N&H-IDS: signature detection
 msg=p1 msg=p2 msg=p1

 If the current status of the recognizer is 3 and a
packet = p1 is sniffed then the next state may be
 The one following 3=4
 The one following 1= 2

 A nondeterministic behavior is required = the
status of the automata is both 2 and 4

1 32 3 4

N&H-IDS:
signature detection & evasion

 When sniffing a packet P the NIDS has no mean
to discover
 Whether P will be received
 How P will be handled

 An attacker can iniject packets to hide other ones
or to confuse the IDS (eg packet with a wrong
checksum that will be discarded by the receiver)

 Encrypted traffic is a further problem

N&H-IDS: signature detection
 New attacks can be discovered only if the

database is continuously updated and after the
update

 The detection of unknown attacks is fully
delegated to anomaly detection only

 Anomaly detection can discover a new attack
provided that it results in some anomaly for
some time

NIDS e HIDS: new attacks??
 An alternative approach considers the IDS as

a rule base expert system
 A rule database rather than a pattern database
 Rules describe attacks and anomaly

 A generalization (abstraction) procedure can
be applied to rules to discover, at least,
variants of attacks that are already known

Nimbda Signature (log)
GET /scripts/root.exe?/c+dir

GET /MSADC/root.exe?/c+dir

GET /c/winnt/system32/cmd.exe?/c+dir

GET /d/winnt/system32/cmd.exe?/c+dir

GET /scripts/..%5c../winnt/system32/cmd.exe?/c+dir

GET /_vti_bin/..%5c../..%5c../..%5c../winnt/system32/cmd.exe?/c+dir

GET /_mem_bin/..%5c../..%5c../..%5c../winnt/system32/cmd.exe?/c+dir

GET /msadc/..%5c../..%5c../..%5c/..\xc1\x1c../..\xc1\x1c../..\xc1\x1c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..\xc1\x1c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..\xc0/../winnt/system32/cmd.exe?/c+dir

GET /scripts/..\xc0\xaf../winnt/system32/cmd.exe?/c+dir

GET /scripts/..\xc1\x9c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..%35c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..%35c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..%5c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..%2f../winnt/system32/cmd.exe?/c+dir

HTTP-WHISKER-SPLICING-ATTACK-SPACE

Signature Snort compatible (snort,prelude,etc)

alert TCP $EXTERNAL any -> $INTERNAL 80 (msg: "IDS296/web-misc_http-whisker-splicing-attack-
space"; dsize: <5; flags: A+; content: "|20|"; classtype: suspicious; reference: arachnids,296;)

 Signature Dragon Sensor

T D T B 10 0 W IDS296:web-misc_http-whisker-splicing-attack-space /20

 Defenseworx Signature

1 B 6 T 0 80 [IDS296/web-misc_http-whisker-splicing-attack-space] "\20"

Pakemon Signature IDS296/web-misc_http-whisker-splicing-attack-space tcp * 80 "|20|"

Shoki Signature

tcp and (dst port 80) and (ip[2:2] > ((ip[0:1] & 0x0f) + (tcp[12:1] & 0xf0) + 5)) and (tcp[13]&16!=0) 65536
SEARCH IDS296 web-misc_http-whisker-splicing-attack-space '0x20' ALL 1 NULL

Snort

 Freeware.
 Designed as a network sniffer.
 Useful for

– traffic analysis.
– intrusion detection.

 Warning: Has become a target of attackers!
 What’s more fun for them than to find a vulnerability

in security software.

Snort
 Snort is a good sniffer.
 Snort uses a detection engine, based on

rules.
 Packets that do not match any rule are

discarded.
 Otherwise, they are logged.
 Rule matching packets can also trigger

an alert.

Snort Architecture

 Sniffer
 Preprocessor
 Detection Engine
 Alert Logging

SNORT Architecture

 Packet Sniffer
 Taps into network

 Preprocessor
 Checks against plug-ins

 RPC plug-in
 Port scanner plug-in
 …

SNORT Architecture
 Detection Engine

 Signature-based implemented via rule-sets
 Rules

 Consists of rule header
 Action to take
 Type of packet
 Source, destination IP address
 …

 And rule option
 Content of package that should make the packet match

the rule

SNORT Architecture
 Snort Alerting
 Incoming “interesting packets” are sent

to log files.
 Also sent to various Add-ons

 SnortSnarf (diagnostics with html output)
 SnortPlot (Perl script that plots attacks)
 Swatch (provides email alerts).
 …

Snort: Architecture
 Packet Decode Engine

 Uses the libpcap package
 Packages are decoded for link-level protocols, then for

higher protocols.
 Preprocessor Plug-ins

 Each preprocessors examines and manipulates packages,
e.g. for alerts.

