Cryptography Overview

Cryptography
#1s

= A tremendous tool
® The basis for many security mechanisms

#®1Is not

= The solution to all security problems
= Reliable unless implemented properly
= Reliable unless used properly

= Something you should try to invent yourself
unless
* you spend a lot of time becoming an expert
* you subject your design to outside review

Auguste Kerckhoffs

#A cryptosystem should be
secure even if everything
about the system, except the
secret key,
iIs public knowledge.

baptised as Jean-Guillaume-Hubert-Victor-Francois-
Alexandre-Auguste Kerckhoffs von Nieuwenhof

Goal 1:secure communicatie

\V

File Edi Wiew Favorites

Wells Fargo Account Summary

Tools

Step 1: Session setup to exchange key
Step 2: encrypt data

osoft Internet Explorer

Help

EBack - = - () [Efravorites

&)

Address [€] https: forline wellsfarga. com{mn1_aal_onfcgi-bin/session caitsessargs=coAn7baxS2-kPrauaCTaREf MdId: | (PGo |Jm>6 &]ahoo maps &]Mapblast & Dictionary »‘

Account Services
My Message Center

Stay organized
with FREE 24/7
access to
Online
Statements.

ign up toda)

Sign up for the
‘Wells Fargo Rewards®
program and get

2,500 points.

Learn More.

Brokerage
Bill Pay
Transfer

Horme | Help Center | Cortact Us | Locations | Ste Map | &pply | Sign off =]

Account Summary Last Log O January D8, 2004

(3| OneLook Accounts

Wells Fargo Acc:

Tip: Select an account's balance 1o access the Account History.
Enroll for Onling Statermnents by Wessane Center

Cash Accounts
Account Account Number Available Balance

Checking Add Bil Pay.
Total

To end your session, be sure to Sign Off

Accourt Summery | Brokerage | Bill Pay | Transter | My Message Certer | Sign Off
Home | Help Certer | Contact Us | Locations | Site Map | Apply

1985 - 2003 Wells Fargo. Al rights reserved

5] e

™

(AL

Goal 2: Protected files

Alice

Alice

Disk
No eavesdropping
No tampering

File 2

Analogous to secure communication:
Alice today sends a message to Alice tomorrow

Symmetric Cryptography

Assumes parties already
share a secret key

Building block: sym. encryption

Alice Bob
mj, n E(k,m,mM=c \ Q C, N D(k,c,n)=m

E > (F==9

I]
k K

E, D: cipher k: secret key (e.g. 128 bits)
m, C: plaintext, ciphertext N: nonce (akalv)

Encryption algorithm is publicly known
" Never use a proprietary cipher

Use Cases

\V

Single use key: (one time key)

- Key is only used to encrypt one message
encrypted email: new key generated for every
email

- No need for nonce (setto0)

Multi use key: (many time key)

- Key used to encrypt multiple messages
SSL: same key used to encrypt many packets

 Need either unigue nonce or random nonce

First example: One Time Pad

(single use key)

#\/ernam (1917

Key: 0/ 1]/0/1]|1]1]0]0/]1]0

Plaintext: 1 1 0 0 0 1 1 0 O0 O

Ciphertext: 1.0 0 1 1 0 1 0 1 0

#Shannon '49:

= OTP is "“secure” against ciphertext-only
attacks

Stl‘ea m Cl pherS (single use key)

‘Problem: OTP key is as long the message
Solution: Pseudo random key -- stream ciphers
key

C < PRG(K) @ m
PRG

message

ciphertext

Stream ciphers: RC4 (113MB/sec), SEAL (293MB/sec)

Dangers in using stream ciphers

One time key !! “Two time pad” is insecure:

Cl « ml ® PRG(K)
C2 « m2 @ PRG(K)

Eavesdropper does:

Cl & C2 — ml® m2

Enough redundant information in English that:

mlo® m2- ml, m2

Block ciphers: crypto work horse

\V

n Bits n Bits
PT Block E,D ¢ . CT Block

Key k Bits

Canonical examples:

. 3DES: n= 64 bits, k = 168 bits

.. AES: n=128 bits, k = 128, 192, 256 bits
IV handled as part of PT block

Building a block cipher

/Input: (m, k)
Repeat simple "mixing” operation several times
e DES: Repeat 16 times:

mL < mR
MR < ML®F(k,mR)

e AES-128: Mixing step repeated 10 times

Difficult to design: must resist subtle attacks

e differential attacks, linear attacks, brute-force, ...

