
Countermeasures Analysis

The goal of this steps is to determine
how risk can be reduced

Countermeasures
A first classification

 Proactive
 They are applied before an attack

eg a vulnerability is removed
 Dynamic

 They are applied as soon as an attack is detected
 eg a vulnerability is removed
 eg a connection is killed

 Reactive
 They are applied after a successful attack
 eg a vulnerability is removed
 eg a password is changed

Detection?

A more detailed taxonomy

Prevent Resist  Detect  Recovery  React

Deception
Honeypot

Resiliency
Robustness

Intrusion Detection
Consistency Checks

Heterogeneity
Cold/Hot Redundancy

Change to
1. Configuration
2. Architecture
3. Application

Identification, authentication, right management

Implementation mechanisms
 Countermeasures are implemented through

a set of common mechanisms
 A set of shared mechanisms

 It can increase the cost effectiveness of
countermeaures

 It should be highly robust because a vuln may
affect several countermeasures

Base mechanisms

 The mechanisms are defined on top of
a security kernel (= TCB) that manages
 The user identities
 User authentication (identity checks)
 User rights

 This should not be confused with the
minimal system that is discussed in the
following

Countermeasures Glossary- I
 Deception = no information about the system

design is available = S&S, open design
 Honeypot = fake systems are introduced to

increase the complexity of discovering nodes to
be attacked

 Resiliency/Robustness = prevent a single
vulnerability from enabling a successful attack
(S&S, least privilege etc)

 Intrusion Detection/ Consistency Check = a set
of checks to discover current or previous
attacks

Countermeasures Glossary - II
 Redundancy = spare components to replace the

attacked ones. The impact is reduced and control
on the system is not lost
 Cold = Stand by spare components
 Hot = Spare components are in use (oversize system)

The underlying problem is a properly evaluation of
expected performance

 Heterogeneous components = genetic diversity =
the vulns of spare components differs from those
of standard components

 A generalization of triple modular redundancy

Triple Modular Redundancy

Module M copy 1

Module M copy 2

Module M copy 3

Voter

Safety, not security
because the three copies
share the same vul

If the three versions have
a different implementation
some security is achieved

Countermeasures Glossary- III

 Minimal system
 A subset of components
 More robusted
 More severe checks

 Control of the minimal system should
never be lost

 It is a starting point to gain back control
on the whole system

 Strongly related to impact/power law

Countermeasures Glossary- IV
 Reaction = Updates to

 The configuration of the OS and applications
 System architecture
 Enabled application
 Patch

 The reaction should involve (work on) the
target system rather than the attacking
one

No action on the attacking sys?
 Stepping stone = a chain of hosts that starts at

the one of the attacker and that are, illegally,
controlled by the attacker =botnet

 The chain enables the attacker to hide his/her
location

 The attack is implemented by the last node of the
chain to hide the first one

 Any node connected to the internet has a value
as it can be used as a stepping stone

 How can we discover a stepping stone?

Stepping stone - 1

 An analysis of input/output node channel to
evaluate their correlation

 If there are an input channel and an output one
that are correlated as far as concerns
 Time = when a communication occurs
 Data = size of exchanged data

 then the node may act as a stepping stone
 By repeating the analysis for the sender/receiver of

the two channeld, the whole chain of stepping
stones may be discovered

Stepping stone - 2

 The proposed analysis is a traffic analysis
that can be applied even to encrypted flows
because it does not consider the information
content of the two flows

 It is almost impossible that the flows in a
stepping stone chains are in clear

Deception
 Its importance has increased because of the developing of

virtualization technologies that minimizes its cost
 It increases the complexity of attacks that use a

vulnerability scanner to discover nodes in a network that
can be attacked

 For each address generated by the scanner a new fake
virtual node is created that has to be analyzed by the
attacker

 Useless virtual nodes are introduced that, as far as a
scanning is concerned, behave like real nodes

 The fake nodes replies to the fingerprinting are slower and
slower to slow down the scanning

 An alarm is raised

Countermeasures - Deception
 Cryptography algorithms
 Information is coded so that only who knows

a further info, the key, can access it
 Already discussed

Just a reminder ...
 Cryptography does not solve the problems, it

only simplify the solution
 It is very difficult to safely store a 2 gb file
 It is rather simpler to encrypt the file through

a 256 bit key and safely store the key
 The same problem has to be solved (safely

store an info) but now the solution is simpler
because the problem size has been reduced

Resist – Robust programming

 Validate program inputs
 Prevent buffer overflow
 Robust implementation
 Check the invocations to other

resources
 Check returned results

Robust programming – Input validation

Input validation + default deny (S&S)
 Define the input legal structure
 Check that any input satisfy the defined

structure
Example: Strings

 A grammar that defines the structure
 Longest input string
 Define which special characters are legal
 Check that any input satisfies 1-2-3

Robust programming – Input validation

 The ability of defining a set of checks to validate
the input should be considered when the
program is specified rather than after the design
of the application

 In the correct approach, the application is
specified and designed to simplify the definition
and the implementation of the checks through a
simple grammar, eg LR grammar, that means
controls implemented by finite state automat

 A complex control may be useless if we are not
confident that it has been correctly implemented

Robust programming – Input validation

 Parameters to be validated
 Environment variables
 File names (blanks , .., /,)
 Email addresses
 URL
 Html
 data

 Several languages define built in function to
match a string against a predefined pattern
(regular expression etc.)

Robust programming – no buffer overflow

 Do not use any library function that does not
check it input parameters

 Use only those functions that check the
length of their input strings

 Dynamic memory allocation of a data
structure rather than static allocation of the
largest data structure

Robust programming –
robust implementation - I

 Satisfy S&S
 Rigorous definition of the program interface
 Do not assume that input/output values are related

 If a function of a library returns a pointer and another
function of the same library has a pointer parameter, there
is no reason to assume that the one transmitted to the
second is the one that has been returned by the first one

 If an input parameter of a function should be equal to the
output of another function, the parameter has to be defined
so that this relation can be checked

 Data and instruction should be different
 The data that each function can access should be

minimized

Pointer - I

Proci

Prock

punt

punt

Package that should
be robust

Procp

Prock

Pointer array

i

i

An index is transformed into a
pointer by accessing the

pointer array

A more robust version

Pointers - II
 By replacing an array of pointers with an

array of records we can
 Introduce fields in the records to discover

whether each element is properly initialized
 Check access to the array
 Define some check on the input output relation

of a pointer
 This is a simplified, redundant version of an

access control matrix for the pointers

Pointers - III
 We can also return an encrypted index to the

pointer array rather than the real one
realpositioin= m*returnedpos+cost

 It simplifies the detection of pointer
manipulation

 Access control does not change

Robust Programming –
robust implementation - II

 Safe variable initialization
 Avoid critical runs by parallelizing operations

and consistency checks
 Time- to-check/time-to-use
 Open file;checks;close;open;use

 Atomic transaction on the file system
 Lock to guarantee consistency but time out to

prevent starvation
 Quota mechanisms for shared resources

Robust programming – check
invocations

 Only safe functions should be invoked
(eg functions that checks their input/output
parameters)

 Check
 the correctness of transmitted parameters
 of metadata in transmitted parameters
 the values that are returned

 Hide and protect critical information

Robust programming – check
returned results

 Do not leak information before the user is authenticated
(banner etc)

 Do not return too much information (yes or no without
explaing why)
 Do not say if the user or the password does not exist but just that

the pair (user, password) does not exist
 Information useful for the debugging should be returned

in log files in the node rather than in the user interface
 Avoid dependency on the user to prevent DOS attacks

 Avoid synchronous communications,
 If synchronous communications are required, introduce a sacrifical

thread

Robust programming vs
programming language

 Most of the previous constraints can be
 Enforced by the program run time support (Java)
 Be satisfied because a discipline is imposed on the

programmer (C)
 Both solutions are acceptable, one privileges

performance the other security
 The only solution to be avoided is a support that

has a low performance even if it does not
enforce the constraints

A distinct perspective

 The 2011 CWE/SANS Top 25 Most Dangerous
Programming Errors is a list of the most significant
programming errors that can lead to serious software
vulnerabilities.

 They occur frequently, are often easy to find, and easy
to exploit.

 They are dangerous because they will frequently allow
attackers to completely take over the software, steal
data, or prevent the software from working at all.