 Detection Engine
 Checks packages against the various options in the snort

rules files.
 Detection Plug-Ins

 Allow additional examinations
 Output Plug-Ins

Snort: Architecture

Package View:
 NIC in promiscuous mode.
 Grab packages from the network card.
 Decode packages
 Run through various rule sets.
 Output logs and alerts.

Snort Rules: Example

 Rule Header
 alert tcp $External_NET any -> $Home_Net21

 Rule Options
 (msg: “ftp Exploit”; flow_to_server, established;

content: “|31c031db 41c9b046 cd80 31c031db|”;
reference: bugtraq,1387; classtype:attempted-
admin; sid 344; rev4;)

Snort Rules
 Rule Header

 Action
 tcp: Protocol being used. UDP / IP / ICMP
 $External_NET: This is the source IP, default is any.
 any: This is the source port set to “any”
 ->: Direction of conversation.
 $Home_Net: This is a variable that Snort will replace with
 21: Port to be monitored.

 The header concerns all tcp packages coming from
any port from the outside to port 21 on the inside.

Snort Rules: Action

alert: generate an alert using the selected method
and log

log: log the packet
pass: ignore the packet
activate: alert and then turn on another dynamic rule
dynamic: idle until activated by a rule, then act as a log rule
drop: block and log the packet
reject: block the packet, log it, and then send a TCP reset

if TCP or an ICMP port unreachable if UDP
sdrop: block the packet but do not log it.

Snort Rules
Rule Options

 (): Rule option is placed in parentheses.
 msg: “ftp Exploit”;
 flow_to_server, established;
 content: “|31c031db 41c9b046 cd80 31c031db|”; Snort will look

whether the package contains this string, the dangerous payload.
 reference: bugtraq,1387; Snorts allow links to third-party warnings.
 classtype:attempted-admin; Class Types allow users to quickly scan

for attack types
 sid 344; Snort rule unique identifier. Can be checked against

www.snort.org/snort-db.
 rev4; All rules are part of a revision process to limit false positives

and detect new attacks.

Snort Rules

 TCP: TCP protocol, for example SMTP,
HTTP, FTP

 UDP: For example DNS traffic
 ICMP: For example ping, traceroute.
 IP: For example IPSec, IGMP

Snort Rules

 Content: Content checked by the Boyer
Moore pattern matching algorithm.

 Flow: Link to the detection plug-ins.

Using Snort

 Binary log files are in tcpdump format
 Can be read by snort with the –r switch
 Readback can be used to dump, log, or

perform detection

Using Snort

Full Text Logging
 Packets are logged in plain ascii format
 One file created per protocol port pair
 A port scan creates too many files.

Using Snort

NIDS Mode
 Load snort with a set of rules, configure

packet analysis plug-ins, and let it
monitor hostile network activity

Using Snort

NIDS mode:
 Specify an alternative logging directory

with –l
 Specify an alternate alert mode

 -AL fast, full, none, console
 -M <wrkstn> Send SMB (popup) alerts

Snort analysis example

 Snort rule in rule file “rules”:

 snort –r cap.wdp –b –l snortlog –c rules
 This captures all traffic destined to port

12345, usually used for BackOrifice
traffic.

alert tcp any any -> any 12345

Structure of the Bro System

Network

libcap

Event engine

Policy Script Interpreter

Packet Stream

Filtered Packet Stream

Event Stream

Real time notification
Policy script

Event Control

Tcpdump filter

Bro - libcap

• It’s the packet capture library used by
tcpdump.

• Isolates Bro from details of the network link
technology.

• Filters the incoming packet stream from the
network to extract the required packets.

• E.g port finger, port ftp, tcp port 113 (Ident),
port telnet, port login, port 111 (Portmapper).

• Can also capture packets with the SYN, FIN,
or RST Control bits set.

Bro - libcap

• It’s the packet capture library used by
tcpdump.

• Isolates Bro from details of the network link
technology.

• Filters the incoming packet stream from the
network to extract the required packets.

• E.g port finger, port ftp, tcp port 113 (Ident),
port telnet, port login, port 111 (Portmapper).