1

Block Ciphers Built by Iteration

\V

key k

key expansion

k2 k3 kn

R(k1,) |<—&

Rkn, -) | <

R(K3,) |

R(k2,) |

R(k,m): round function
for DES (n=16), for AES (n=10)

Incorrect use of block ciphers

\V

Electronic Code Book (ECB):

PT: [T T TT' T 17 "T1T T 1---

CT: cl 2T T 1.-.-.

Parallel encryption of the various blocks through the same key

Problem:
Bif ml=m2 then cl=c2

1

In pictures

Encrypted with AES in ECB

An example plaintext

e o .

Correct use of block ciphers I: CBC mode

L/
E a secure PRP. Cipher Block Chaining with random 1V:

IV m[O] m[1] m[2] m[3]

l l

5 6 [[

IV c[O] c[1] c[2] c[3]
ciphertext

Q: how to do decryption?

Use cases: choosing an IV

\V

Single use key: no IV needed (1v=0)

Multi use key: (CPA Security)

Best: use a fresh random IV for every message

Can use unigue IV (e.g counter)
but then first step in CBC must be IV’ <~ E(k1,IV)

benefit: may save transmitting IV with ciphertext

CBC with Unique IVs

unique IV means: (k,IV) pair is used for only one message
may be predictable so use E(k1,-) as PRF

IV m[0] m[1] m[2] m[3]

l

e e e [

E(k1,) E(k,) E(k,) E(k,-) E(k,)

IV c[O] c[1] c[2] c[3]

ciphertext

In pictures

Encrypted with AES in CBC

270

Correct use of block ciphers II:

%

Counter mode with a random 1V:

CTR mode

(parallel encryption)

ciphertext

\Y; m[O] m[1] m[L]
&
E(k,IV) [E(k,IV+1) E(k,IV+L)
\Y; c[0] c[1] c[L]

71

Pe rfO rma nce : Crypto++ 5.2.1 [Wei Dai]

\V

Pentium 4, 2.1 GHz

(on Windows XP SP1, Visual C++ 2003)

Cipher
RC4

SEAL
3DES

AES

Block/key size Speed (MB/sec)
113
293
64/168 9
128/128 61

929]

Ya A
-

Data integrity

N
I

Message Integrity: MACs

\V

#Goal: message integrity. No
confidentiality.
= ex: Protecting public binaries on disk.

Kk K
Alice >| Bob
Message m tag
Generate tag: Verify tag: 2
tag « S(k, m) V(k, m, tag) = ‘yes’

note: non-keyed checksum (CRC) is an insecure MAC !!

Secure MACs

! # Attacker information: chosen message attack
= for ml,m2,....mq attacker is given ti < S(k,mi)
@ Attacker’s goal: existential forgery.
= produce some new valid message/tag pair (m,t).

(mt) ¢ {(m1,t1), ..., (mq,tq) }
#A secure PRF gives a secure MAC:
= S(k,m) = F(k,m)
= V(k,m,t): yes'if t =F(k,m)and no’
otherwise.

Construction 1:

C"/

ECBC

m[0] m[1] m[2] m[3]
E(k,-) E(k,-) E(k,-) E(k,-)
Raw CBC
key = (k, kl) E(k1,)

tag=

T"A

Construction 2: HMAC (Hash-MAC)

\J

Most widely used MAC on the Internet.

