
Control Hijacking

Basic Control
Hijacking Attacks

Una breve rassegna (cocktail) di vulnerabilità,
attacchi e contromisure

Control hijacking attacks

• Attacker’s goal:

– Take over target machine (e.g. web server)

• Execute arbitrary code on target by hijacking
application control flow

• Examples.

– Buffer /Integer overflow attacks

– Format string vulnerabilities

Example 1: buffer overflows

• Extremely common bug in C/C++ programs.

– First major exploit: 1988 Internet Worm. fingerd.

Source: NVD/CVE

» 20% of all vuln.

2005-2007:  10%

0

100

200

300

400

500

600

1995 1997 1999 2001 2003 2005

What is needed

• Understanding C functions, the stack, and the heap.

• Know how system calls are made

• The exec() system call

• Attacker needs to know CPU and OS used on the target machine:

– Our examples are for x86 running Linux or Windows

– Details vary slightly between CPUs and OSs:

• Little endian vs. big endian (x86 vs. Motorola)

• Stack Frame structure (Unix vs. Windows)

Linux process memory layout

unused 0x08048000

run time heap

shared libraries

user stack

0x40000000

0xC0000000

%esp

brk

Loaded
from exec

0

exception handlers

Stack Frame

arguments

return address
stack frame pointer

local variables

SP

Stack
Growth

high

low
callee saved registers

What are buffer overflows?

void func(char *str) {
 char buf[128];

 strcpy(buf, str);
do-something(buf);

}

Suppose a web server contains a function:

When func() is called stack looks like:

argument: str

return address

stack frame pointer

char buf[128]

SP

char buf[128]

return address

Basic stack exploit

• Suppose *str is such that
 after strcpy stack looks like:

• Program P: exec(“/bin/sh”)

• When func() exits, the user gets shell !

• Note: attack code P runs in stack.

Program P

low

high

The NOP slide

Problem: how does attacker
 determine ret-address?

Solution: NOP slide

• Guess approximate stack state
when func() is called

• Insert many NOPs before program P:

 nop , xor eax,eax , inc ax char buf[128]

return address

NOP Slide

Program P

low

high

Details and examples

• Some complications:

– Program P should not contain the ‘\0’ character.

– Overflow should not crash program before func() exists.

• Sample remote stack smashing overflows:

– (2007) Windows animated cursors (ANI), LoadAniIcon()

– (2005) Symantec Virus Detection

Many unsafe libc functions

strcpy (char *dest, const char *src)
strcat (char *dest, const char *src)
gets (char *s)
scanf (const char *format, …) and many more.

• “Safe” libc versions strncpy(), strncat() are misleading

– e.g. strncpy() may leave string unterminated.

• Windows C run time (CRT):

– strcpy_s (*dest, DestSize, *src): ensures proper termination

Buffer overflow opportunities

• Exception handlers: (Windows SEH attacks)

– Overwrite an exception handler address in stack frame.

• Function pointers: (e.g. PHP 4.0.2, MS MediaPlayer Bitmaps)

 - Overflowing buf will override function pointer.

• Longjmp buffers: longjmp(pos) (e.g. Perl 5.003)

– Overflowing buf next to pos overrides value of pos.

Heap
or

stack
 buf[128] FuncPtr

SEH attack

• It executes arbitrary code by abusing the 32-bit Windows
exception dispatching facilities

• A stack-overflow overwrites an exception registration record
(ERR) on a thread’s stack.

• An ERR includes a next pointer and an exception handler
function pointer. The next pointer links to the next record in

the list of registered exception handlers. The exception

handler function pointer is used when an exception occurs.
• After an exception registration record has been overwritten,

an exception must be raised so that the exception

dispatcher will attempt to handle it.

Corrupting method pointers

• Compiler generated function pointers (e.g. C++ code)

• After overflow of buf :

ptr

data

Object T

FP1
FP2
FP3

vtable

method #1

method #2

method #3

ptrbuf[256]

data

object T

vtable

NOP
slide

shell
code

Finding buffer overflows

• To find overflow in a web server:

– Run server on local machine

– Issue malformed requests (ending with “$$$$$”)

• Many automated tools exist (called fuzzers – next module)

– If web server crashes,
search core dump for “$$$$$” to find overflow location

• Construct exploit (not easy given latest defenses)

More Hijacking Opportunities

• Integer overflows: (e.g. MS DirectX MIDI Lib)

• Double free: double free space on heap.
– Can cause memory mgr to write data to specific location
– Examples: CVS server

• Format string vulnerabilities

Integer Overflows (see Phrack 60)

Problem: what happens when int exceeds max value?

int m; (32 bits) short s; (16 bits) char c; (8 bits)

c = 0x80 + 0x80 = 128 + 128 c = 0⇒

s = 0xff80 + 0x80 s = 0⇒

m = 0xffffff80 + 0x80 m = 0⇒

Can this be exploited?

