Cryptography Overview




Cryptography
#1s

= A tremendous tool
® The basis for many security mechanisms

#®1Is not

= The solution to all security problems
= Reliable unless implemented properly
= Reliable unless used properly

= Something you should try to invent yourself
unless
* you spend a lot of time becoming an expert
* you subject your design to outside review




Auguste Kerckhoffs

#A cryptosystem should be
secure even if everything
about the system, except the
secret key,
iIs public knowledge.

baptised as Jean-Guillaume-Hubert-Victor-Francois-
Alexandre-Auguste Kerckhoffs von Nieuwenhof




Goal 1:secure communicatie
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Goal 2: Protected files

Alice

Alice

Disk
No eavesdropping
No tampering

File 2

Analogous to secure communication:
Alice today sends a message to Alice tomorrow




Symmetric Cryptography

Assumes parties already
share a secret key




Building block: sym. encryption

Alice Bob
mj, n E(k,m,mM=c \ Q C, N D(k,c,n)=m

E > (F==9

I ]
k K

E, D: cipher k: secret key (e.g. 128 bits)
m, C: plaintext, ciphertext N: nonce (akalv)

Encryption algorithm is publicly known
" Never use a proprietary cipher




Use Cases

\V

Single use key: (one time key)

- Key is only used to encrypt one message
encrypted email:  new key generated for every
email

- No need for nonce  (setto0)

Multi use key: (many time key)

- Key used to encrypt multiple messages
SSL: same key used to encrypt many packets

 Need either unigue nonce or random nonce




First example: One Time Pad

(single use key)

#\/ernam (1917

Key: 0/ 1]/0/1]|1]1]0]0/]1]0

Plaintext: 1 1 0 0 0 1 1 0 O0 O

Ciphertext: 1.0 0 1 1 0 1 0 1 0

#Shannon '49:

= OTP is "“secure” against ciphertext-only
attacks



Stl‘ea m Cl pherS (single use key)

‘Problem: OTP key is as long the message
Solution: Pseudo random key -- stream ciphers
key

C < PRG(K) @ m
PRG

message

ciphertext

Stream ciphers: RC4 (113MB/sec), SEAL (293MB/sec)




Dangers in using stream ciphers

One time key !! “Two time pad” is insecure:

Cl « ml ® PRG(K)
C2 « m2 @ PRG(K)

Eavesdropper does:

Cl & C2 — ml® m2

Enough redundant information in English that:

mlo® m2- ml, m2




Block ciphers: crypto work horse

\V

n Bits n Bits
PT Block E,D ¢ . CT Block

Key k Bits

Canonical examples:

. 3DES: n= 64 bits, k = 168 bits

.. AES:  n=128 bits, k = 128, 192, 256 bits
IV handled as part of PT block




Building a block cipher

/Input: (m, k)
Repeat simple "mixing” operation several times
e DES: Repeat 16 times:

mL < mR
MR < ML®F(k,mR)

e AES-128: Mixing step repeated 10 times

Difficult to design:  must resist subtle attacks

e differential attacks, linear attacks, brute-force, ...
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Block Ciphers Built by Iteration

\V

key k

key expansion

k2 k3 kn

R(k1, ) |<—&

Rkn, -) | <

R(K3, ) |

R(k2, ) |

R(k,m): round function
for DES (n=16), for AES (n=10)




Incorrect use of block ciphers
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Electronic Code Book (ECB):

PT: [T T TT' T 17 "T1T T 1---

CT: cl 2T T 1.-.-.

Parallel encryption of the various blocks through the same key

Problem:
Bif ml=m2 then cl=c2

1



In pictures

Encrypted with AES in ECB

An example plaintext

e o .




Correct use of block ciphers I: CBC mode

L/
E a secure PRP. Cipher Block Chaining with random 1V:

IV m[O] m[1] m[2] m[3]

l l

5 6 [ [

IV c[O] c[1] c[2] c[3]
ciphertext

Q: how to do decryption?