H: hash function.

example: SHA-256 ; outputis 256 bits

Building a MAC out of a hash function:

Standardized method: HMAC

S(k,m)= H(k®opad || H(kbipad || m)

27

SHA-256: Merkle-Damgard
ﬂr

m([0] m[1] m[2] m([3]

o >\' >\' >\'>

H(m)
>

h(t, m[i]): compression function
Thm 1: if his collision resistant then so is H

“Thm 2" if his a PRF then HMAC is a PRF

PRF=pseudo random function

Construction 3: PMAC — parallel MAC

PMAC:

'ECBC and HMAC are sequential.
m[O] m[1] ml[2] m[3]
P(k O)—%—) l —% 4-61)
, P(k,3) >

F(k,-)

P(k,1)H? P(k,2)
F(k,-)

F(k,-)

F(k,-)

— L2

F(k1,:)

tag=

70

#® These MAC constructions are secure
= No time to prove it

#Why the last encryption step in ECBC?

= CBC (aka Raw-CBC) is not a secure MAC:

= Given tag on a message m, attacker can deduce
tag for some other message m’

= How: good crypto exercise ...

2N

N

Authenticated Encryption:
Encryption + MAC

N
NI

Combining MAC and ENC (cca)

\V

Msg M

—

<< Msg M

I —

Encryption key KE

MAC key = KI

Option 1: MAC-then-Encrypt (SSL)

MAC(M,KT)

Enc KE

S;éﬁ{e

Option 2: Encrypt-then-MAC (IPsec)

on
d

< ==
Opstion 3: Encrypt-and-MAC (SSH)
Msg M || = < [HACT

OCB

\V

offset codebook mode

* ¢

More efficient authenticated encryption

m[O] m[1] m|[2] m[3] checksum

l l l

P(N,k,O)—»%B P(N,k,1) —»? P(N,k,2) ? (N,k,3)—@ P(N, kO)—?
E(k,)

E(k,") E(k,) E(k,) K.:)

l | l l l

P(N,k,O)—-%D P(N,k,1)—>6? P(N,k,Z)A? P(N,k,3)—P auth—»@?

cl0] c[1] cl2] c[3] cl4]

Rogaway, ...

Public-key Cryptography

Public key encryption: (Gen, E, D)

AppIlications

\V

Session setup (for now, only eavesdropping security)

Alice pkalice Bob

E(pk, X)
X

Non-interactive applications: (e.g. Email)
#Bob sends email to Alice encrypted using pkalice

#Note: Bob needs pkalice (public key
management)

ApPPIlIcations

/Encryption In non-interactive settings:
#Encrypted File Systems

read

E(pkA,
KF File

E(KF, File) E(E';Bf

ApPPIlIcations

\V

Encryption in non-interactive settings.

#Key escrow: data recovery without Bob’s
key

v‘ sk€SCrow
E(pk€SCrow,
K

F

Trapdoor functions (TDF)

\V

A trapdoor func. X—Y s a triple of efficient algs.
(GI FI F_]-)

#®G(): randomized alg. outputs key pair
(Pk, sk)

#®F(pk,-): det. alg. that defines a func. X —Y
#®F-1(sk,): Y — X that inverts F(pk,-)

Security: F(pk, -) is one-way without sk

Public-key encryption from TDFs

'@ (G, F F-1): secure TDF X — Y

(Es, Ds) : symm. auth. encryption with
keys in K

H: X — K a hash function

We construct a pub-key enc. system (G, E, D):

Key generation G: same as G for TDF

Public-key encryption from TDFs

'@ (G, F F-1): secure TDF X — Y

(Es, Ds) : symm. auth. encryption with
keys in K

H: X — K a hash function

We construct a pub-key enc. system (G, E, D):

Key generation G: same as G for TDF

Public-key encryption from TDFs

®(G, F, F-1): secure TDF X — Y

(Es, Ds) : symm. auth. encryption with
keys in K

#® H: X — K a hash function

E(pk, m) : D(sk, (y.c)) :
X «— X, y «<— F(pk, x) X «— F-1(sk, y),
k «— H(x), c<«— Es(k, m) k e— H(x), m «— Ds(k, c)

output (Y, c) output m

Digital Signatures

#Public-key encryption
= Alice publishes encryption key
= Anyone can send encrypted message