• Can also capture packets with the SYN, FIN,
or RST Control bits set.

Bro – Event Engine

• The filtered packet stream from the libcap is
handed over to the Event Engine.

• Performs several integrity checks to assure
that the packet headers are well formed.

• It looks up the connection state associated
with the tuple of the two IP addresses and
the two TCP or UDP port numbers.

• It then dispatches the packet to a handler for
the corresponding connection.

Bro – TCP Handler

• For each TCP packet, the connection handler
verifies that the entire TCP Header is present
and validates the TCP checksum.

• If successful, it then tests whether the TCP
header includes any of the SYN/FIN/RST
control flags and adjusts the connection’s
state accordingly.

• Different changes in the connection’s state
generate different events.

Policy Script Interpreter

• The policy script interpreter receives the
events generated by the Event Engine.

• It then executes scripts written in the Bro
language which generates events like logging
real-time notifications, recording data to disk
or modifying internal state.

• Adding new functionality to Bro consists of
adding a new protocol analyzer to the event
engine and then writing new events handlers
in the interpreter.

Application Specific Processing -
Finger

Finger request

Event Engine

Generates Finger_request
event

Script interpreter

Tests for buffer overflow,
checks the user against
sensitive ids, etc

Event Engine

Generates event controls
based on the policy

Finger reply

VMM Introspection: [GR’03]

protecting the anti-virus system

Intrusion Detection / Anti-virus

Runs as part of OS kernel and user space process

– Kernel root kit can shutdown protection system
– Common practice for modern malware

Standard solution: run IDS system in the network

– Problem: insufficient visibility into user’s machine

Better: run IDS as part of VMM (protected from
malware)

– VMM can monitor virtual hardware for anomalies
– VMI: Virtual Machine Introspection

• Allows VMM to check Guest OS internals

Infected VM

m
alw

are

VMM

Guest OS

Hardware

IDS

Sample checks

Stealth root-kit malware:

– Creates processes that are invisible to “ps”
– Opens sockets that are invisible to “netstat”

1. Lie detector check

– Goal: detect stealth malware that hides processes
and network activity

– Method:

• VMM lists processes running in GuestOS
• VMM requests GuestOS to list processes (e.g. ps)
• If mismatch: kill VM

Using a pubblic network
 Several institution have to connect remote,

local networks
 Leased lines are too expensive
 The most convenient connection is the one

that exploits a pubblic network, eg the
internet

 The security of the connection is very low
since information flows on a pubblic
network

Countermeasures - Robustness
 Virtual Private Network

 It emulates a secure connection on top of
an unsafe connection

 Assuming that each local network is
protected by a firewall, secure connections
are established among the firewall

 Secure = integrity and confidentiality are
achieved by encrypting the traffic between
any pair of firewalls

VPNVLAN
 VLAN denotes a logical network that is

set up to minimise the number of
conflicts

 A vlan can exploit
 Transmission frequency
 Tags
That are paired with some nodes

 No security property

Virtual Private Network

InternetInternet

net 4net 4

net 1net 1

net 2

net 3

Encrypted
communication

Virtual Private Network
 Symmetric Encryption due to the large

amount of transmitted data
 A distinct key for each pair of firewalls
 The key is updated according to the

amount of exchanged data

VPN and symmetric encryption - I

 The simpliest strategy to share a key
without transmitting it is the
Diffie_Helmann protocol
 each firewall produces a number
 All-to-all exchange
 After the exchange, each firewall produce a

key for each partner
 Man-in-the-middle attack

VPN and symmetric encryption -II

 Each firewall pubblish a pubblic key and
know the corresponding secret key

 The two keys makes it possible to
compute a symmetric key

 Data to be exchanged is protected with
the symmetric key

 IP v6

VPN a shared problem
 Any implementation of any VPN may be the

target of a Denial of Service attack
 A VPN decrypts any message it receives. If the

output satisfies the protocol, it forwards
otherwise it discards the message

 If a flood of fake messages is produced, the
receiver will be busy to discard them and cannot
run legal applications

 This shows that any security solutions that only
applies encryption cannot guarantee resource
availability

IPSEC
 An IPv4 extension to authenticate and encrypt

information flows, to be used till IPv4 will be replaced by
IPv6

 There are further solutions that offer security service at
distinct level of the OSI stacks (PGP, HTTPS, SSL, etc).