Use cases: choosing an IV

\V

Single use key: no IV needed (1v=0)

Multi use key: (CPA Security)

Best: use a fresh random IV for every message

Can use unigue IV (e.g counter)
but then first step in CBC must be IV’ <~ E(k1,IV)

benefit: may save transmitting IV with ciphertext




CBC with Unique IVs

unique IV means: (k,IV) pair is used for only one message
may be predictable so use E(k1,-) as PRF

IV m[0] m[1] m[2] m[3]

l

e e e [

E(k1,) E(k,) E(k,) E(k,-) E(k,)

IV c[O] c[1] c[2] c[3]

ciphertext




In pictures

Encrypted with AES in CBC
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Correct use of block ciphers II:

%

Counter mode with a random 1V:

CTR mode

(parallel encryption)

ciphertext

\Y; m[O] m[1] m[L]
&
E(k,IV) [E(k,IV+1) E(k,IV+L)
\Y; c[0] c[1] c[L]

71



Pe rfO rma nce : Crypto++ 5.2.1 [ Wei Dai ]

\V

Pentium 4, 2.1 GHz

( on Windows XP SP1, Visual C++ 2003 )

Cipher
RC4

SEAL
3DES

AES

Block/key size Speed (MB/sec)
113
293
64/168 9
128/128 61

929 ]
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Data integrity
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Message Integrity: MACs
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#Goal: message integrity. No
confidentiality.
= ex: Protecting public binaries on disk.

Kk K
Alice >| Bob
Message m tag
Generate tag: Verify tag: 2
tag « S(k, m) V(k, m, tag) = ‘yes’

note: non-keyed checksum (CRC) is an insecure MAC !!




Secure MACs

! # Attacker information: chosen message attack
= for ml,m2,....mq attacker is given ti < S(k,mi)
@ Attacker’s goal: existential forgery.
= produce some new valid message/tag pair (m,t).

(mt) ¢ {(m1,t1), ..., (mq,tq) }
#A secure PRF gives a secure MAC:
= S(k,m) = F(k,m)
= V(k,m,t): yes'if t =F(k,m)and no’
otherwise.




Construction 1:

C"/

ECBC

m[0] m[1] m[2] m[3]
E(k,-) E(k,-) E(k,-) E(k,-)
Raw CBC
key = (k, kl) E(k1,)

tag=

T"A



Construction 2: HMAC (Hash-MAC)

\J

Most widely used MAC on the Internet.

H: hash function.

example: SHA-256 ; outputis 256 bits

Building a MAC out of a hash function:

Standardized method: HMAC

S(k,m)= H(k®opad || H( kbipad || m)

27



SHA-256: Merkle-Damgard
ﬂr

m([0] m[1] m[2] m([3]

o >\' >\' >\'>

H(m)
>

h(t, m[i]): compression function
Thm 1: if his collision resistant then so is H

“Thm 2" if his a PRF then HMAC is a PRF

PRF=pseudo random function




Construction 3: PMAC — parallel MAC

PMAC:

'ECBC and HMAC are sequential.
m[O] m[1] ml[2] m[3]
P(k O)—%—) l —% 4-61)
, P(k,3) >

F(k,-)

P(k,1 )H? P(k,2)
F(k,-)

F(k,-)

F(k,-)

— L2

F(k1,:)

tag=

70



#® These MAC constructions are secure
= No time to prove it

#Why the last encryption step in ECBC?

= CBC (aka Raw-CBC) is not a secure MAC:

= Given tag on a message m, attacker can deduce
tag for some other message m’

= How: good crypto exercise ...

2N
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Authenticated Encryption:
Encryption + MAC

N
NI




Combining MAC and ENC  (cca)
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Msg M

—

<< Msg M

I —

Encryption key KE

MAC key = KI

Option 1: MAC-then-Encrypt (SSL)

MAC(M,KT)

Enc KE

S;éﬁ{e

Option 2: Encrypt-then-MAC (IPsec)

on
d

< ==
Opstion 3: Encrypt-and-MAC (SSH)
Msg M || = < [HACT




OCB

\V

offset codebook mode

* ¢

More efficient authenticated encryption

m[O] m[1 ] m|[2] m[3] checksum

l l l

P(N,k,O)—»%B P(N,k,1) —»? P(N,k,2) ? (N,k,3)—@ P(N, kO)—?
E(k,)

E(k,") E(k,) E(k,) K.:)

l | l l l

P(N,k,O)—-%D P(N,k,1)—>6? P(N,k,Z)A? P(N,k,3)—P auth—»@?

cl0] c[1] cl2] c[3] cl4]

Rogaway, ...



