Cryptography Overview

Cryptography

- A tremendous tool
- The basis for many security mechanisms
- Is not

Is

- The solution to all security problems
- Reliable unless
 - implemented properly
 - used properly
- Something to try invent yourself unless
 you spend a lot of time becoming an expert
 you subject your design to outside review

Auguste Kerckhoffs

A cryptosystem should be secure even if everything about the system, except the secret key, is public knowledge.

baptised as Jean-Guillaume-Hubert-Victor-François-Alexandre-Auguste Kerckhoffs von Nieuwenhof

Goal 1:secure communication

Step 1: Session setup to exchange key Step 2: encrypt data

Wells Fargo Account Summary	- Microsoft Internet Explorer						_	I II X
Ele Edit View Favorites Id	ools <u>H</u> elp							10
😓 Back 🔹 🔿 🛛 🐼 📷 Fav	rorites 🎒 🖨							
iddress 🔘 https://online.wellsfarg:	o.com/mn1_aa1_on/cgi-bin/session.cgi?sessargs=coAn76ax52	xltPX8uoCT8rR8fMMdJldx	j ∂‰	Links	🍓 Yahoo maps	🙆 Mapblast	Dictionary	»
VELLS PARGO			Home Help	Center	Contact Us Loc	ations Site Maj	o Apply Sign O	₩ F 🖻
	Account Summary					Last Log On	January 06, 200	D4
Account Summary Brokerage Dill Days	Wells Fargo Accounts OneLook Accounts							-
Transfer	Tip: Select an account's balance to access the Acco	ount History.						
Account Services My Message Center	Enroll for Online Statements					<u>Mv</u>	Message Cent	er
	Account	Account Num	nber		A	/ailable Balar	ice	
Stay organized with FREE 24/7 access to Online Statements.	Checking <u>Add Bill Pav</u> Total To end your session, be sure to Sign Off.							
Sign up for the Wells Fargo Rewards [®] program and get 2,500 points.	Account Summar Home J	y Brokerage Bill Pay Transfer Help Center Contact Us Locatio © 1995 - 2003 Wells Fargo. All rig	My Messag ns Site Maj hts reserve	je Center p Apply d.	r Sign Off			
]					Z	M.	Cernet	4

Goal 2: Protected files

Analogous to secure communication: Alice today sends a message to Alice tomorrow

Taxonomy of Cryptographic attacks

- a) Brute force
- b) Differential cryptanalysis
- c) Linear cryptanalysis
- d) Meet-in-the-middle
- e) Chosen-ciphertext
- f) Chosen-plaintext
- g) Ciphertext-only
- h) Replay attack

- i) Known-plaintext
- j Power analysis
- k) Timing
- I) Man-in-the-middle

Symmetric Cryptography

Assumes parties already share a secret key

Building block: sym. encryption

E, D: cipherk: secret key (e.g. 128 bits)m, c: plaintext, ciphertextn: nonce (aka IV)

Encryption algorithm is publicly known

• Never use a proprietary cipher

Use Cases

Single use key: (one time key)

- Key is only used to encrypt one message encrypted email: new key generated for every email
- No need for nonce (set to 0)

Multi use key: (many time key)

- Key used to encrypt multiple messages
 SSL: same key used to encrypt many packets
- Need either *unique* nonce or *random* nonce

Shannon '49:

OTP is "secure" against ciphertext-only attacks = attacker can only access the chiper text

Stream ciphers: RC4 (113MB/sec), SEAL (293MB/sec)

PRG = pseudo random generator

- Unfortunately, generating random numbers looks a lot easier than it really is.
- It is fundamentally impossible to produce truly random numbers on any deterministic device.
- "Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin." Von Neumann
- The best we can hope for are pseudo-random numbers, a stream of numbers that appear as if they were generated randomly.

