
Cryptography Overview           
             



Cryptography
Is
n A tremendous tool
n The basis for many security mechanisms

Is not
n The solution to all security problems
n Reliable unless implemented properly
n Reliable unless used properly
n Something you should try to invent yourself 

unless 
w you spend a lot of time becoming an expert
w you subject your design to outside review



Auguste Kerckhoffs

A cryptosystem should be 
secure even if everything 
about the system, except the 
secret key, 
is public knowledge.

baptised as Jean-Guillaume-Hubert-Victor-François-
Alexandre-Auguste Kerckhoffs von Nieuwenhof



Goal 1:secure communication

Step 1:  Session setup to exchange key
Step 2:  encrypt data

HTT
PS



5

Goal 2:   Protected files

Disk

File 1

File 2

Alice Alice

No eavesdropping
No tampering

Analogous to secure communication:
Alice today sends a message to Alice tomorrow



Symmetric Cryptography

Assumes parties already 
share a secret key



Building block:   sym. encryption

E, D:  cipher       k:  secret key (e.g. 128 bits)
m, c:  plaintext,  ciphertext            n:  nonce   (aka IV)

Encryption algorithm is publicly known
• Never use a proprietary cipher

Alice

E
m, n E(k,m,n)=c

Bob

D
c, n D(k,c,n)=m

k k

nonce



Use Cases

Single use key:    (one time key)

• Key is only used to encrypt one message  
encrypted email:     new key generated for every 

email
• No need for nonce    (set to 0)

Multi use key:   (many time key)
• Key used to encrypt multiple messages

SSL:    same key used to encrypt many packets
• Need either unique nonce or random nonce



9

First example: One Time Pad   
(single use key)

Vernam (1917)

Shannon ‘49:    
n OTP is “secure” against ciphertext-only 

attacks

0 1 0 1 1 1 0 0 01Key:

1 1 0 0 0 1 1 0 00Plaintext:


1 0 0 1 1 0 1 0 01Ciphertext:



10

Stream ciphers     (single use key)

Problem:   OTP key is as long the message
Solution:    Pseudo random key  --  stream ciphers

Stream ciphers:  RC4  (113MB/sec) ,   SEAL  (293MB/sec)

key

PRG 

message


ciphertext

c  PRG(k)  m



Dangers in using stream ciphers

    One time key !!         “Two time pad” is insecure:

C1    m1    PRG(k)

C2    m2    PRG(k)

Eavesdropper does:

C1    C2               m1   m2 

Enough redundant information in English that:

 m1   m2         m1 ,  m2



Block ciphers: crypto work horse

E, D CT Block

n Bits

PT Block

n Bits

Key k Bits

Canonical examples:

1. 3DES:   n= 64 bits,    k = 168 bits

2. AES:     n=128 bits,   k = 128, 192, 256 bits

IV handled as part of PT block



13

Building a block cipher

Input:  (m, k)
Repeat simple “mixing” operation several times
  DES: Repeat  16  times:

  AES-128: Mixing step repeated 10 times

Difficult to design:     must resist subtle attacks
  differential attacks,  linear attacks, brute-force,  …

mL  mR

mR  mLF(k,mR)



Block Ciphers Built by Iteration

R(k,m):    round function
               for  DES (n=16),      for AES  (n=10)

key  k

key expansion

k1 k2 k3 kn

R
(k

1,
 )

R
(k

2,
 )

R
(k

3,
 )

R
(k

n,
 )

m c



15

Incorrect use of block ciphers

Electronic Code Book (ECB):

Parallel encryption of the various blocks through the same key

Problem:   
n if    m1=m2     then   c1=c2

PT:

CT:

m1 m2

c1 c2



16

In pictures



Correct use of block ciphers I:  CBC mode

E(k,) E(k,) E(k,)

m[0] m[1] m[2] m[3]IV

 

E(k,)



c[0] c[1] c[2] c[3]IV

ciphertext

E a secure PRP.        Cipher Block Chaining  with random IV:

Q: how to do decryption?



Use cases:  choosing an IV

Single use key:        no IV needed     (IV=0)

Multi use key: (CPA Security)

Best:  use a fresh random IV for every message    

Can use unique IV (e.g  counter)

  but then first step in CBC must be     IV’  E(k1,IV)

  benefit:    may save transmitting  IV  with ciphertext



CBC with Unique IVs

E(k,) E(k,) E(k,)

m[0] m[1] m[2] m[3]

 

E(k,)



c[0] c[1] c[2] c[3]IV

ciphertext

IV

E(k1,)

IV′

unique IV means:    (k,IV)  pair is used for only one message
                             may be predictable so use E(k1,) as PRF



20

In pictures



21

Correct use of block ciphers II:   CTR mode

Counter mode with a random IV:    (parallel encryption)

m[0] m[1] …

E(k,IV) E(k,IV+1) …

m[L]

E(k,IV+L)



c[0] c[1] … c[L]

IV

IV

ciphertext



22

Performance: Crypto++  5.2.1      [ Wei Dai ]

Pentium 4,   2.1 GHz     ( on Windows XP SP1,    Visual C++ 2003 )

Cipher Block/key size          Speed   (MB/sec)

RC4            113
SEAL            293

3DES 64/168        9

AES 128/128 61



Data integrity



Message Integrity:    MACs

Goal: message integrity.   No 
confidentiality.
n ex:   Protecting public binaries on disk.   