Public-key Cryptography




Public key encryption: (Gen, E, D)




AppIlications
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Session setup (for now, only eavesdropping security)

Alice pkalice Bob

E(pk, X)
X

Non-interactive applications: (e.g. Email)
#Bob sends email to Alice encrypted using pkalice

#Note: Bob needs pkalice (public key
management)




ApPPIlIcations

/Encryption In non-interactive settings:
#Encrypted File Systems

read

E(pkA,
KF File

E(KF, File) E(E';Bf



ApPPIlIcations

\V

Encryption in non-interactive settings.

#Key escrow: data recovery without Bob’s
key

v‘ sk€SCrow
E(pk€SCrow,
K

F



Trapdoor functions (TDF)

\V

A trapdoor func. X—Y s a triple of efficient algs.
(GI FI F_]-)

#®G(): randomized alg. outputs key pair
(Pk, sk)

#®F(pk,-): det. alg. that defines a func. X —Y
#®F-1(sk,): Y — X that inverts F(pk,-)

Security:  F(pk, -) is one-way without sk




Public-key encryption from TDFs

'@ (G, F F-1): secure TDF X — Y

# (Es, Ds) : symm. auth. encryption with
keys in K

# H: X — K a hash function

We construct a pub-key enc. system (G, E, D):

Key generation G: same as G for TDF




Public-key encryption from TDFs

'@ (G, F F-1): secure TDF X — Y

# (Es, Ds) : symm. auth. encryption with
keys in K

# H: X — K a hash function

We construct a pub-key enc. system (G, E, D):

Key generation G: same as G for TDF




Public-key encryption from TDFs

®(G, F, F-1): secure TDF X — Y

# (Es, Ds) : symm. auth. encryption with
keys in K

#® H: X — K a hash function

E( pk, m) : D( sk, (y.c) ) :
X «— X, y «<— F(pk, x) X «— F-1(sk, y),
k «— H(x), c<«— Es(k, m) k e— H(x), m «— Ds(k, c)

output (Y, c) output m




Digital Signatures

#Public-key encryption
= Alice publishes encryption key
= Anyone can send encrypted message

= Only Alice can decrypt messages with this
key

#Digital signature scheme
= Alice publishes key for verifying signatures
= Anyone can check a message signed by Alice
= Only Alice can send signed messages




Digital Signatures from TDPs

#(G, F F-1): secure TDP X — X
#®#H: M — X a hash function

Sign(_ sk, meX) : Verify( pk, m, sig) :
output output
sig = F-1(sk, H(m) ) { 1 if H(m) = F(pk, sig)
0 otherwise

Security: existential unforgeability under a chosen message
attack in the random oracle model



Public-Key Infrastructure (PKI)

%
#Anyone can send Bob a secret message
= Provided they know Bob’s public key

#How do we know a key belongs to Bob?
= Jf imposter substitutes another key, can read Bob’s mail

#:0ne solution: PKI

= Trusted root Certificate Authority (e.g. Symantec)
* Everyone must know the verification key of root CA
* Check your browser; there are hundreds!!

= Root authority signs intermediate CA
= Results in a certificate chain




Back to SSL/TLS

p
N
Version, Crypto choice, nonce
>
Version, Choice, nonce,
Signed certificate
containing server’s
public key Ks
<
Secret key K
C encrypted with
server’s key Ks
>

---------------- switch to negotiated cipher ----------------

Hash of sequence of messages

>

Hash of sequence of messages
<

data transmission
—




Limitations of cryptography

#Most security problems are not crypto problems
= This is good
* Cryptography works!
= This is bad

* People make other mistakes; crypto doesn’t solve
them

#Misuse of cryptography is fatal for security
= WEP - ineffective, highly embarrassing for industry

= (Occasional unexpected attacks on systems subjected
to serious review




|

A CRYPTO NERD'S
IMAGINATION ¢ ii

HIS LAPTORs ENCRYPTED.
LETS BUILD A MILLION-DOLLAR,
ELUHER TO CRACK \T-

NO GooD! IT'S
l-‘lﬂ% -BIT R‘EH‘

E‘u”L F'LHN
15 FOILED! ™~

WHAT WoULD
ACTUALLY HAPPEN:

H'S LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH

THIS $5 WRENCH UNTIL
HE. TELlS US THE. PASSWORD.

GOT IT.

*’W
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