= Only Alice can decrypt messages with this
key

#Digital signature scheme
= Alice publishes key for verifying signatures
= Anyone can check a message signed by Alice
= Only Alice can send signed messages

Digital Signatures from TDPs

#(G, F F-1): secure TDP X — X
#®#H: M — X a hash function

Sign(_ sk, meX) : Verify(pk, m, sig) :
output output
sig = F-1(sk, H(m)) { 1 if H(m) = F(pk, sig)
0 otherwise

Security: existential unforgeability under a chosen message
attack in the random oracle model

Public-Key Infrastructure (PKI)

%
#Anyone can send Bob a secret message
= Provided they know Bob’s public key

#How do we know a key belongs to Bob?
= Jf imposter substitutes another key, can read Bob’s mail

#:0ne solution: PKI

= Trusted root Certificate Authority (e.g. Symantec)
* Everyone must know the verification key of root CA
* Check your browser; there are hundreds!!

= Root authority signs intermediate CA
= Results in a certificate chain

Back to SSL/TLS

p
N
Version, Crypto choice, nonce
>
Version, Choice, nonce,
Signed certificate
containing server’s
public key Ks
<
Secret key K
C encrypted with
server’s key Ks
>

---------------- switch to negotiated cipher ----------------

Hash of sequence of messages

>

Hash of sequence of messages
<

data transmission
—

Limitations of cryptography

#Most security problems are not crypto problems
= This is good
* Cryptography works!
= This is bad

* People make other mistakes; crypto doesn’t solve
them

#Misuse of cryptography is fatal for security
= WEP - ineffective, highly embarrassing for industry

= (Occasional unexpected attacks on systems subjected
to serious review

|

A CRYPTO NERD'S
IMAGINATION ¢ ii

HIS LAPTORs ENCRYPTED.
LETS BUILD A MILLION-DOLLAR,
ELUHER TO CRACK \T-

NO GooD! IT'S
l-‘lﬂ% -BIT R‘EH‘

E‘u”L F'LHN
15 FOILED! ™~

WHAT WoULD
ACTUALLY HAPPEN:

H'S LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH

THIS $5 WRENCH UNTIL
HE. TELlS US THE. PASSWORD.

GOT IT.

*’W

	Diapositiva 1
	Cryptography
	Auguste Kerckhoffs
	Goal 1:secure communication
	Goal 2: Protected files
	Diapositiva 6
	Building block: sym. encryption
	Use Cases
	First example: One Time Pad (single use key)
	Stream ciphers (single use key)
	Dangers in using stream ciphers
	Block ciphers: crypto work horse
	Building a block cipher
	Block Ciphers Built by Iteration
	Incorrect use of block ciphers
	In pictures
	Correct use of block ciphers I: CBC mode
	Use cases: how to choose an IV
	CBC with Unique IVs
	In pictures
	Correct use of block ciphers II: CTR mode
	Performance: Crypto++ 5.2.1 [Wei Dai]
	Diapositiva 23
	Message Integrity: MACs
	Secure MACs
	Construction 1: ECBC
	Construction 2: HMAC (Hash-MAC)
	SHA-256: Merkle-Damgard
	Construction 3: PMAC – parallel MAC
	Diapositiva 30
	Diapositiva 31
	Combining MAC and ENC (CCA)
	OCB
	Diapositiva 34
	Public key encryption: (Gen, E, D)
	Applications
	Applications
	Applications
	Trapdoor functions (TDF)
	Public-key encryption from TDFs
	Diapositiva 41
	Public-key encryption from TDFs
	Digital Signatures
	Digital Signatures from TDPs
	Public-Key Infrastructure (PKI)
	Back to SSL/TLS
	Limitations of cryptography
	Diapositiva 48