24

Alice Bob

k k

Message  m tag

Generate tag:
     tag  S(k, m)

Verify tag:
    V(k, m, tag)  = `yes’

?

note:    non-keyed checksum (CRC) is an insecure MAC  !!



Secure MACs

Attacker information: chosen message attack
n for m1,m2,…,mq   attacker is given   ti  S(k,mi)

Attacker’s goal:   existential forgery.
n produce some new valid message/tag pair  (m,t).

(m,t)    { (m1,t1) , … , (mq,tq) }

A secure PRF gives a secure MAC:
n S(k,m) = F(k,m)
n V(k,m,t): `yes’ if  t = F(k,m) and `no’ 

otherwise.



Construction 1:   ECBC

 

26

Raw CBC

E(k,) E(k,) E(k,)

m[0] m[1] m[2] m[3]



E(k,)



E(k1,) tagkey = (k, k1)



27

Construction 2: HMAC  (Hash-MAC)

Most widely used MAC on the Internet.

H:   hash function.      
       example:   SHA-256    ;    output is 256 bits

Building a MAC out of a hash function:

   Standardized method:   HMAC

 S( k, m ) =  H( kopad ||  H( kipad || m ))



SHA-256:    Merkle-Damgard

h(t, m[i]):  compression function

Thm 1:       if  h is collision resistant then so is  H

“Thm 2”:     if  h is a PRF then HMAC is a PRF

PRF=pseudo random function

h h h

m[0] m[1] m[2] m[3]

hIV H(m)



29

Construction 3:  PMAC – parallel MAC

ECBC and HMAC are sequential.        PMAC:
m[0] m[1] m[2] m[3]

  

F(k,) F(k,) F(k,)F(k,)

F(k1,) tag



P(k,0) P(k,1) P(k,2) P(k,3)



 These MAC constructions are secure 
n No time to prove it

Why the last encryption step in ECBC?
n CBC (aka Raw-CBC)  is not a secure MAC:

n Given tag on a message m,  attacker can deduce 
tag for some other message m’

n How:     good crypto exercise …

30



Authenticated Encryption:   
                             Encryption + MAC



Combining MAC and ENC   (CCA)

Option 1:  MAC-then-Encrypt (SSL)

Option 2:  Encrypt-then-MAC (IPsec)

Option 3:   Encrypt-and-MAC (SSH)

Msg  M Msg  M MAC

Enc KEMAC(M,KI)

Msg  M

Enc KE
MAC

MAC(C, KI)

Msg  M

Enc KE
MAC

MAC(M, KI)

Encryption key  KE      MAC key = KI

Secure 
on 

general 
ground

s



OCB
 More efficient authenticated encryption 

m[0] m[1] m[2] m[3]

  

E(k,) E(k,) E(k,)E(k,)

P(N,k,0) P(N,k,1) P(N,k,2) P(N,k,3)

  P(N,k,0) P(N,k,1) P(N,k,2) P(N,k,3)

c[0] c[1] c[2] c[3]

checksum

E(k,)





c[4]

P(N,k,0)

auth

offset codebook mode

Rogaway, …



Public-key Cryptography



Public key encryption:   (Gen, E, D)

E D

pk

m c c m

sk

Gen



Applications

Session setup    (for now, only eavesdropping security)

Non-interactive applications:  (e.g.  Email)
Bob sends email to Alice encrypted using  pkalice
Note:   Bob needs  pkalice    (public key 
management)

Generate  (pk, sk)

Alice

choose random 
x

(e.g.  48 bytes) 

Bobpkalice

E(pk, x)
x



Applications

Encryption in non-interactive settings:
Encrypted File Systems

Bob

write

E(kF, File)

E(pkA,  
KF)

E(pkB,  
KF)

Alice
read

File

skA



Applications

Encryption in non-interactive settings:
Key escrow:  data recovery without Bob’s 
key

Bob

write

E(kF, File)

E(pkescrow,  
KF)

E(pkB,  KF)

Escrow
Service

skescrow



Trapdoor functions (TDF)