 Two IPSEC behaviours (protocols)
 Authentication Mode = authentication header
 Encapsulated Security Payload = the information is encrypted
 Both protocols can be used in one of two modes

 Transport Mode = the original packet is updated
 Tunnel Mode = the old IP is protected and becomes the information

of a new packet

IPSEC can also be used

• Between two hosts (even clients),

• a gateway and an host

• Between two gateways.

By replacing IP with IPSEC, we increase communication
security in a more transparent way for the involved
hosts

No update to the software or hardware network
components to adopt IPSEC.

IPSEC

IPSEC defines the following, further protocols

AH (Authentication Header) it protect the integrity of
and authenticate the data

ESP (Encapsulating Security Payload) it offers
confidentiality because of encryption.

IKE (Internet Key Exchange) two partners can agree
on the key to be used and on how long it should
be used

ISAKMP (Internet Security Association and Key
Management Protocol) it is used to set up and
update “ Security Association (SA)” and their
attributes

IPSEC

A Security Association (SA) is a directed connection
that also defines the security services paired with the
traffic it transmits

To secure a bidirectional connection, two SAs are
required, one in each direction

An SA also includes any information to execute the
security services

The security services of an SA are implemented either
through AH or through ESP. In general the protocols
are never applied simultaneously ….but ...

IPSEC

There are two types of SA that introduce some
updates to an IP packet:

Transport mode (SA between two hosts) the security
header immediately follows the IP header.

Tunnel mode (at least one end point is a gateway)
there are two IP headers
• The first one is the more external one and it shows
where the tunnel ends
• The inner one defines the packet final destination

IPSEC

AH+ESP vs ESP+AH

• A VPN requires both authentication and encryption.
• Wrapping ESP inside of AH is technically possible, but is not
 commonly used because of AH limitations with respect to NAT. By
 using AH+ESP, this tunnel could never traverse a NAT device.
• ESP+AH is used in Tunnel mode to fully encapsulate the traffic
 across an untrusted network, protected by both encryption and

 authentication in the same thing.
• This traffic yields nearly no useful information save for the fact that
 a VPN connects two sites. This information might help to understand
 trust relationships, but it reveals nothing about the actual traffic,
 even the encapsulated protocol is hidden from outsiders.

AH+ESP according to Ms

• Using both AH and ESP is the only way to both protect the IP header
and encrypt the data. However, this protection is rarely used because of
the increased overhead that AH would incur for packets that are already
adequately protected by ESP. ESP protects everything but the IP header,
and modifying the IP header does not provide a valuable target for
attackers. Generally, the only valuable information in the header is the
addresses, and these cannot be spoofed effectively because ESP
guarantees data origin authentication for the packets.
• In addition, some IPSec hardware offload network adapters do not
support the use of AH and ESP on the same packet. If you are using
such offload adapters, determine the protocol support that they provide
before selecting an IPSec protocol to use.

IPSEC

Authentication Header (AH)

IPSEC

Encapsulating Payload Protocol (ESP)

IPSEC

IPSEC

Authentication Mode

ESP

IPSEC

IPSEC Authentication Header (AH)

Original IP packed

MD5/SHA-1

Authenticated packet

IPSEC: ESP in Transport Mode

IP packet with ESP in Transport mode

Original IP packet

IPSEC

IPSEC: ESP in Tunnel Mode

new IP
 header

IP packet ESP + Tunnel mode

Original IP packet

SA unidirectional

Applying several SAs

SPI – Header field

SSL = applicative VPN

SSL

Can they be swapped?
Why?

SSL
 Fragment, at most 16384 bytes (2**14)
 SSLv3 does not specify a compression

method
 No information loss, and length increase

should be lower than 1024
 Default = no compression

 Encryption methods
 Idea (128) des (56) triple des (168)
 Stream cipher: rc4-40, rc4-128

Some definitions

 session:
 association between a client and a server that defines a set of

parameters such as algorithms used, session number etc.
 a session is created by the Handshake Protocol that allows

parameters to be shared among the connections made between the
server and the client, and sessions are used to avoid negotiation of
new parameters for each connection.

 connection: logical client/server link, associated with the provision of a
suitable type of service. In SSL terms, it is a peer-to-peer connection with
two network nodes.

 A single session is shared among multiple SSL connections between the
client and the server. Multiple sessions may be shared by a single
connection, but this is not used in practice.