The 25 errors

 Aree partitioned into three classes
 Unsafe interactions among components
 Risky resource management
 Porous defenses

 Selected according to
 Frequency
 Danger

Attributes of each error

 Weakness Prevalence: diffusion
 Attack Frequency: how often the weakness occurs

in vulnerabilities that are exploited by an attacker.
 Ease of Detection: how easy it is for an attacker to

find this weakness.
 Remediation Cost: the amount of effort required to

fix the weakness.
 Attacker Awareness: the likelihood that an attacker

is going to be aware of this particular weakness,
and of methods for detection and for exploitation.

 Consequences = Potential impact

The list

 C:\Users\Hp\Dropbox\didattica\corsimiei\corsopisa\cloudlucidi\2011_cwe_sans_top25.pdf

file:///C:/Users/fabrizio/Dropbox/2011_cwe_sans_top25.pdf

Countermeasures - Resist
 Correct configuration (hardening) of

standard software component (OS,
packages)
 Determine useful functions
 Remove useless functions
 Remove any standard account or at least

update its password

Countermeasure - Resist

The confinement
principle

Running untrusted code

We often need to run buggy/unstrusted code:

– programs from untrusted Internet sites

– old or insecure applications: ghostview, outlook

– legacy daemons: sendmail, bind

– Honeypots

Goal: if application “misbehaves” kill it⇒

Approach: confinement

Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:

– Hardware: run application on isolated hw (air gap)

 ⇒ difficult to manage

air gap network 1Network 2

app 1 app 2

Implementing confinement

 Key component: reference monitor

 Mediates requests from applications

 Must always be invoked:

 Every application request must be mediate
 Tamperproof:

 Cannot be killed or if killed, then monitored process is killed
too

 Small enough to be analyzed and validated
 Old implementation : jail

Not all programs can run in a jail

Programs that can run in jail:

• audio player

• web server

Programs that cannot:

• web browser

• mail client

Problems with chroot and jail

Coarse policies:

– All or nothing access to parts of file system

– Inappropriate for apps like a web browser

• Needs read access to files outside jail
(e.g. for sending attachments in Gmail)

Does not prevent malicious apps from:
– Accessing network and messing with other machines

– Trying to crash host OS

System Call
Interposition

Isolation

System call interposition

Observation: to damage host system (e.g. persistent changes)
app must make system calls:

 To delete/overwrite files: unlink, open, write

 To do network attacks:socket, bind, connect, send

Idea: monitor application system calls to block unauthorized calls

Implementation options:
– Completely kernel space (e.g. GSWTK)
– Completely user space (e.g. program shepherding)
– Hybrid (e.g. Systrace)

Initial implementation (Janus)

Linux ptrace: process tracing

process calls: ptrace (… , pid_t pid , …)

and wakes up when pid makes sys call.

Monitor kills application if request is disallowed OS Kernel

monitored
application
(browser)

monitor

user space

open(“/etc/passwd”, “r”)

Complications

• If app forks, monitor must also fork

- forked monitor monitors forked app

• If monitor crashes, app must be killed

• Monitor must maintain all OS state associated with app

– current-working-dir (CWD), UID, EUID, GID

– When app does “cd path” monitor must update its CWD

• otherwise: relative path requests interpreted incorrectly

Problems with ptrace

Continued

– Trace all system calls or none
– Monitor cannot abort sys-call without killing app

Security problems: race conditions
– Example: symlink: me mydata.datproc 1: ⟶

1: open(“me”) monitor checks and authorizes

 2: me /etc/passwd ⟶

OS executes open(“me”)
Classic TOCTOU bug: time-of-check / time-of-use

Alternate design: systrace

• systrace only forwards monitored sys-calls to monitor (efficiency)
• systrace resolves sym-links and replaces sys-call path arguments by

full path to target
• When app calls execve, monitor loads new policy file

OS Kernel

monitored
application
(browser)

monitor

user space

open(“etc/passwd”, “r”)

sys-call
gateway

systrace

permit/deny

policy file
for app

Policy

Sample policy file:

path allow /tmp/*
path deny /etc/passwd
network deny all

 Manually specifying policy for an app is difficult:
 Systrace can auto-generate policy by learning how app behaves

on “good” inputs
 If policy does not cover a specific sys-call, ask user … but user

has no way to decide
 Difficulty with choosing policy for specific apps (e.g.

browser) is the main reason it is not widely used

Isolation via
Virtual Machines

Isolation

Classification

Focus on system VMs

A new software layer is introduced that honors the existing ISA to
create distinct physical machines

Alternative solutions

Software VMM

Solution adopted by VMware

Virtual Machines

Virtual Machine Monitor (VMM)

Guest OS 2

Apps

Guest OS 1

Apps

Hardware

Host OS

VM2 VM1

Example: single HW platform used for both classified and unclassified
data (two levels of a MAC policy)

Why so popular now?

VMs in the 1960’s:

– Few computers, lots of users
– VMs allow many users to shares a single computer

VMs 1970’s – 2000: non-existent

VMs since 2000:

– Too many computers, too few users
● Print, Mail, Web, File server, Database ,

– Wasteful to run each service on different hardware
– More generally: VMs heavily used in cloud computing

VMM security assumption

VMM Security assumption:

– Malware can infect guest OS and guest apps

– But malware
● cannot escape from the infected VM
● Cannot infect host OS or other VMs on the same

hardware

Requires that VMM protect itself and is not buggy
– VMM is much simpler than full OS

 … but device drivers run in Host OS

Problem: covert channels

• Covert channel: unintended communication channel
between isolated components

– Can be used to leak classified data from secure
component to public component

Classified VM Public VM

secret
doc

m
alw

are

listener
covert

channel

VMM

An example covert channel

Both VMs use the same underlying hardware

To send a bit b  {0,1} malware does:

– b= 1: at 1:00am do CPU intensive calculation
– b= 0: at 1:00am do nothing

At 1:00am listener does CPU intensive calc. and measures
completion time

 b = 1  completion-time > threshold
Many covert channels in running system:

– File lock status, cache contents, interrupts,

– Difficult to eliminate all (reduce bandwidth)

Subverting VM
Isolation

Isolation

Subvirt [King et al. 2006]

 Virus idea:

– Once on victim machine, install a malicious VMM

– Virus hides in VMM

– Invisible to virus detector running inside VM

HW

OS



HW

OS

VMM and virus

anti-virus

anti-virus

The MATRIX

VM Based Malware (blue pill virus)

• VMBR: a virus that installs a malicious VMM (hypervisor)

• Microsoft Security Bulletin: (Oct, 2006)

– Suggests disabling hardware virtualization features

by default for client-side systems

• But VMBRs are easy to defeat

– A guest OS can detect that it is running on top of VMM

VMM Detection

Can an OS detect it is running on top of a VMM?

Applications:

– Virus detector can detect VMBR

– Normal virus (non-VMBR) can detect VMM

• refuse to run to avoid reverse engineering

– Software that binds to hardware (e.g. MS Windows) can
refuse to run on top of VMM

– DRM systems may refuse to run on top of VMM

VMM detection (red pill techniques)

• VM platforms often emulate simple hardware

– VMWare emulates an ancient i440bx chipset

… but report 8GB RAM, dual CPUs, etc.
• VMM introduces time latency variances

– Memory cache behavior differs in presence of VMM

– Results in relative time variations for any two operations

• VMM shares the TLB with GuestOS
– GuestOS can detect reduced TLB size

• … and many more methods [GAWF’07]

Isolation

Software Fault
Isolation

Software Fault Isolation [Whabe et al.,
1993]

Goal: confine apps running in same address space

– Codec code should not interfere with media player

– Device drivers should not corrupt kernel

Simple solution: runs apps in separate address spaces =
distinct processes not threads

– Problem: slow if apps communicate frequently,
requires one context switch per message

Software Fault Isolation

Partition process memory into segments

• Locate unsafe instructions: jmp, load, store

– At compile time, add guards before unsafe instructions

– When loading code, ensure all guards are present

code
segment

data
segment

code
segment

data
segment

App 1 App 2

Segment matching technique

Designed for MIPS processor. Many registers available.