Dangers in using stream ciphers

One time key !! "Two time pad" is insecure: $C1 \leftarrow m1 \oplus PRG(k)$ $C2 \leftarrow m2 \oplus PRG(k)$

Eavesdropper does:

 $C1 \oplus C2 \rightarrow m1 \oplus m2$

Enough redundant information in English that:

 $m1 \oplus m2 \rightarrow m1, m2$

Block ciphers: crypto work horse

Canonical examples:

1. 3DES: n = 64 bits, k = 168 bits

². AES: n=128 bits, k = 128, 192, 256 bits

IV handled as part of PT block

Building a block cipher Input: (m, k) Repeat simple "mixing" operation several times • DES: Repeat 16 times: $mL \leftarrow mR$ $mR \leftarrow mL \oplus F(k, mR)$

• AES-128: Mixing step repeated 10 times

Difficult to design: must resist subtle attacks

• differential attacks, linear attacks, brute-force, ...

Block Ciphers Built by Iteration

R(k,m): round function for DES (n=16), for AES (n=10)

Initial and Final Permutations

Initial and final permutation steps in DES

Initial and final permutation tables

Initial Permutation	Final Permutation				
58 50 42 34 26 18 10 02 60 52 44 36 28 20 12 04 62 54 46 38 30 22 14 06 64 56 48 40 32 24 16 08 57 49 41 33 25 17 09 01	40 08 48 16 56 24 64 32 39 07 47 15 55 23 63 31 38 06 46 14 54 22 62 30 37 05 45 13 53 21 61 29 36 04 44 12 52 20 60 28				
59 51 43 35 27 19 11 03 61 53 45 37 29 21 13 05	35 03 43 11 51 19 59 27 34 02 42 10 50 18 58 26				
61 53 43 57 29 21 15 03 63 55 47 39 31 23 15 07	34 02 42 10 50 18 58 20 33 01 41 09 49 17 57 25				

Rounds

DES uses 16 rounds. Each round of DES is a Feistel cipher.

DES Function

The DES function applies a 48-bit key to the rightmost 32 bits to produce a 32-bit output.

Expansion P-box table

The relationship between the input and output can be defined mathematically, but DES uses a table

32	01	02	03	04	05	
04	05	06	07	08	09	
08	09	10	11	12	13	
12	13	14	15	16	17	
16	17	18	19	20	21	
20	21	22	23	24	25	-
24	25	26	27	28	29	
28	29	31	31	32	01	

DES cipher and reverse cipher = same hw component for encryption and decryption

Parallel encryption of the various blocks through the same key

Problem: If m1=m2 then c1=c2

In pictures

An example plaintext

Correct use of block ciphers I: CBC mode

ciphertext

Q: how to do decryption?

Use cases: choosing an IV

Single use key: no IV needed (IV=0)

Multi use key: (CPA Security)

Best: use a fresh *random* IV for every message

Can use <u>unique</u> IV (e.g counter) but then first step in CBC <u>must be</u> $IV' \leftarrow E(k1,IV)$ benefit: may save transmitting IV with ciphertext

CBC with Unique IVs

ciphertext

In pictures

Correct use of block ciphers II: CTR mode

Performance: Crypto++ 5.2.1 [Wei Dai]

Pentium 4, 2.1 GHz (on Windows XP SP1, Visual C++ 2003)

<u>Cipher</u>	Block/key size	<u>Speed (MB/sec)</u>
RC4		113
SEAL		293
3DES	64/168	9
AES	128/128	61

Data integrity

note: non-keyed checksum (CRC) is an insecure MAC !!

Secure MACs

◆Attacker information: chosen message attack
 for m1,m2,...,mq attacker is given ti ← S(k,mi)
 ◆Attacker's goal: existential forgery.

- produce some <u>new</u> valid message/tag pair (m,t). (m,t) ∉ { (m1,t1) , ... , (mq,tq) }
- A secure PseudoRandomFunction gives a secure MAC:
 - S(k,m) = F(k,m)
 - V(k,m,t): `yes' if t = F(k,m) and `no' otherwise.

Construction 1: ECBC

Construction 2: HMAC (Hash-MAC)

Most widely used MAC on the Internet.

H: hash function. example: SHA-256 ; output is 256 bits

Building a MAC out of a hash function:

Standardized method: HMACS(k, m) = H(k \oplus opad || **H(k\oplusipad || m)**)

HMAC

- i) A popular system of checking message integrity, uses one-way hash f unctions to produce unique mac values.
- ii) ipad and opad are used to modify the secret key. It is recommended to choose the values that would make both inputs to the hash functions look as dissimilar as possible
- Iii) Using a secure hash function that doesn't produce the same outputs for different input data) guarantees the security of HMAC.