Session state

Session identifier: an arbitrary byte sequence, chosen by the server to
identify the state of an active section and can be reused to continue the
session ;

 Peer certificate: the node certificate that may not exist;
 Compression method: the algorithm to compress the data;
 Cipher spec: the encryption algorithm and the one use to compute the

MAC. It also defines cryptographic attributes as the hash_size;
 Master secret: a 48 byte secret information shared by the client and the

server that will be used to compute the encryption keys;
 Is resumable: a flag that shows if the section can be reused

Connection State

The connection state is defined by the following parameters:
 Server and client random: a random byte sequence chosen by the client and

by the server for each connection ;
 Server write MAC secret:the secret key to compute the MAC on the server

data ;
 Client write MAC secret:the secret key to compute the MAC on the client data;
 Server write key: the key to encrypt the data from the server to the client ;
 Client write key: the key to encrypt the data to the server from the client ;
 Initialization vectors: a data for CBC encryption (Cipher Block Chaining). It

is shared by both partners because it is need both to encrypt and to decrypt.
 Sequence numbers: each partner stores and manages the sequence numbers

to send and receive messages on each connection. When one of the partners
send a change cipher spec, the corresponding sequence number is zeroed.
Sequence numbers are 264-1 at most .

Record Protocol

 Frames and encrypts upper level data into one
protocol for transport through TCP (reliable
communications)

 5 byte frame
 1st byte protocol indicator
 2nd byte is major version of SSL
 3rd byte is minor version of SSL
 Last two bytes indicate length of data inside

frame, up to 214

 Message Authentication Code (MAC)

The Four Upper Layer Protocols

 Handshaking Protocol
 Establish communication variables

 ChangeCipherSpec Protocol
 Alert to a change in communication variables

 Alert Protocol
 Messages important to SSL connections

 Application Encryption Protocol
 Encrypt/Decrypt application data

Message Authentication Code

 MAC secures connection in two ways
 Ensure Client and Server are using same

encryption and compression methods
 Ensure messages sent were received without

error or interference
 Both sides compute MACs to match them
 No match = error or attack

MAC

 hash(MAC_write_secret || pad_2 || hash(MAC_write_secret || pad_1 || seq_num
|| SSLCompressed.type || SSLCompressed.length || SSLCompressed.fragment))

dove:
 ||= concatenation;
 MAC_write_secret: secret shared key;
 hash: hash algorithm (MD5 o SHA-1);
 pad_1: byte 0x36 (00110110) repeated 48 times (384 bit) for MD5 and 40 (320

bit) for SHA-1;
 pad_2: byte 0x5C (01011100) repeated 48 times for MD5 and 40 for SHA-1;
 seq_num: sequential number of the message;
 SSLCompressed.type: higher level protocol to be applied;
 SSLCompressed.length: length of the compressed packet;
 SSLCompressed.fragment: compressed fragment (the clear text fragment if no

compression is applied).

Handshaking Messages

 ClientHello
 ServerHello
 *Certificate
 ServerKeyExchange
 *CertificateRequest
 ServerHelloDone
 *Certificate
 *CertificateVerify
 ClientKeyExchange
 ChangeCipherSpec
 Finished

*=optional

*=optional

In brief ...

1. The client sends the server the client's SSL version number, cipher settings,
a nonce, and possibly a request for the server's certificate.

2. The server sends the client the server's SSL version number, cipher settings,
a nonce, its own certificate, and requests the client’s certificate if it is needed.

3. Client authenticates the server (warning box if it fails).
4. Client creates the premaster secret for the session, encrypts it with the

server's public key and sends it to the server. Client also sends its own
certificate, if requested.

5. Server authenticates the client (terminates session if authentication fails).
6. Server uses its private key to decrypt the premaster secret, then performs a

series of steps (which the client also performs, starting from the same premaster
secret) to generate the shared master secret (shared session key). Client
simultaneously computes session key.

7. Client and server inform each other that they have computed a session key, and
both signal termination of the handshake protocol.

Premaster secret vs secret

master_secret = MD5(pre_master_secret || SHA(‘A’ || pre_master_secret ||
ClientHello.random || ServerHello.random) || MD5(pre_master_secret || SHA(‘BB’ ||
pre_master_secret || ClientHello.random || ServerHello.random)) ||
MD5(pre_master_secret || SHA(‘CCC’ || pre_master_secret || ClientHello.random ||
ServerHello.random));

 X.509 certificates
 Version: Which version of the X.509 standards is applied (v1, v2 or v3)
 Serial number: This number is assigned by the CA to identify the certificate;
 Signature algorithm: the algorithm used by the CA to sign the certificate.
 Issuer: thel X.500 Distinguished Name of the signing CA ;
 Validity period: The lifetime of the certificate;
 Subject: the DN of the entity that is identified by the certificate;
 Subject Public key information: information on the subject pubblic key

 Public key algorithm: algorithm used to generate the pubblic and private keys .
 RSA Public key:key length;
 Modulus: the modulo N used to sign ;
 Exponent: the exponent e used to sign.