• dr1, dr2: dedicated registers not used by binary

– compiler pretends these registers don’t exist

– dr2 contains segment ID

• Indirect load instruction R12  [R34] becomes:

dr1  R34
scratch-reg  (dr1 >> 20) : get segment ID
compare scratch-reg and dr2 : validate seg. ID
trap if not equal
R12  [dr1] : do load

Address sandboxing technique

• dr2: holds segment ID

• Indirect load instruction R12  [R34] becomes:

dr1  R34 & segment-mask : zero out seg bits
dr1  dr1 | dr2 : set valid seg ID
R12  [dr1] : do load

• Fewer instructions than segment matching

… but does not catch offending instructions
• Similar guards places on all unsafe instructions

Problem: what if jmp [addr] jumps directly into indirect load?
(bypassing guard)

Solution:

jmp guard must ensure [addr] does not bypass load guard

Address Sandboxing

Isolation: summary

• Many sandboxing techniques:

Physical air gap, Virtual air gap (VMMs),

System call interposition, Software Fault isolation

Application specific (e.g. Javascript in browser)
• Often complete isolation is inappropriate

– Apps need to communicate through regulated interfaces

• Hardest aspects of sandboxing:
– Specifying policy: what can apps do and not do

– Preventing covert channels

Countermeasures - Resist
 Firewall

 A system that connects two networks with distinct
security requirements

 It filters the information between the two networks and
the services each network can access in the other one

 It hides some components in the most critical networks
so that they cannot be accessed from the less critical
network

 It defends the most critical network from attacks
originating in the less critical and less protected one at
the expence of the bandwidth between the two networks

Introducing a Firewall

fw

Initial configuration

Local network
To be protected

Local network

Firewall

After introducing the fw

Dangerous
Network
Dangerous
Network

Dangerous
Network
Dangerous
Network

Introducing a Firewall
 A firewall CAN protect a network from

attacks from outside the network
 It prevents connection to critical nodes of

the network it protects
 It filters information that may be

transmitted through legal connections
 It can force stronger user authentication to

connect to enter or to leave the network it
protects

Introducing a Firewall
 A firewall CANNOT protect a network

from attacks
 Originating from within the network

(insider threat)
 That exploits lines it cannot control
 That exploits protocol that it does not

know (unless a default deny strategy is
adopted)

Introducing a Firewall
 The firewall behaviour fully depends upon

the adopted security policy
 The behaviour is based upon the distinction

inside/outside
 All the mechanisms are implemented in a

single point (controls are fully delegated to
the firewall)

 Fail safe or fault tolerance (redundancy) of
the firewall

Firewall: properties
 A firewall is characterized by

 The protocols it can analyze (stack layer it can analyze
to protect a network)

 Its implementation (router, dedicated node, router+
dedicated node)

 The two properties are distinct and fully orthogonal
and they determine the overall robustness of the
firewall = robustness enabled by the controls +

robustness in the control implementation

An example - I
 The same set of controls can be

implemented in
 A firewall that receives and transmits

through the same network interface
 A firewall that receives and transmits

through two distinct network interfaces
 A firewall with two interfaces that are the

only connections between the two networks

Some architectures - 1

fw
A hub

A physical connection exist

Routing tables
To filter
traffic

Some architectures - 2

fw

A physical connection does not exist

Some architectures - 3

fw

A physical connection does not exist
And two components have to be attacked

routers

Some architectures - 4
 In the simplest case we have a router with some

ACL (already seen in S&S) rather than a node = a
layer 3 firewall that can examine ports and hosts

 A layer 3 firewall does not remember the history of
a connection but can prevent that an outbound
connection is opened by checking the bits in an IP
packet

 It can be also implemented by a dedicated system
or a system with other functions, eg a Linux node
plus netchain and/or iptable

Packet filtering

Circuit level

Application Level

Proxy service

Proxy Server

 A server that acts as a "proxy" for an application by
making a request on the Internet in its stead.

 whenever a user uses a client application configured
to use a proxy server, the application will first
connect to the proxy server and give it its request.

 The proxy server then connects to the server and
sends that server the request.

 The proxy server can act as a cache for frequent
requests

 Next, the server gives its reply to the proxy, which
then finally sends it to the application client

Proxy Server

 Using a proxy server, connections can be tracked by
creating logs for systematically recording user
queries when they request connections to the
Internet

 Internet connections can be filtered, by analysing
both client requests and server replies.

 comparing a client's request to a list
 of authorised requests= whitelisting,
 of forbidden sites= blacklisting.

 Analysing server replies that comply with a list of
 criteria (such as keywords) is called content filtering

Reverse Proxy Server

 A proxy server that, rather than allowing internal
users to access the Internet, lets Internet users
indirectly access certain internal servers

 It protects the web server from direct outside
attacks, which increases the internal network's
strength.

 A reverse-proxy's cache function lowers the
workload of the server it is assigned to, and for this
reason is sometimes called a server accelerator.

 The reverse-proxy can distribute the workload by
redirecting requests to other, similar servers (load
balancer)

Dynamic filtering

ACL & Router
 Lista costruita a partire da due casi

fondamentali
Range1 IP  route
Range2 IP  drop

 Posso avere una lista per ogni interfaccia di
ingresso/uscita in modo da controllare il
traffico che attraversa il router anche se non
conosco gli indirizzi di chi genera il traffico
che attraversa il router

ACL & Router
 ACL di ingresso 1

 131.114.*.*  route
 131.4.5.6  route
 131.4.*.*  drop

dalla rete 131.4.*.* solo il traffico da
131.4.5.6 può passare il resto viene eliminato

 ACL di uscita 1
 131.114.*.*  drop
 131.4.*.*  drop

nessun nodo 131.4.*.* può comunicare con la
rete collegata all’interfaccia 1

ACL & Router & Linux
 Si possono determinare le regole di filtraggio

dei pacchetti in Linux mediante
 Netfilter nel kernel
 Iptables per configurazione a livello superiore

 Filter table: determina quali pacchetti passano
mediante le catene nel seguito

 Nat table: riscrittura di alcuni campi
 Mangle table: opzioni su QOS

Azioni possibili
 Drop
 Route
 Return – ritorna a catena chiamante
 Queue – passaggio in spazio utente
 Log
 Reject
 Dnat/Snat/Masquerade

Countermeasures – Resist & Recovery

 Defence-in-depth
 A network is segmented into several

subnetworks, each with a security level
 Networks with consecutive security levels only

are connected
 Any connection from a network to another one

is protected by a firewall
 Physical node connections may have to be

updated

Defence-in-depth

E-mail,
web server

E-mail,
web server

Accou
nting
Accou
nting

Resear
ch
Resear
ch

Local network

fw

fw

fw

Initial configuration Defence in depth

Firewall & Virtual Machine
 Virtualization technology supports the definition of virtual

network (overlay network)
 Information is spread across a large number of nodes and

of networks and by mapping the corresponding virtual
nodes onto distinct physical nodes

 Checks are more rigorous as sharing may be minimized
 Virtual networks are protected by (virtual) firewall
 The ability of introducing several nodes and distinct

networks simplify information management as each
network can manage a low amount of homogeneous
information from a security perspective

=micro segmentation, micro defence in depth

Countermeasures – Personal
Firewall

 Initially , the target of the attack where the server systems

 Currently attacks are complex (eg sequences of attacks) and
one of the target of an intermediate step may be a client
system, eg to steal information used to authenticate users

 A personal firewall is a software component to protect the
client and the information exchange between the client and
the server

 A special purpose application may be useless because the
ability of defining a virtual network makes it possible to
protect the applications running on a client system through
standard components

Personal or real firewall?