Integer overflow

Since an integer is a fixed size (e.g. 32 bits), there is a fixed maximum
value it can store. When an attempt is made to store a value greater
than this maximum value it is known as an integer
overflow.
The ISO C99 standard says that an integer overflow causes
"undefined behaviour", meaning that compilers conforming
to the standard may do anything they like from completely ignoring
the overflow to aborting the program.
Most compilers seem to ignore the overflow, resulting in an
unexpected or erroneous result being stored.

Integer overflow

• Integer overflows cannot be detected after they have happened, so
 there is not way for an application to tell if a result is in fact correct.

• This can get dangerous if the calculation has to do with the size
 of a buffer or how far into an array to index.

• Most integer overflows are not exploitable because memory is not
 being directly overwritten, but sometimes they can lead to other
 classes of bugs,frequently buffer overflows.

• Integer overflows can be difficult to spot, so even well audited code
 can spring surprises.

An example

void func(char *buf1, *buf2, unsigned int len1, len2) {

char temp[256];

if (len1 + len2 > 256) {return -1} // length check

memcpy(temp, buf1, len1); // cat buffers

memcpy(temp+len1, buf2, len2);

do-something(temp); // do stuff

}

If len1 = 0x80, len2 = 0xffffff80 len1+len2 = 0⇒

Second memcpy() will overflow heap !!

Source: NVD/CVE

Integer overflow exploit stats

0

20

40

60

80

100

120

140

1996 1998 2000 2002 2004 2006

Format string bugs

Format string problem

int func(char *user) {

 fprintf(stderr, user); }

int fprintf(FILE *stream, char *formato,
argomenti ...);

Problem: what if *user = “%s%s%s%s%s%s%s” ??

– Most likely program will crash: DoS.
– If not, program will print memory contents. Privacy?
– Full exploit using user = “%n”

Correct form: fprintf(stdout, “%s”, user);

Format string problem

Se si passa a una funzione che stampa una stringa a schermo
(printf del C) una stringa che in realtà contiene una serie di
parametri di specifica dell'input (tipicamente %s e %x per
esaminare il contenuto della memoria e %n per sovrascriverne
parti , in particolare dello stack) si permette l'avvio di un attacco di
tipo stack overflow e return to libc.

Per proteggersi da questo attacco, quando si vuole stampare una
stringa s usando la printf() o una qualsiasi funzione C che accetti
un numero illimitato di identificatori di formato, bisogna scrivere
la funzione printf("%s", s) e non printf(s)

History

• First exploit discovered in June 2000.

• Examples:

– wu-ftpd 2.* : remote root

– Linux rpc.statd: remote root

– IRIX telnetd: remote root

– BSD chpass: local root

Vulnerable functions

Any function using a format string.

Printing:

printf, fprintf, sprintf, …

vprintf, vfprintf, vsprintf, …

Logging:

syslog, err, warn

Exploit

• Dumping arbitrary memory:

– Walk up stack until desired pointer is found.
– printf(“%08x.%08x.%08x.%08x|%s|”)

• Writing to arbitrary memory:

– printf(“hello %n”, &temp) - ‘6’ into temp.
– printf(“%08x.%08x.%08x.%08x.%n”)

Control Hijacking

Platform Defenses
=

Contromisure

Preventing hijacking attacks

a) Fix bugs:
– Audit software

• Automated tools: Coverity, Prefast/Prefix.
– Rewrite software in a type safe languange (Java, ML)

• Difficult for existing (legacy) code …

b) Concede overflow, but prevent code execution

c) Add runtime code to detect overflows exploits
– Halt process when overflow exploit detected
– StackGuard, LibSafe, …

Marking stack and heap as non-executable

NX-bit on AMD Athlon 64,

- XD-bit on Intel P4 Prescott
- NX bit in every Page Table Entry (PTE)

Deployment: Linux (via PaX project);

– OpenBSDWindows: since XP SP2 (DEP)
– Visual Studio: /NXCompat[:NO]

Limitations:
– Some apps need executable heap (e.g. JITs).

– Does not defend against `Return Oriented Programming’

Attack: Return Oriented Programming (ROP)

• Control hijacking without executing code

args

ret-addr
sfp

local buf

stack

exec()
printf()

“/bin/sh”

libc.so

Examples: DEP controls in Windows

DEP terminating a program

Response: ASLR =Address space
layout randomization

•

– Shared libraries to random location in process memory
 Attacker cannot jump directly to exec function

– Deployment: (/DynamicBase)
• Windows Vista:8 bits of randomness for DLLs

– aligned to 64K page in a 16MB region  256 choices
• Windows 8: 24 bits of randomness on 64-bit processors

• Other randomization methods:
– Sys-call randomization: randomize sys-call id’s

– Instruction Set Randomization (ISR)

ASLR Example

Booting twice loads libraries into different locations:

Note: everything in process memory must be randomized
stack, heap, shared libs, image

• Win 8 Force ASLR: ensures all loaded modules use ASLR

More attacks : spraying

A heap spray cannot be used to break any security : a separate vulnerability is needed.