 Signature algorithm: the signature of the certificate, encrypted by the CA private
key

Detail: The process begins

 Client Sends ClientHello
 Highest SSL version supported
 32-byte random number
 SessionID
 List of supported encryption methods
 List of supported compression methods

The Server Responds

 Server Sends ServerHello
 SSL version that will be used
 32-byte random number
 SessionID
 Encryption method that will be used
 Compression method that will be used

Server Authentication

 To authenticate Server, Server sends
Certificate
 Server’s public key certificate
 Issuing authority’s root certificate

 When Client receives Certificate, it decides
whether or not to trust Server
 This is the only step that might involve User if

User never specified whether or not to trust
the issuing authority before

Still Shaking Hands

 Server Sends ServerKeyExchange
 Any information necessary for public key

encryption system
 If Server wishes Client to be authenticated,

Server sends CertificateRequest message
 The client would respond to this with a

Certificate message encrypted with Server’s
public key

 Server sends ServerHelloDone

Client Responds

 Client sends ClientKeyExchange
 Information necessary for public key

encryption system
 Encrypted with Server’s public key

 Compute secret keys using Key Derivation
Function such as Diffie-Hellman

 If Client is being authenticated, Client
sends CertificateVerify
 Digest of previous messages encrypted with

Client’s private key

ChangeCipherSpec Protocol

 Special protocol with only one message
 When Client processes encryption

information, it sends ChangeCipherSpec
message
 Signals all following messages will be

encrypted
 ChangeCipherSpec is always followed by

Finished message

The End of the Beginning

 Upon receipt of ChangeCipherSpec, Server
sends its own ChangeCipherSpec and
Finished messages

 After both Client and Server receive Finish
messages, Handshaking phase is over

 All following communication is encrypted
 Encryption and compression methods can

be changed with new ChangeCipherSpec
messages

Alert and Application Protocols

 Alert protocol always two byte message
 First byte indicates severity of message

 Warning or Fatal
 A Fatal alert will terminate the connection

 Second byte indicate preset error code
 Secure connection end alert not always used

 Application Protocol is HTTP, POP3, SMTP,
or whatever application is being used
 Simply give a datagram to the Record Layer

Alert

 unexpected_message;
 bad_record_mac;
 decompression_failure;
 handshake_failure: the sender cannot negotiate an acceptable set of parameters
 illegal_parameter: an uncorrect handshake parameter.
 close_notify: sent by each side before closing its side of the connection
 no_certificate: reply if no certificate can be used ;
 bad_certificate: the received certificate has been manipulated
 unsupported_certificate: the receiver certificate is not supported ;
 certificate_revoked, _expired, _unknown: the certificate has been revoked, or is out

of date or it cannot be elaborated

Benefits

 Ease of implementation
 For network application developers

 As easy as implementing unsecured Sockets
 For network implementation developers

 Simply add layer to established network protocol
stack

 For Users
 Only need to authorize certificates

Drawbacks

 More bandwidth needed
 Slower
 Needs a dedicated port – 443 for HTTPS
 Assumes reliable transport for underlying

transport protocol
 No UDP
 Implications for streaming media, VoIP

Countermeasures - OS
 An OS that can implement a large set of

security policy rather than a predefined
one

 Implemented by the OS rather than on top
the OS

 Large set = MAC + DAC + RBAC ...
 It increases the security of the applications

it supports

Security Enhanced Linux
 A set of mechanisms to implement MAC e DAC

security policies
 A set of tools that support

 A simple description of the security policy of interest
 Check the consistency of the description
 Force the adoption of the policy

 Evolution of two OSs: Flask e Fluke
 Both are microkernel OS
 NSA + NAI + MITRE

SELinux - NSA

The increased awareness of the need for security has resulted in an increase of
efforts to add security to computing environments. However, these efforts suffer
from the flawed assumption that security can adequately be provided in
application space without certain security features in the operating system. In
reality, operating system security mechanisms play a critical role in supporting
security at higher levels. This has been well understood for at least twenty five
years and continues to be reaffirmed in the literature. Yet today, debate in the
research community as to what role operating systems should play in secure
systems persists. The computer industry has not accepted the critical role of the
operating system to security, as evidenced by the inadequacies of the basic
protection mechanisms provided by current mainstream operating systems. The
necessity of operating system security to overall system security is undeniable;
the underlying operating system is responsible for protecting application-space
mechanisms against tampering, bypassing, and spoofing attacks. If it fails to
meet this responsibility, system-wide vulnerabilities will result.