Client Virtual
Nodefirewall

Client node

Virtual machines

It can be
decomposed
into a virtual
network

Countermeasure - Detect

 Discover attacks against a node
 There are two cases of interest

 Discover ongoing attacks = discover a malware
trying to attack a node

 Discover malware that has been installed on a
node after a successful attack

 There are alternative strategies to discover
events of interest

Countermeasures - Detect

Detection – Anomaly Based

 The behaviour of the system to be protected
is observed for an interval of time (learning
the normal behavior)

 After the learning, any behavior that is too
“distant” from those that have been observed
is signalled as an anomaly

 The critical element is the amount of
information on the system acquired in the
learning phase

Detection – Anomaly Based

 Dynamic
 Information on a program behavior is collected to

discover attacks against it
 Static

 Information on the structure of a program or of file
record are collected

 Hybrid
 The expected behavior of the program is compared

against the actual one

Detection – Anomaly Based

In general the information that is collected makes it possible
to approximate the behavior of interest

Detection – Specification Based

 Normal behaviors are not learned, instead they are
specified by the security policy

 Dynamic
 Information on the program behavior are collected and

compared against the program specification
 Static

 A program is statically analysed and the results are
compared against the specification

 Hybrid
 The program compilation returns some specification to

be compared against the program behavior

Detection – Signature Based

 Main idea: there are some behavior that fully characterize and
identify a malware, they are a signature of the malware

 All the signatures are collected in a database that drives the
detection. This poses two problems
 The discovery of a signature
 The update of the database

 A malware can be discovered only if its signature is known = a 0-
day exploit cannot be detected = new attacks can be discoverd,
only if an anomaly detection approach is being implemented

 Alternative strategies can be adopted to define the signature

Detection – Signature Based

 A default allow strategy, anything that is different fro a
signature is allowed

 Dynamic
 Information on the program behaviour are collected and

compared against the signature
 Static

 The program code is analyzed and compared against the signature
 Used by antivirus tool

 Hybrid
 The two approaches are merged: a subset of the programs is

selected by a static analysis and the behaviour of these programs is
monitored

Detection

 Which events are used to define a
signature

 Events local to a node
 OS calls
 File operations

 Global network events
 Messagges
 Protocol events

Detection
 Intrusion Detection System

 It monitors either a host (host IDS) or a
subnet (network IDS) to detect attacks

 It integrates with a firewall to detect
 Attacks from the outside that escape the firewall
 Insider attacks that the firewall cannot prevent

 Unstable technology

IDS, false positive, negative…
 The behavior that the tool detects are an

approximation of those of interest. This implies that
some statistic notion may be very useful

 The problem arises because we do not have a
perfect test to discover if a system is being or has
been attacked

 There is a set of symptoms (behavior) that suggest
that the system has been or is being attacked

 However, we are not sure of the attack

False, true positive etc
 We define a test to discover whether

some one is ill
 4 cases are possible

 Test positive, illness = true positive
 Test positive, no illness = false positive
 Test negative, illness = false negative
 Test negative, no illness = true negative

The ideal test

No illness Illness

True neg True pos

Probability distribution
of the parameter, no illness

Probability distribution
of the parameter, illness

Output of the test

Any real test

No illness Illness

False negative false positive

True neg True pos

Any real test

False positive = false alarms False negative = missed intrusion

True neg True pos

Possible behaviors The test Intrusions

A real test

Ideal test = perfect
knowledege

A real test

True positive

Veri negativi
False negative True negative

False
positive

Ill No ill

Another case: biometrics

Sensitivity

Sensitive = probability of a positive answer in an
ill person

Ill

Specificity

No ill

Specifity= probability of a false answer if no illness

Likelyhood


LR+= ratio between the probabilities of
a positive test in one ill and one healthy
person
LR-= ratio between the probabilities of a
negative test in one ill and one healthy
person

Evaluating rules to detect intrusion

To each rule to detect an intrusion
• it sends at least x Mb/sec
• It open at least x connection in a sec
we can pair a point in this space according
the probability of false and true positive for
each value of x.
As x changes, we have a curve in ROC space

A rule low and left = conservative low number of false positives but
also a low detection capability

A rule high and right = good detection capability at the expense of a lot
of false positves and few true positive

A rule under the bisector = worse than random (= the bisector) it can
 be improved by negating it

ROC curve
receiver operating characteristics

The curve is drawn by considering a rule that depends upon a parameter for
distinct values of the parameter (it opens x connections in a second)
Each value results in a percentage of false and true positives
The bisector corresponds to a rule that chooses at random
Rule can be evaluated according to the surface they define, the larger, the better
No curve can be worse than the bisector because we can define a curve better
than the bisector by negating the rule

Sensitivity vs 1-specificity

Random answer

Applying ROC to select a strategy

Best solution
Always higher
Than the others

Pay attention to the
population size

 When considering an IDS the number of “people”
to be tested is fairly larger than in the case of a
medical test

 A test that produce a false positive with a
probability equal to 10-6 is almost ideal in the
medical field

 The same test, if applied to a network that
transmits 109 IP packet in one day, returns about
100 false positive a day, about 5 false alarms for
each our = the test is useless

Host IDS
 It monitors a single host
 It checks system and user process to discover

 OS commands that have been changed
 Attackers that impersonate legal users
 Attacks against the host

 Base mechanisms to define a monitor:
 Interception of OS calls

then either
 Analyze the call

or
 Produce a log with the calls and analyze it

Network IDS
 It monitors the network segment inbetween

two switches (a collision domain)
 The monitoring has to detect anomalous or

dangerous traffic
 The basic mechanism is sniffing, the same

one used by an attacker
 A dedicated host should be used for both

performance and security

NIDS + HIDS
 The two tools can cooperate through a

distinct interconnection network
 The real problem is how much one tool

can trust the other (mutual trust)
 The host running a tool may be attacked

and controlled by the attacker

NIDS+ HIDS = IDS = sensors+ engine
 The most coherent perspective consider a set of sensors and

an inference engine
 Each sensor monitors some components and transmits

information to the engine
 The engine applies a set of rules to the input from the

sensors to detect intrusions
 The communication among the engine and the sensors

exploits a segregated connection network
 It is important to determine whether two events are

independent because if several independent events signal an
intrusion, then the probability of a true positive increases

 Danger model = inspired by biology, rules that produces a
larger number of false positive may be applied as the
probability of an intrusion increases

IDS
 In any case, the adoption of an IDS has to be

trasparent for the user
 In several cases, the users should not to be

aware that an IDS has been adopted (it can
discover insider threats)

 Legal problems
 According to the italian law the adoption of any tool that

can be used to monitor a worker has to be authorized
by trade unions

IDS
 Which actions can be automatically taken as

soon as an IDS discover an attack?
 It is correct to take action on the target system: kill

an internet connection increase the amount of
data that are recorded in a log, ends some user
sections

 No action should be taken against other systems,
eg the attacker one, for two reasons:

 Stepping stones
 False positives

Intrusion Detection System

E-mail
 web
E-mail
 web

Accoun
ting
Accoun
ting

ResearchResearch

Local
Network

fw

fw

fw

Initial configuration Segmentation+Defence in Depth+IDS

nIDS

nIDS

nIDS

Intrusion Detection System

Local
Network

Initial configuration

Segmentation+Defence in Depth+IDS

fw

fw

fw

nIDS

nIDS

nIDS

Cooperation among nIDS

IDS+Virtualization

We can insert IDSs in virtual networks
 Increase the number of controls

 When crossing a network
 Within a, virtual, network

 By reducing the number of nodes within
a virtual network we can control in a
more rigorous way the traffic and the
protocol in the network

Sensors
 Two kind of sensors

 off-line: they analyze the system and user logs to discover attacks
that have been implemented and their impact

 real-time: they analyze the current system behavior to discover
ongoing attacks and stop them before they are successfull

 real time
 Some compromises have to be accepted = minimize the number

of control to avoid a loss of performance
 Hardware supports, eg similar to the routing one for NIDS

 Off line = CIDF, common intrusion detection framework
standard for logs

 NIDS vs HIDS sensors
 hIDS

 It filter the requests from a user process to the OS,
the OS executes only requests that have not been
rejected

 It may slow down a host but any request is controlled
 nIDS is not involved in the service that manages

a given packet, there is no way to slow down the
receiving host
 NIDS has to be executed on a dedicated
host to analyze all the information flows

hIDS and nIDS technologies
 Anomaly detection

 By observing a system, a database is built that stores the normal
system behavior

 Behaviors that differ more than a predefined threshold are
signalled

 Zero day exploit

 Signature specification based
 Default allow (attack signatures have to be specified)

 A database storing attack signatures
 At run time any behavior matching one in the database is

signalled
 The update of the database is critical

 Default deny = legal behavior has to be specified

hIDS and nIDS technologies
 Base element that is analyzed

 IP packects and protocol events for a nIDS
 OS call for a hIDS
 They can be generalized if the hierarchy of

virtual machines is considered
 String of vm invocations for a hIDS
 A stream of information for a nIDS

 nIDS: some problems
 Fragmentation of IP packets
 Analysis of a TCP stream (reordering ..)
 Protocol analyis
 Normalization of a protocol to handle all

those cases that are not defined by a
standard (overlapping IP packets)