SHA-256: Merkle-Damgard

h(t, m[i]): compression function

Thm 1: if h is collision resistant then so is H

"Thm 2": if h is a PRF then HMAC is a PRF

PRF=pseudo random function

Construction 3: PMAC – parallel MAC

ECBC and HMAC are sequential. PMAC:

These MAC constructions are secure No time to prove it

Why the last encryption step in ECBC?

- CBC (aka Raw-CBC) is not a secure MAC:
 - Given tag on a message m, attacker can deduce tag for some other message m'
 - How: good crypto exercise ...

Authenticated Encryption: Encryption + MAC

Combining MAC and ENC (CCA)

OCB

offset codebook mode

Rogaway, ...

Public-key Cryptography

Public key encryption: (Gen, E, D)

Applications

Non-interactive applications: (e.g. Email)
Bob sends email to Alice encrypted using pkalice
Note: Bob needs pkalice (public key management)

Applications

Encryption in non-interactive settings: Encrypted File Systems

Applications

Encryption in non-interactive settings: Key escrow: data recovery without Bob's key

Trapdoor functions (TDF)

- A trapdoor func. $X \rightarrow Y$ is a triple of efficient algs. (G, F, F-1)
- G(): randomized alg. outputs key pair (pk, sk)
- $F(pk, \cdot)$: det. alg. that defines a func. $X \longrightarrow Y$
- $F-1(sk,\cdot)$: $Y \longrightarrow X$ that inverts $F(pk,\cdot)$
- Security: $F(pk, \cdot)$ is one-way without sk

Public-key encryption from TDFs

- (G, F, F-1): secure TDF $X \rightarrow Y$
- (Es, Ds) : symm. auth. encryption with keys in K
- H: X \longrightarrow K a hash function

We construct a pub-key enc. system (G, E, D): Key generation G: same as G for TDF

Public-key encryption from TDFs

- (G, F, F-1): secure TDF $X \longrightarrow Y$
- (Es, Ds): symm. auth. encryption with keys in K
- H: X \rightarrow K a hash function

E(pk, m) :

 $x \leftarrow X, \quad y \leftarrow F(pk, x)$ $k \leftarrow H(x), \quad c \leftarrow Es(k, m)$ output (y, c) $\begin{array}{c} \underline{D(sk,(y,c))}:\\ x \leftarrow F-1(sk,y),\\ k \leftarrow H(x), m \leftarrow Ds(k,c)\\ output m \end{array}$

Digital Signatures

Public-key encryption

- Alice publishes encryption key
- Anyone can send encrypted message
- Only Alice can decrypt messages with this key

Digital signature scheme

- Alice publishes key for verifying signatures
- Anyone can check a message signed by Alice
- Only Alice can send signed messages

Digital Signatures from TDPs (G, F, F-1): secure TDP $X \longrightarrow X$ $H: M \longrightarrow X$ a hash function <u>Sign(sk, m∈X) :</u> Verify(pk, m, sig) : output output $\begin{cases} 1 & \text{if } H(m) = F(pk, sig) \\ 0 & \text{otherwise} \end{cases}$ sig = F-1(sk, H(m))

Security: existential unforgeability under a chosen message attack in the random oracle model

Public-Key Infrastructure (PKI)

Anyone can send Bob a secret message

Provided they know Bob's public key

How do we know a key belongs to Bob?

If imposter substitutes another key, can read Bob's mail

One solution: PKI

- Trusted root Certificate Authority (e.g. Symantec)
 - Everyone must know the verification key of root CA
 - Check your browser; there are hundreds!!
- Root authority signs intermediate CA
- Results in a certificate chain

Back to SSL/TLS

Limitations of cryptography

Most security problems are not crypto problems

- This is good
 - Cryptography works!
- This is bad
 - People make other mistakes; crypto doesn't solve them

Misuse of cryptography is fatal for security

- WEP ineffective, highly embarrassing for industry
- Occasional unexpected attacks on systems subjected to serious review