An interesting comment...

Let me assure you that this action by the NSA was
the crypto-equivalent of the Pope coming down off
the balcony in Rome, working the crowd with a few
loaves of bread and some fish, and then inviting
everyone to come over to his place to watch the
soccer game and have a few beers. There are some
things that one just never expects to see, and the
NSA handing out source code along with details of
the security mechanism behind it was right up there
on that list.

Why do we need a SE Linux and not only
Linux?

Definition of the
security policy

SeLinux vs Linux

 Linux defines the user rights
 Selinux defines

 The rights of each program
 The programs that each user can run

 Rights are defined in terms of types, of
roles and of levels
 Type1 can do this op on type2
 This role can run program with these types

SE - Linux
 Final goal: the security policy is a

configuration parameter
 Both MAC and DAC security policy can

be defined
 No notion of root user
 Model to define security policies is

based upon Flask and Fluke

In brief

 DAC = Discretionary Access Control = user rights
are defined by the owner

 MAC = Mandatory Access Control = system wide
constrains that the owner has to respect

 RBAC = Role Based Access control = rigths
defined according to the user role

 Role= set of users = distinct rights of the same
user at distinct times

 MLS = multilevel security = MAC constrain defined
in terms of levels of subjects and objects

General Model - SID
 Each subject and each object is paired with a

security context, the one used to solve access
control decisions

 Context = type, level, role
 This information is stored in a security server that

is invoked before executing an operation
 Each process can only access a logical pointer to

this context that it transmits to the server

General Model - PSID
 PSID = SID for persisten object
 Each file system includes a file to map

each inode into a PSID and then into a
context

 This file is used when the file system is
mounted

General model - Interactions

Enforcement with no
informatio about the
security policy

Security policy with no
enforcement

SID and Context

Caching

We reduce security to reduce the overhead

PSID

SELinux – Policy
 The description of a policy is rather complex

even in the case of simple policies
 As an example, to specify the Linux policy

 29 types
 121 operations
 27.000 rules

 Little support for an high level description and
to check the consistency of a policy

SELinux – Policy - Tools

SELinux - Implementation

Linux Security Module
To support policy configuration

SELinux – Implementation
Implementation of Linux standard
Security policy

Overhead due to SE

This points out that the cost is
• Acceptable if we consider the execution overhead
• Fairly large if we consider the complexity of the

description

Example - NSA NetTop

Classified
VM

VPN

Internet
VM

Firewall

SE-Linux

NetTop = SE-Linux + VMware
 SE-Linux:

 Security-Enhanced Linux
 Mandatory Access Control with flexible security

policy
 VMware Workstation:

 VMs configuration limited by security policy
 NetTop:

 Locked-down SE-Linux policy
 No networking on the host itself

Flexible Networking: VMnets

Physical LAN

 VM

VM

VM

VM

Host
NIC

Virtual networ devices

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Running untrusted code
	Approach: confinement
	Diapositiva 38
	Diapositiva 39
	Implementing confinement
	Not all programs can run in a jail
	Problems with chroot and jail
	Diapositiva 43
	System call interposition
	Initial implementation (Janus) [GWTB’96]
	Complications
	Problems with ptrace
	Alternate design: systrace [P’02]
	Policy
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Virtual Machines
	Why so popular now?
	VMM security assumption
	Problem: covert channels
	An example covert channel
	Diapositiva 61
	Subvirt [King et al. 2006]
	The MATRIX
	VM Based Malware (blue pill virus)
	VMM Detection
	VMM detection (red pill techniques)
	Diapositiva 67
	Diapositiva 68
	Software Fault Isolation [Whabe et al., 1993]
	Software Fault Isolation
	Segment matching technique
	Address sandboxing technique
	Diapositiva 73
	Isolation: summary
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85
	Diapositiva 86
	Diapositiva 87
	Diapositiva 88
	Diapositiva 89
	Diapositiva 90
	Diapositiva 91
	Diapositiva 92
	Diapositiva 93
	Diapositiva 94
	Diapositiva 95
	Diapositiva 96
	Diapositiva 97
	Diapositiva 98
	Diapositiva 99
	Diapositiva 100
	Diapositiva 101
	Diapositiva 102
	Diapositiva 103
	Diapositiva 104
	Diapositiva 105
	Diapositiva 106
	Diapositiva 107
	Diapositiva 108
	Diapositiva 109
	Diapositiva 110
	Diapositiva 111
	Diapositiva 112
	Diapositiva 113
	Diapositiva 114
	Diapositiva 115
	Diapositiva 116
	Diapositiva 117
	Diapositiva 118
	Diapositiva 119
	Diapositiva 120
	Diapositiva 121
	Diapositiva 122
	Diapositiva 123
	Diapositiva 124
	Diapositiva 125
	Diapositiva 126
	Diapositiva 127
	Diapositiva 128
	Diapositiva 129
	Diapositiva 130
	Diapositiva 131
	Diapositiva 132
	Diapositiva 133
	Diapositiva 134
	Diapositiva 135
	Diapositiva 136
	Diapositiva 137
	Diapositiva 138
	Diapositiva 139
	Diapositiva 140
	Diapositiva 141
	Diapositiva 142
	Diapositiva 143
	Diapositiva 144
	Diapositiva 145
	Diapositiva 146
	Diapositiva 147
	Diapositiva 148
	Diapositiva 149
	Diapositiva 150
	Diapositiva 151
	Diapositiva 152
	Diapositiva 153
	Diapositiva 154
	Diapositiva 155
	Diapositiva 156
	Diapositiva 157
	Diapositiva 158
	Diapositiva 159
	Diapositiva 160
	Diapositiva 161
	Diapositiva 162
	Diapositiva 163
	Diapositiva 164
	Diapositiva 165
	Diapositiva 166
	Diapositiva 167
	Diapositiva 168
	Diapositiva 169
	Diapositiva 170
	Diapositiva 171
	Diapositiva 172
	Diapositiva 173
	Diapositiva 174
	Diapositiva 175
	Diapositiva 176
	Diapositiva 177
	Diapositiva 178
	Diapositiva 179
	Diapositiva 180
	Diapositiva 181
	Diapositiva 182
	Diapositiva 183
	Diapositiva 184
	Intrusion Detection / Anti-virus
	Diapositiva 186
	Sample checks
	Diapositiva 188
	Diapositiva 189
	Diapositiva 190
	Diapositiva 191
	Diapositiva 192
	Diapositiva 193
	Diapositiva 194
	Diapositiva 195
	Diapositiva 196
	Diapositiva 197
	Diapositiva 198
	Diapositiva 199
	Diapositiva 200
	Diapositiva 201
	Diapositiva 202
	Diapositiva 203
	Diapositiva 204
	Diapositiva 205
	Diapositiva 206
	Diapositiva 207
	Diapositiva 208
	Diapositiva 209
	Diapositiva 210
	Diapositiva 211
	Diapositiva 212
	Diapositiva 213
	Diapositiva 214
	Diapositiva 215
	Diapositiva 216
	Diapositiva 217
	Diapositiva 218
	Diapositiva 219
	Diapositiva 220
	Diapositiva 221
	Diapositiva 222
	Record Layer
	The Four Upper Layer Protocols
	Message Authentication Code
	Diapositiva 226
	Handshaking Messages
	Diapositiva 228
	Diapositiva 229
	Diapositiva 230
	The Process Begins
	The Server Responds
	Server Authentication
	Still Shaking Hands
	Client Responds
	ChangeCipherSpec Protocol
	The End of the Beginning
	Alert and Application Protocols
	Diapositiva 239
	Benefits
	Drawbacks
	Diapositiva 242
	Diapositiva 243
	Diapositiva 244
	Diapositiva 245
	Diapositiva 246
	Diapositiva 247
	Diapositiva 248
	Diapositiva 249
	Diapositiva 250
	Diapositiva 251
	Diapositiva 252
	Diapositiva 253
	Diapositiva 254
	Diapositiva 255
	Diapositiva 256
	Diapositiva 257
	Diapositiva 258
	Diapositiva 259
	Diapositiva 260
	Diapositiva 261
	Diapositiva 262
	Diapositiva 263