N&H-IDS: anomaly detection
First step: interesting measures
 Number of open file

 global & for each user
 Number of open port

 global & for each user
 Frequency of commands
 Number of connected user
 Time when a user connects
 Usage of system resources

N&H-IDS: anomaly detection
 An histogram is built by observing the system and by using a

number of intervals (eg 32)
 The intervals are chosen so that the last one include less

than 1% observations
 We monitor the system for a time interval (we observe the

value of interest at each minute, for 30 days) and build the
distribution that pairs each interval with a probability = long
term distribution

 We monitor the system for a shorter interval (eg. at each
minute for two hours) and build a short term distribution

 An anomaly arises if the two distributions differs

Generating a distribution
 Defined starting from an histogram of

the observations

1 2 31 32

Number of
Observations in the
corresponding
interval

The probability
is computed
by normalizing

N&H-IDS: anomaly detection
 The difference between two distributions is

defined as the sum of the absolute differences
between two correspoding intervals

 Several distributions of the same measures can
be generated by distinct observation frequency
or for distinct cases
 Open files

 The number can be read at each minute or at each hour
 The number can be read for each user or for each group of

users

N&H-IDS: anomaly detection
 The IDS raises an allarm anytime the absolute

difference is larger than a user defined threshold
 The observations collected to build the short

term distribution are used to
 Discover anomalies and signal attacks
 Update the long term distribution to mimic the system

evolution (a weigthed sum is used)
 The long term distribution is updated at predefined

times (eg at the end of the day) rather than in real
time

N&H-IDS: anomaly detection
 The overall system behavior may be

seen as a learning system
 Initially, the system learns its normal

behavior
 The learning and the discover of

anomalous behavior are a life long
property of the system

N&H-IDS: anomaly detection
 The definition of anomaly is related to a user

defined threshold
 A large threshold corresponds to a large

difference among behaviors 
A few false positives, several false negatives

 A small threshold corresponds to a small
difference among behaviors 

 A few false negatives, several false positives
 Different measures, different set of meausures

correspond to distinct ROC curve

The threshold ...

No illness Illness

False negative false positive

True neg True pos

Thresold value

Anomaly detection: an
example
 Nides = next generation intrusion detection

system
 To protect military systems
 First attempt to define in a rigorous way long

and short term distributions
 Measure

 Continuous = any value
 Categorical = one value in a predefined range
 Binary
 IDS related = The IDS activity is measured as well

NIDES - SRI - Continuous - I
 UCPU User CPU time
 SCPU System CPU time
 IO Number of character exchanged

in an application execution
 MEMCMB Largest amount of memory to

 execute the application
 MEMUSE Sum of the amount of memory

used multiplied by the time it
has been used = KByte*seconds.

NIDES - Continuous -II

 TEXTSZ Size of a segment
 OPENF Number of open file
 PGFLT Number of memory faults
 PGIN Number of disk pages read
 PRCTIME Elapsed time
 SIGNAL Number of received signals

NIDES - SRI - Categorical

 UID New user name if changed
 HOUR Hour when the application

began
 RNETHOST Name of the remote host that

has invoked the program
 LNETHOST Name of the local host that

has invoked the program
 RNETTYPE Name of the application

invoked by the remote host

NIDES – SRI - Binary
 RNET Application executed on a

remote host
 LNET Application executed on a

local host

NIDES – IDS related
 INTARR continuous Seconds from the last

record
 I60 continuous Number of audit records

produced in 1 min
 I600 continuous Number of audit records

produced in 10 min
 I3600 continuous Number of audit records

produced in 1 hour

NIDES – Learning time - I

NIDES – Learning time - II

N&H-IDS: signature detection
 The overall behavior strongly resembles an

antivirus tool
 A pattern database (signature) for known

attacks, each action is compared against the
components of each pattern

 Any matching is recorded
 Anytime a pattern has been fully matched, an

alarm is fired

N&H-IDS: signature detection
 Wrt to Antivirus some differences:

 The elements to be matched against the
patterns are dynamically generated

 The time inbetween the geneation of two
consecutive elements is unknown

 An element can match several patterns
 The complexity is much higher for IDSes

than for antivirus where we match a
sequence of characters in a file against a
set of patterns

N&H-IDS: signature detection
 msg=p1 msg=p2 msg=p1

 If the current status of the recognizer is 3 and a
packet = p1 is sniffed then the next state may be
 The one following 3=4
 The one following 1= 2

 A nondeterministic behavior is required = the
status of the automata is both 2 and 4

1 32 3 4

N&H-IDS:
signature detection & evasion

 When sniffing a packet P the NIDS has no mean
to discover
 Whether P will be received
 How P will be handled

 An attacker can iniject packets to hide other ones
or to confuse the IDS (eg packet with a wrong
checksum that will be discarded by the receiver)

 Encrypted traffic is a further problem

N&H-IDS: signature detection
 New attacks can be discovered only if the

database is continuously updated and after the
update

 The detection of unknown attacks is fully
delegated to anomaly detection only

 Anomaly detection can discover a new attack
provided that it results in some anomaly for
some time

NIDS e HIDS: new attacks??
 An alternative approach considers the IDS as

a rule base expert system
 A rule database rather than a pattern database
 Rules describe attacks and anomaly

 A generalization (abstraction) procedure can
be applied to rules to discover, at least,
variants of attacks that are already known

Nimbda Signature (log)
GET /scripts/root.exe?/c+dir

GET /MSADC/root.exe?/c+dir

GET /c/winnt/system32/cmd.exe?/c+dir

GET /d/winnt/system32/cmd.exe?/c+dir

GET /scripts/..%5c../winnt/system32/cmd.exe?/c+dir

GET /_vti_bin/..%5c../..%5c../..%5c../winnt/system32/cmd.exe?/c+dir

GET /_mem_bin/..%5c../..%5c../..%5c../winnt/system32/cmd.exe?/c+dir

GET /msadc/..%5c../..%5c../..%5c/..\xc1\x1c../..\xc1\x1c../..\xc1\x1c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..\xc1\x1c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..\xc0/../winnt/system32/cmd.exe?/c+dir

GET /scripts/..\xc0\xaf../winnt/system32/cmd.exe?/c+dir

GET /scripts/..\xc1\x9c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..%35c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..%35c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..%5c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..%2f../winnt/system32/cmd.exe?/c+dir

HTTP-WHISKER-SPLICING-ATTACK-SPACE

Signature Snort compatible (snort,prelude,etc)

alert TCP $EXTERNAL any -> $INTERNAL 80 (msg: "IDS296/web-misc_http-whisker-splicing-attack-
space"; dsize: <5; flags: A+; content: "|20|"; classtype: suspicious; reference: arachnids,296;)

 Signature Dragon Sensor

T D T B 10 0 W IDS296:web-misc_http-whisker-splicing-attack-space /20

 Defenseworx Signature

1 B 6 T 0 80 [IDS296/web-misc_http-whisker-splicing-attack-space] "\20"

Pakemon Signature IDS296/web-misc_http-whisker-splicing-attack-space tcp * 80 "|20|"

Shoki Signature

tcp and (dst port 80) and (ip[2:2] > ((ip[0:1] & 0x0f) + (tcp[12:1] & 0xf0) + 5)) and (tcp[13]&16!=0) 65536
SEARCH IDS296 web-misc_http-whisker-splicing-attack-space '0x20' ALL 1 NULL

Snort

 Freeware.
 Designed as a network sniffer.
 Useful for

– traffic analysis.
– intrusion detection.

 Warning: Has become a target of attackers!
 What’s more fun for them than to find a vulnerability

in security software.

Snort
 Snort is a good sniffer.
 Snort uses a detection engine, based on

rules.
 Packets that do not match any rule are

discarded.
 Otherwise, they are logged.
 Rule matching packets can also trigger

an alert.

Snort Architecture

 Sniffer
 Preprocessor
 Detection Engine
 Alert Logging

SNORT Architecture

 Packet Sniffer
 Taps into network

 Preprocessor
 Checks against plug-ins

 RPC plug-in
 Port scanner plug-in
 …

SNORT Architecture
 Detection Engine

 Signature-based implemented via rule-sets
 Rules

 Consists of rule header
 Action to take
 Type of packet
 Source, destination IP address
 …

 And rule option
 Content of package that should make the packet match

the rule

SNORT Architecture
 Snort Alerting
 Incoming “interesting packets” are sent

to log files.
 Also sent to various Add-ons

 SnortSnarf (diagnostics with html output)
 SnortPlot (Perl script that plots attacks)
 Swatch (provides email alerts).
 …

Snort: Architecture
 Packet Decode Engine

 Uses the libpcap package
 Packages are decoded for link-level protocols, then for

higher protocols.
 Preprocessor Plug-ins

 Each preprocessors examines and manipulates packages,
e.g. for alerts.