A trapdoor func.  X Y  is a triple of efficient algs.   ⟶
(G, F, F-1)

G(): randomized alg. outputs key pair   
(pk,  sk)

F(pk, ):   ⋅ det. alg. that defines a func.    X ⟶Y

F-1(sk, ):    Y ⋅   ⟶ X    that inverts   F(pk, )⋅

Security:     F(pk, )  is  one-way without  sk⋅



Public-key encryption from TDFs 

 (G, F, F-1):    secure TDF   X  Y       ⟶

 (Es, Ds) :   symm. auth. encryption with 
keys in K

 H: X  K   a hash function⟶

We construct a pub-key enc. system (G, E, D):

Key generation G:  same as G for TDF



Public-key encryption from TDFs 

 (G, F, F-1):    secure TDF   X  Y       ⟶

 (Es, Ds) :   symm. auth. encryption with 
keys in K

 H: X  K   a hash function⟶

We construct a pub-key enc. system (G, E, D):

Key generation G:  same as G for TDF



Public-key encryption from TDFs 

(G, F, F-1):    secure TDF   X  Y       ⟶

 (Es, Ds) :   symm. auth. encryption with 
keys in K

 H: X  K   a hash function⟶

E( pk, m) :
x  X,    ⟵ y  F(pk, x)⟵

k  H(x),  ⟵ c  Es(k, m)⟵

output   (y, c)

D( sk, (y,c) ) :
x  F-1(sk, y),⟵

k  H(x),   m  Ds(k, c)⟵ ⟵

output   m



Digital Signatures

Public-key encryption
n Alice publishes encryption key
n Anyone can send encrypted message
n Only Alice can decrypt messages with this 

key

Digital signature scheme
n Alice publishes key for verifying signatures
n Anyone can check a message signed by Alice
n Only Alice can send signed messages



Digital Signatures from TDPs 

(G, F, F-1):    secure TDP   X  X       ⟶

H: M  X   a hash function⟶

Security:   existential unforgeability under a chosen message 
      attack in the random oracle model

Sign( sk, m X∈ ) :
output   

sig =  F-1(sk, H(m) )

Verify( pk, m, sig) :
output
1   if    H(m) = F(pk, sig)
0   otherwise



Public-Key Infrastructure (PKI)

Anyone can send Bob a secret message
n Provided they know Bob’s public key

How do we know a key belongs to Bob?
n If imposter substitutes another key, can read Bob’s mail

One solution: PKI
n Trusted root Certificate Authority (e.g. Symantec)

w Everyone must know the verification key of root CA
w Check your browser; there are hundreds!!

n Root authority signs intermediate CA
n Results in a certificate chain



Back to SSL/TLS

C

Version, Crypto choice, nonce

Version, Choice, nonce,
Signed certificate
containing server’s
public key Ks

SSecret key K
encrypted with 
server’s key Ks

Hash of sequence of messages

Hash of sequence of messages

switch to negotiated cipher

data transmission



Limitations of cryptography

Most security problems are not crypto problems
n This is good

w Cryptography works!
n This is bad

w People make other mistakes; crypto doesn’t solve 
them

Misuse of cryptography is fatal for security
n WEP – ineffective, highly embarrassing for industry
n Occasional unexpected attacks on systems subjected 

to serious review




	Diapositiva 1
	Cryptography
	Auguste Kerckhoffs
	Goal 1:secure communication
	Goal 2: Protected files
	Diapositiva 6
	Building block: sym. encryption
	Use Cases
	First example: One Time Pad (single use key)
	Stream ciphers (single use key)
	Dangers in using stream ciphers
	Block ciphers: crypto work horse
	Building a block cipher
	Block Ciphers Built by Iteration
	Incorrect use of block ciphers
	In pictures
	Correct use of block ciphers I: CBC mode
	Use cases: how to choose an IV
	CBC with Unique IVs
	In pictures
	Correct use of block ciphers II: CTR mode
	Performance: Crypto++ 5.2.1 [ Wei Dai ]
	Diapositiva 23
	Message Integrity: MACs
	Secure MACs
	Construction 1: ECBC
	Construction 2: HMAC (Hash-MAC)
	SHA-256: Merkle-Damgard
	Construction 3: PMAC – parallel MAC
	Diapositiva 30
	Diapositiva 31
	Combining MAC and ENC (CCA)
	OCB
	Diapositiva 34
	Public key encryption: (Gen, E, D)
	Applications
	Applications
	Applications
	Trapdoor functions (TDF)
	Public-key encryption from TDFs
	Diapositiva 41
	Public-key encryption from TDFs
	Digital Signatures
	Digital Signatures from TDPs
	Public-Key Infrastructure (PKI)
	Back to SSL/TLS
	Limitations of cryptography
	Diapositiva 48