Exploiting security issues is often hard because various factors can influence this
process. Chance alignments of memory and timing introduce a lot of randomness (from
the attacker's point of view). A heap spray can be used to introduce a large amount of
order to compensate for this and increase the chances of successful exploitation. Heap
sprays take advantage of the fact that the start location of large heap allocations is
predictable and consecutive allocations are roughly sequential. This means that the
heap will roughly be in the same location each and every time the heap spray is run.

This strategy aims to use the heap spray as a very large NOP sled (for example,
0x0c0c0c0c is often used as non-canonical NOP[1])

More attacks : JiT spraying

Idea: 1. Force Javascript JiT to fill heap with
executable shellcode

2. then point Saved Frame Pointer anywhere in
spray area

heap

vtable

NOP slide shellco
de

execute enabledexecute enabled

execute enabled execute enabled

More attacks : JiT spraying

Most modern interpreters implement a Just-In-Time (JIT) compiler to transform
the parsed input or bytecode into machine code for faster execution.

JIT spraying is the process of coercing the JIT engine to write many executable
pages with embedded shellcode.
This shellcode will entered through the middle of a normal JIT instruction.

For example, a Javascript statement such as “var x = 0x41414141 +
0x42424242;” might be compiled to contain two 4 byte constants in the
executable image
(“mov eax, 0x41414141; mov ecx, 0x42424242; add eax, ecx”).
By starting execution in the middle of these constants, a completely different
instruction stream is revealed.

Control Hijacking

Run-time Defenses

StackGuard

• Minimal performance effects: 8% for Apache.
• StackGuard implemented as a GCC patch.

– Program must be recompiled.
• Note: Canaries don’t provide full proof protection.

– Some attacks leave canaries unchanged
• Heap protection: PointGuard.

– Protects pointers and buffers by encryption
– Less effective, more noticeable performance effects

Heap protection: PointGuard.

• Protects pointers and buffers by
encryption

• Key generated when the program
starts

• Never shared so it is secure
• Less effective, more noticeable

performance effects

StackGuard enhancements: ProPolice IBM

Rearrange stack layout to prevent ptr overflow.

args

ret addr

SFP

CANARY

local string buffers

local non-buffer variables

Stack
Growth pointers, but no arrays

String
Growth

copy of pointer args

Protects pointer args and local
pointers from a buffer overflow

ProPolice IBM

• reorder local variables to place buffers after
pointers to avoid the corruption of pointers

• copying of pointers in function arguments
to an area preceding local variable buffers
to prevent the corruption of pointers

• omission of instrumentation code from
some functions to decrease the
performance overhead.

MS Visual Studio /GS [since 2003]

Compiler /GS option:

– Combination of ProPolice and Random canary.

– If cookie mismatch, default behavior is to call _exit(3)

Function prolog:
 sub esp, 8 // allocate 8 bytes for cookie
 mov eax, DWORD PTR ___security_cookie
 xor eax, esp // xor cookie with current esp
 mov DWORD PTR [esp+8], eax // save in stack

Function epilog:
 mov ecx, DWORD PTR [esp+8]
 xor ecx, esp
 call @__security_check_cookie@4
 add esp, 8

Enhanced /GS in Visual Studio 2010:
– /GS protection added to all functions, unless can be proven unnecessary

/GS stack frame

args

ret addr

SFP

CANARY

local string buffers

local non-buffer variables

Stack
Growth pointers, but no arrays

String
Growth

copy of pointer args

exception handlers

Canary protects ret-addr and
exception handler frame

Summary: Canaries are not full proof

• Canaries are an important defense tool, but do not prevent all
control hijacking attacks:

– Heap-based attacks still possible

– Integer overflow attacks still possible

– /GS by itself does not prevent Exception Handling attack

Attacchi web based

Injection Flaw e Attack

XSS – Cross Site Scripting

XSS

CSRF – Cross Site Request Forgery

CSRF – Cross Site Request Forgery

CSRF – Cross Site Request Forgery

CSRF – Cross Site Request Forgery

CSRF – Cross Site Request Forgery

	Diapositiva 1
	Control hijacking attacks
	Example 1: buffer overflows
	What is needed
	Linux process memory layout
	Stack Frame
	What are buffer overflows?
	Basic stack exploit
	The NOP slide
	Details and examples
	Many unsafe libc functions
	Buffer overflow opportunities
	Diapositiva 13
	Corrupting method pointers
	Finding buffer overflows
	More Hijacking Opportunities
	Integer Overflows (see Phrack 60)
	Diapositiva 18
	Diapositiva 19
	An example
	Integer overflow exploit stats
	Diapositiva 22
	Format string problem
	Diapositiva 24
	History
	Vulnerable functions
	Exploit
	Diapositiva 28
	Preventing hijacking attacks
	Marking memory as non-execute (W^X)
	Attack: Return Oriented Programming (ROP)
	Examples: DEP controls in Windows
	Response: randomization
	ASLR Example
	Diapositiva 35
	More attacks : JiT spraying
	Diapositiva 37
	Diapositiva 38
	StackGuard (Cont.)
	Diapositiva 40
	StackGuard enhancements: ProPolice
	Diapositiva 42
	MS Visual Studio /GS [since 2003]
	/GS stack frame
	Summary: Canaries are not full proof
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54