 Detection Engine
 Checks packages against the various options in the snort

rules files.
 Detection Plug-Ins

 Allow additional examinations
 Output Plug-Ins

Snort: Architecture

Package View:
 NIC in promiscuous mode.
 Grab packages from the network card.
 Decode packages
 Run through various rule sets.
 Output logs and alerts.

Snort Rules: Example

 Rule Header
 alert tcp $External_NET any -> $Home_Net21

 Rule Options
 (msg: “ftp Exploit”; flow_to_server, established;

content: “|31c031db 41c9b046 cd80 31c031db|”;
reference: bugtraq,1387; classtype:attempted-
admin; sid 344; rev4;)

Snort Rules
 Rule Header

 Action
 tcp: Protocol being used. UDP / IP / ICMP
 $External_NET: This is the source IP, default is any.
 any: This is the source port set to “any”
 ->: Direction of conversation.
 $Home_Net: This is a variable that Snort will replace with
 21: Port to be monitored.

 The header concerns all tcp packages coming from
any port from the outside to port 21 on the inside.

Snort Rules: Action

alert: generate an alert using the selected method
and log

log: log the packet
pass: ignore the packet
activate: alert and then turn on another dynamic rule
dynamic: idle until activated by a rule, then act as a log rule
drop: block and log the packet
reject: block the packet, log it, and then send a TCP reset

if TCP or an ICMP port unreachable if UDP
sdrop: block the packet but do not log it.

Snort Rules
Rule Options

 (): Rule option is placed in parentheses.
 msg: “ftp Exploit”;
 flow_to_server, established;
 content: “|31c031db 41c9b046 cd80 31c031db|”; Snort will look

whether the package contains this string, the dangerous payload.
 reference: bugtraq,1387; Snorts allow links to third-party warnings.
 classtype:attempted-admin; Class Types allow users to quickly scan

for attack types
 sid 344; Snort rule unique identifier. Can be checked against

www.snort.org/snort-db.
 rev4; All rules are part of a revision process to limit false positives

and detect new attacks.

Snort Rules

 TCP: TCP protocol, for example SMTP,
HTTP, FTP

 UDP: For example DNS traffic
 ICMP: For example ping, traceroute.
 IP: For example IPSec, IGMP

Snort Rules

 Content: Content checked by the Boyer
Moore pattern matching algorithm.

 Flow: Link to the detection plug-ins.

Using Snort

 Binary log files are in tcpdump format
 Can be read by snort with the –r switch
 Readback can be used to dump, log, or

perform detection

Using Snort

Full Text Logging
 Packets are logged in plain ascii format
 One file created per protocol port pair
 A port scan creates too many files.

Using Snort

NIDS Mode
 Load snort with a set of rules, configure

packet analysis plug-ins, and let it
monitor hostile network activity

Using Snort

NIDS mode:
 Specify an alternative logging directory

with –l
 Specify an alternate alert mode

 -AL fast, full, none, console
 -M <wrkstn> Send SMB (popup) alerts

Snort analysis example

 Snort rule in rule file “rules”:

 snort –r cap.wdp –b –l snortlog –c rules
 This captures all traffic destined to port

12345, usually used for BackOrifice
traffic.

alert tcp any any -> any 12345

Structure of the Bro System

Network

libcap

Event engine

Policy Script Interpreter

Packet Stream

Filtered Packet Stream

Event Stream

Real time notification
Policy script

Event Control

Tcpdump filter

Bro - libcap

• It’s the packet capture library used by
tcpdump.

• Isolates Bro from details of the network link
technology.

• Filters the incoming packet stream from the
network to extract the required packets.

• E.g port finger, port ftp, tcp port 113 (Ident),
port telnet, port login, port 111 (Portmapper).

• Can also capture packets with the SYN, FIN,
or RST Control bits set.

Bro – Event Engine

• The filtered packet stream from the libcap is
handed over to the Event Engine.

• Performs several integrity checks to assure
that the packet headers are well formed.

• It looks up the connection state associated
with the tuple of the two IP addresses and
the two TCP or UDP port numbers.

• It then dispatches the packet to a handler for
the corresponding connection.

Bro – TCP Handler

• For each TCP packet, the connection handler
verifies that the entire TCP Header is present
and validates the TCP checksum.

• If successful, it then tests whether the TCP
header includes any of the SYN/FIN/RST
control flags and adjusts the connection’s
state accordingly.

• Different changes in the connection’s state
generate different events.

Policy Script Interpreter

• The policy script interpreter receives the
events generated by the Event Engine.

• It then executes scripts written in the Bro
language which generates events like logging
real-time notifications, recording data to disk
or modifying internal state.

• Adding new functionality to Bro consists of
adding a new protocol analyzer to the event
engine and then writing new events handlers
in the interpreter.

Application Specific Processing -
Finger

Finger request

Event Engine

Generates Finger_request
event

Script interpreter

Tests for buffer overflow,
checks the user against
sensitive ids, etc

Event Engine

Generates event controls
based on the policy

Finger reply

VMM Introspection: [GR’03]

protecting the anti-virus system

Intrusion Detection / Anti-virus

Runs as part of OS kernel and user space process

– Kernel root kit can shutdown protection system
– Common practice for modern malware

Standard solution: run IDS system in the network

– Problem: insufficient visibility into user’s machine

Better: run IDS as part of VMM (protected from
malware)

– VMM can monitor virtual hardware for anomalies
– VMI: Virtual Machine Introspection

• Allows VMM to check Guest OS internals

Infected VM

m
alw

are

VMM

Guest OS

Hardware

IDS

Sample checks

Stealth root-kit malware:

– Creates processes that are invisible to “ps”
– Opens sockets that are invisible to “netstat”

1. Lie detector check

– Goal: detect stealth malware that hides processes
and network activity

– Method:

• VMM lists processes running in GuestOS
• VMM requests GuestOS to list processes (e.g. ps)
• If mismatch: kill VM

Using a pubblic network
 Several institution have to connect remote,

local networks
 Leased lines are too expensive
 The most convenient connection is the one

that exploits a pubblic network, eg the
internet

 The security of the connection is very low
since information flows on a pubblic
network

Countermeasures - Robustness
 Virtual Private Network

 It emulates a secure connection on top of
an unsafe connection

 Assuming that each local network is
protected by a firewall, secure connections
are established among the firewall

 Secure = integrity and confidentiality are
achieved by encrypting the traffic between
any pair of firewalls

VPNVLAN
 VLAN denotes a logical network that is

set up to minimise the number of
conflicts

 A vlan can exploit
 Transmission frequency
 Tags
That are paired with some nodes

 No security property

Virtual Private Network

InternetInternet

net 4net 4

net 1net 1

net 2

net 3

Encrypted
communication

Virtual Private Network
 Symmetric Encryption due to the large

amount of transmitted data
 A distinct key for each pair of firewalls
 The key is updated according to the

amount of exchanged data

VPN and symmetric encryption - I

 The simpliest strategy to share a key
without transmitting it is the
Diffie_Helmann protocol
 each firewall produces a number
 All-to-all exchange
 After the exchange, each firewall produce a

key for each partner
 Man-in-the-middle attack

VPN and symmetric encryption -II

 Each firewall pubblish a pubblic key and
know the corresponding secret key

 The two keys makes it possible to
compute a symmetric key

 Data to be exchanged is protected with
the symmetric key

 IP v6

VPN a shared problem
 Any implementation of any VPN may be the

target of a Denial of Service attack
 A VPN decrypts any message it receives. If the

output satisfies the protocol, it forwards
otherwise it discards the message

 If a flood of fake messages is produced, the
receiver will be busy to discard them and cannot
run legal applications

 This shows that any security solutions that only
applies encryption cannot guarantee resource
availability

IPSEC
 An IPv4 extension to authenticate and encrypt

information flows, to be used till IPv4 will be replaced by
IPv6  

 There are further solutions that offer security service at
distinct level of the OSI stacks (PGP, HTTPS, SSL, etc).

 Two IPSEC behaviours (protocols)
 Authentication Mode = authentication header
 Encapsulated Security Payload = the information is encrypted
 Both protocols can be used in one of two modes

 Transport Mode = the original packet is updated
 Tunnel Mode = the old IP is protected and becomes the information

of a new packet

IPSEC can also be used

• Between two hosts (even clients),

• a gateway and an host

• Between two gateways.

By replacing IP with IPSEC, we increase communication
security in a more transparent way for the involved
hosts

No update to the software or hardware network
components to adopt IPSEC.

IPSEC

IPSEC defines the following, further protocols

AH (Authentication Header) it protect the integrity of
and authenticate the data

ESP (Encapsulating Security Payload) it offers
confidentiality because of encryption.

IKE (Internet Key Exchange) two partners can agree
on the key to be used and on how long it should
be used

ISAKMP (Internet Security Association and Key
Management Protocol) it is used to set up and
update “ Security Association (SA)” and their
attributes

IPSEC

A Security Association (SA) is a directed connection
that also defines the security services paired with the
traffic it transmits

To secure a bidirectional connection, two SAs are
required, one in each direction

An SA also includes any information to execute the
security services

The security services of an SA are implemented either
through AH or through ESP. In general the protocols
are never applied simultaneously ….but ...

IPSEC

There are two types of SA that introduce some
updates to an IP packet:

Transport mode (SA between two hosts) the security
header immediately follows the IP header.

Tunnel mode (at least one end point is a gateway)
there are two IP headers
• The first one is the more external one and it shows
where the tunnel ends
• The inner one defines the packet final destination

IPSEC

AH+ESP vs ESP+AH

• A VPN requires both authentication and encryption.
• Wrapping ESP inside of AH is technically possible, but is not
 commonly used because of AH limitations with respect to NAT. By
 using AH+ESP, this tunnel could never traverse a NAT device.
• ESP+AH is used in Tunnel mode to fully encapsulate the traffic
 across an untrusted network, protected by both encryption and

 authentication in the same thing.
• This traffic yields nearly no useful information save for the fact that
 a VPN connects two sites. This information might help to understand
 trust relationships, but it reveals nothing about the actual traffic,
 even the encapsulated protocol is hidden from outsiders.

AH+ESP according to Ms

• Using both AH and ESP is the only way to both protect the IP header
and encrypt the data. However, this protection is rarely used because of
the increased overhead that AH would incur for packets that are already
adequately protected by ESP. ESP protects everything but the IP header,
and modifying the IP header does not provide a valuable target for
attackers. Generally, the only valuable information in the header is the
addresses, and these cannot be spoofed effectively because ESP
guarantees data origin authentication for the packets.
• In addition, some IPSec hardware offload network adapters do not
support the use of AH and ESP on the same packet. If you are using
such offload adapters, determine the protocol support that they provide
before selecting an IPSec protocol to use.

IPSEC

Authentication Header (AH)

IPSEC

Encapsulating Payload Protocol (ESP)

IPSEC

IPSEC

Authentication Mode

ESP

IPSEC

IPSEC Authentication Header (AH)

Original IP packed

MD5/SHA-1

Authenticated packet

IPSEC: ESP in Transport Mode

IP packet with ESP in Transport mode

Original IP packet

IPSEC

IPSEC: ESP in Tunnel Mode

new IP
 header

IP packet ESP + Tunnel mode

Original IP packet

SA unidirectional

Applying several SAs

SPI – Header field

SSL = applicative VPN

SSL

Can they be swapped?
Why?

SSL
 Fragment, at most 16384 bytes (2**14)
 SSLv3 does not specify a compression

method
 No information loss, and length increase

should be lower than 1024
 Default = no compression

 Encryption methods
 Idea (128) des (56) triple des (168)
 Stream cipher: rc4-40, rc4-128

Some definitions

 session:
 association between a client and a server that defines a set of

parameters such as algorithms used, session number etc.
 a session is created by the Handshake Protocol that allows

parameters to be shared among the connections made between the
server and the client, and sessions are used to avoid negotiation of
new parameters for each connection.

 connection: logical client/server link, associated with the provision of a
suitable type of service. In SSL terms, it is a peer-to-peer connection with
two network nodes.

 A single session is shared among multiple SSL connections between the
client and the server. Multiple sessions may be shared by a single
connection, but this is not used in practice.

Session state

Session identifier: an arbitrary byte sequence, chosen by the server to
identify the state of an active section and can be reused to continue the
session ;

 Peer certificate: the node certificate that may not exist;
 Compression method: the algorithm to compress the data;
 Cipher spec: the encryption algorithm and the one use to compute the

MAC. It also defines cryptographic attributes as the hash_size;
 Master secret: a 48 byte secret information shared by the client and the

server that will be used to compute the encryption keys;
 Is resumable: a flag that shows if the section can be reused

Connection State

The connection state is defined by the following parameters:
 Server and client random: a random byte sequence chosen by the client and

by the server for each connection ;
 Server write MAC secret:the secret key to compute the MAC on the server

data ;
 Client write MAC secret:the secret key to compute the MAC on the client data;
 Server write key: the key to encrypt the data from the server to the client ;
 Client write key: the key to encrypt the data to the server from the client ;
 Initialization vectors: a data for CBC encryption (Cipher Block Chaining). It

is shared by both partners because it is need both to encrypt and to decrypt.
 Sequence numbers: each partner stores and manages the sequence numbers

to send and receive messages on each connection. When one of the partners
send a change cipher spec, the corresponding sequence number is zeroed.
Sequence numbers are 264-1 at most .

Record Protocol

 Frames and encrypts upper level data into one
protocol for transport through TCP (reliable
communications)

 5 byte frame
 1st byte protocol indicator
 2nd byte is major version of SSL
 3rd byte is minor version of SSL
 Last two bytes indicate length of data inside

frame, up to 214

 Message Authentication Code (MAC)

The Four Upper Layer Protocols

 Handshaking Protocol
 Establish communication variables

 ChangeCipherSpec Protocol
 Alert to a change in communication variables

 Alert Protocol
 Messages important to SSL connections

 Application Encryption Protocol
 Encrypt/Decrypt application data

Message Authentication Code

 MAC secures connection in two ways
 Ensure Client and Server are using same

encryption and compression methods
 Ensure messages sent were received without

error or interference
 Both sides compute MACs to match them
 No match = error or attack

MAC

 hash(MAC_write_secret || pad_2 || hash(MAC_write_secret || pad_1 || seq_num
|| SSLCompressed.type || SSLCompressed.length || SSLCompressed.fragment))

dove:
 ||= concatenation;
 MAC_write_secret: secret shared key;
 hash: hash algorithm (MD5 o SHA-1);
 pad_1: byte 0x36 (00110110) repeated 48 times (384 bit) for MD5 and 40 (320

bit) for SHA-1;
 pad_2: byte 0x5C (01011100) repeated 48 times for MD5 and 40 for SHA-1;
 seq_num: sequential number of the message;
 SSLCompressed.type: higher level protocol to be applied;
 SSLCompressed.length: length of the compressed packet;
 SSLCompressed.fragment: compressed fragment (the clear text fragment if no

compression is applied).

Handshaking Messages

 ClientHello
 ServerHello
 *Certificate
 ServerKeyExchange
 *CertificateRequest
 ServerHelloDone
 *Certificate
 *CertificateVerify
 ClientKeyExchange
 ChangeCipherSpec
 Finished

*=optional

*=optional

In brief ...

1. The client sends the server the client's SSL version number, cipher settings,
a nonce, and possibly a request for the server's certificate.

2. The server sends the client the server's SSL version number, cipher settings,
a nonce, its own certificate, and requests the client’s certificate if it is needed.

3. Client authenticates the server (warning box if it fails).
4. Client creates the premaster secret for the session, encrypts it with the

server's public key and sends it to the server. Client also sends its own
certificate, if requested.

5. Server authenticates the client (terminates session if authentication fails).
6. Server uses its private key to decrypt the premaster secret, then performs a

series of steps (which the client also performs, starting from the same premaster
secret) to generate the shared master secret (shared session key). Client
simultaneously computes session key.

7. Client and server inform each other that they have computed a session key, and
both signal termination of the handshake protocol.

Premaster secret vs secret

master_secret = MD5(pre_master_secret || SHA(‘A’ || pre_master_secret ||
ClientHello.random || ServerHello.random) || MD5(pre_master_secret || SHA(‘BB’ ||
pre_master_secret || ClientHello.random || ServerHello.random)) ||
MD5(pre_master_secret || SHA(‘CCC’ || pre_master_secret || ClientHello.random ||
ServerHello.random));

 X.509 certificates
 Version: Which version of the X.509 standards is applied (v1, v2 or v3)
 Serial number: This number is assigned by the CA to identify the certificate;
 Signature algorithm: the algorithm used by the CA to sign the certificate.
 Issuer: thel X.500 Distinguished Name of the signing CA ;
 Validity period: The lifetime of the certificate;
 Subject: the DN of the entity that is identified by the certificate;
 Subject Public key information: information on the subject pubblic key

 Public key algorithm: algorithm used to generate the pubblic and private keys .
 RSA Public key:key length;
 Modulus: the modulo N used to sign ;
 Exponent: the exponent e used to sign.

 Signature algorithm: the signature of the certificate, encrypted by the CA private
key

Detail: The process begins

 Client Sends ClientHello
 Highest SSL version supported
 32-byte random number
 SessionID
 List of supported encryption methods
 List of supported compression methods

The Server Responds

 Server Sends ServerHello
 SSL version that will be used
 32-byte random number
 SessionID
 Encryption method that will be used
 Compression method that will be used

Server Authentication

 To authenticate Server, Server sends
Certificate
 Server’s public key certificate
 Issuing authority’s root certificate

 When Client receives Certificate, it decides
whether or not to trust Server
 This is the only step that might involve User if

User never specified whether or not to trust
the issuing authority before

Still Shaking Hands

 Server Sends ServerKeyExchange
 Any information necessary for public key

encryption system
 If Server wishes Client to be authenticated,

Server sends CertificateRequest message
 The client would respond to this with a

Certificate message encrypted with Server’s
public key

 Server sends ServerHelloDone

Client Responds

 Client sends ClientKeyExchange
 Information necessary for public key

encryption system
 Encrypted with Server’s public key

 Compute secret keys using Key Derivation
Function such as Diffie-Hellman

 If Client is being authenticated, Client
sends CertificateVerify
 Digest of previous messages encrypted with

Client’s private key

ChangeCipherSpec Protocol

 Special protocol with only one message
 When Client processes encryption

information, it sends ChangeCipherSpec
message
 Signals all following messages will be

encrypted
 ChangeCipherSpec is always followed by

Finished message

The End of the Beginning

 Upon receipt of ChangeCipherSpec, Server
sends its own ChangeCipherSpec and
Finished messages

 After both Client and Server receive Finish
messages, Handshaking phase is over

 All following communication is encrypted
 Encryption and compression methods can

be changed with new ChangeCipherSpec
messages

Alert and Application Protocols

 Alert protocol always two byte message
 First byte indicates severity of message

 Warning or Fatal
 A Fatal alert will terminate the connection

 Second byte indicate preset error code
 Secure connection end alert not always used

 Application Protocol is HTTP, POP3, SMTP,
or whatever application is being used
 Simply give a datagram to the Record Layer

Alert

 unexpected_message;
 bad_record_mac;
 decompression_failure;
 handshake_failure: the sender cannot negotiate an acceptable set of parameters
 illegal_parameter: an uncorrect handshake parameter.
 close_notify: sent by each side before closing its side of the connection
 no_certificate: reply if no certificate can be used ;
 bad_certificate: the received certificate has been manipulated
 unsupported_certificate: the receiver certificate is not supported ;
 certificate_revoked, _expired, _unknown: the certificate has been revoked, or is out

of date or it cannot be elaborated

Benefits

 Ease of implementation
 For network application developers

 As easy as implementing unsecured Sockets
 For network implementation developers

 Simply add layer to established network protocol
stack

 For Users
 Only need to authorize certificates

Drawbacks

 More bandwidth needed
 Slower
 Needs a dedicated port – 443 for HTTPS
 Assumes reliable transport for underlying

transport protocol
 No UDP
 Implications for streaming media, VoIP

Countermeasures - OS
 An OS that can implement a large set of

security policy rather than a predefined
one

 Implemented by the OS rather than on top
the OS

 Large set = MAC + DAC + RBAC ...
 It increases the security of the applications

it supports

Security Enhanced Linux
 A set of mechanisms to implement MAC e DAC

security policies
 A set of tools that support

 A simple description of the security policy of interest
 Check the consistency of the description
 Force the adoption of the policy

 Evolution of two OSs: Flask e Fluke
 Both are microkernel OS
 NSA + NAI + MITRE

SELinux - NSA

The increased awareness of the need for security has resulted in an increase of
efforts to add security to computing environments. However, these efforts suffer
from the flawed assumption that security can adequately be provided in
application space without certain security features in the operating system. In
reality, operating system security mechanisms play a critical role in supporting
security at higher levels. This has been well understood for at least twenty five
years and continues to be reaffirmed in the literature. Yet today, debate in the
research community as to what role operating systems should play in secure
systems persists. The computer industry has not accepted the critical role of the
operating system to security, as evidenced by the inadequacies of the basic
protection mechanisms provided by current mainstream operating systems. The
necessity of operating system security to overall system security is undeniable;
the underlying operating system is responsible for protecting application-space
mechanisms against tampering, bypassing, and spoofing attacks. If it fails to
meet this responsibility, system-wide vulnerabilities will result.

An interesting comment...

Let me assure you that this action by the NSA was
the crypto-equivalent of the Pope coming down off
the balcony in Rome, working the crowd with a few
loaves of bread and some fish, and then inviting
everyone to come over to his place to watch the
soccer game and have a few beers. There are some
things that one just never expects to see, and the
NSA handing out source code along with details of
the security mechanism behind it was right up there
on that list.

Why do we need a SE Linux and not only
Linux?

Definition of the
security policy

SeLinux vs Linux

 Linux defines the user rights
 Selinux defines

 The rights of each program
 The programs that each user can run

 Rights are defined in terms of types, of
roles and of levels
 Type1 can do this op on type2
 This role can run program with these types

SE - Linux
 Final goal: the security policy is a

configuration parameter
 Both MAC and DAC security policy can

be defined
 No notion of root user
 Model to define security policies is

based upon Flask and Fluke

In brief

 DAC = Discretionary Access Control = user rights
are defined by the owner

 MAC = Mandatory Access Control = system wide
constrains that the owner has to respect

 RBAC = Role Based Access control = rigths
defined according to the user role

 Role= set of users = distinct rights of the same
user at distinct times

 MLS = multilevel security = MAC constrain defined
in terms of levels of subjects and objects

General Model - SID
 Each subject and each object is paired with a

security context, the one used to solve access
control decisions

 Context = type, level, role
 This information is stored in a security server that

is invoked before executing an operation
 Each process can only access a logical pointer to

this context that it transmits to the server

General Model - PSID
 PSID = SID for persisten object
 Each file system includes a file to map

each inode into a PSID and then into a
context

 This file is used when the file system is
mounted

General model - Interactions

Enforcement with no
informatio about the
security policy

Security policy with no
enforcement

SID and Context

Caching

We reduce security to reduce the overhead

PSID

SELinux – Policy
 The description of a policy is rather complex

even in the case of simple policies
 As an example, to specify the Linux policy

 29 types
 121 operations
 27.000 rules

 Little support for an high level description and
to check the consistency of a policy

SELinux – Policy - Tools

SELinux - Implementation

Linux Security Module
To support policy configuration

SELinux – Implementation
Implementation of Linux standard
Security policy

Overhead due to SE

This points out that the cost is
• Acceptable if we consider the execution overhead
• Fairly large if we consider the complexity of the

description

Example - NSA NetTop

Classified
VM

VPN

Internet
VM

Firewall

SE-Linux

NetTop = SE-Linux + VMware
 SE-Linux:

 Security-Enhanced Linux
 Mandatory Access Control with flexible security

policy
 VMware Workstation:

 VMs configuration limited by security policy
 NetTop:

 Locked-down SE-Linux policy
 No networking on the host itself

Flexible Networking: VMnets

Physical LAN

 VM

VM

VM

VM

Host
NIC

Virtual networ devices

