Una breve rassegna di attacchi € contromisure

a1
unl

Control Hijacking

Basic Control
Hijacking Attacks

Control hijacking attacks

k$ 1

il U
Attacker’s goal:

— Take over target machine (e.g. web server)

* Execute arbitrary code on target by hijacking
application control flow

Examples.
— Buffer /Integer overflow attacks

— Format string vulnerabilities

$ Example 1: buffer overflows
1

L

Extremely common bug in C/C++ programs.

— First major exploit: 1988 Internet Worm. fingerd.

600 = 20% of all vuln.

500 2005-2007: ~ 10%

400_
300 -
200- Source: NVD/CVE
100

0+
1995 1997 1999 2001 2003 2005

What is needed

A $ 1

il U
*Understanding C functions, the stack, and the heap.

Know how system calls are made

The exec() system call
Attacker needs to know CPU and OS used on the target machine:
— Our examples are for x86 running Linux or Windows
— Details vary slightly between CPUs and OSs:
- Little endian vs. big endian (x86 vs. Motorola)

- Stack Frame structure (Unix vs. Windows)

Linux process memory layout

o4

OxC0000000
%esp
0x40000000
brk —
Loaded
from exec 0x08048000

0

Stack Frame

A ii 1

mill | A
high

arguments

return address

stack frame pointer

exception handlers

local variables Stack
Growth

Sp callee saved registers
low

What are buffer overflows?

ksi]

Suppose a web server contains a function:

When func() is called stack looks like:

argument: str

void func(char *str) ({
char buf[128];

strcpy (buf, str);
do-something (buf) ;

return address

stack frame pointer

char buf[128]

P

Basic stack exploit i

Program P

L

Suppose *str is such that
after strcpy stack looks like:

Program P: exec(“/bin/sh”)

When func() exits, the user gets shell !

Note: attack code P runs in stack.

low

The NOP slide

i
A\

Problem: how does attacker
determine ret-address?

Solution: NOP slide

Guess approximate stack state
when func() is called

Insert many NOPs before program P:

nop , Xoreax,eaXx , Iincax

Program P

NOP Slide

low

Details and examples

$ 1

1
ig)me complications:
— Program P should not contain the \O’ character.

— Overflow should not crash program before func() exists.

Sample remote stack smashing overflows:

— (2007) Windows animated cursors (ANI), LoadAnilcon()

— (2005) Symantec Virus Detection

Many unsafe libc functions

;$ 1

s%y W'char *dest, const char *src)
strcat (char *dest, const char *src)
gets (char *s)

scanf (const char *format, ...) and many more.

“Safe” libc versions strncpy(), strncat() are misleading

- e.g. strncpy() may leave string unterminated.

Windows C run time (CRT):

— strepv s (*dest DestSize. *src): ensures proper termination

Buffer overflow opportunities

k$ 1

il U
Exception handlers: (Windows SEH attacks)

— Overwrite an exception handler address in stack frame.

Heap
B
stack
Function pointers: (e.g. PHP 4.0.2, MS MediaPlayer Bitmaps)

- Overflowing buf will override function pointer.

Longjmp buffers: longjmp(pos) (e.g. Perl 5.003)

— Overflowing buf next to pos overrides value of pos.

$ SEH attack
k;_ 1

[
It executes arbitrary code by abusing the 32-bit Windows

exception dispatching facilities

A stack-overflow overwrites an exception registration record
(ERR) on a thread’s stack.

« An ERR includes a next pointer and an exception handler
function pointer. The next pointer links to the next record in

the list of registered exception handlers. The exception
handler function pointer is used when an exception occurs.

» After an exception registration record has been overwritten,
an exception must be raised so that the exception

dispatcher will attempt to handle it.

Corrupting method pointers

*ompller generated function pomters (e.g. C++ code)
method #1
ptr /
FP3

S method H2
> method #3
data vtable

Object T

After overflow of buf™:

$ Finding buffer overflows
-

mll N

* To find overflow in a web server:
— Run server on local machine
— Issue malformed requests (ending with “$$$S$S”)
* Many automated tools exist (called fuzzers — next module)

— |f web server crashes,
search core dump for “SS$SSS” to find overflow location

Construct exploit (not easy given latest defenses)

More Hijacking Opportunities

L
Integer overflows: (e.g. MS DirectX MIDI Lib)

ki 1

Double free: double free space on heap.
— Can cause memory mgr to write data to specific location

— Examples: CVS server

Format string vulnerabilities

Integer Overflows (seephrack 60

k$ 1

mll N

Problem: what happens when int exceeds max value?

intm; (32 bits) shorts; (16 bits) charc; (8 bits)

c=0x80+0x80=128 + 128 = ¢=0
s = Oxff80 + 0Ox80 = =0
m = Oxffffff80 + Ox80 = m=0

Can this be exploited?

$ An example
-

m/oid func(char *bufl, *buf2, unsignedintlenl, len2) {

char temp[256];
if (lenl + len2 > 256) {return -1} // length check
memcpy(temp, bufl, lenl); // cat buffers

memcpy(temp+lenl, buf2, len2);

do-something(temp); // do stuff

If lenl =0x80, len2 =O0xffffff80 = lenl+len2=0

Second memcpy() will overflow heap !!

Integer overflow exploit stats

i

140 -
120 -
100 -
80 -
60 -
40 -
20-
0

| Source: NVD/CVE
1996 1998 2000 2002 2004 2006

l$ 8

a0
Format string bugs

Format string problem

;i 1

||
int func(char *user) ({

fprintf(stderr, user); }

int fprintf (FILE *stream, char *formato,
argomenti ...);

Problem: whatif *user = “%s%S%s%s%s%s%s” ??

— Most likely program will crash: DoS.
— If not, program will print memory contents. Privacy?
— Full exploit using user = "%n"

Correct form: fprintf(stdout, “%s”, user);

Format string problem

;$ 1

Se si passa a una funzione che stampa una stringa a schermo
(printf del C) una stringa che in realta contiene una serie di
parametri di specifica dell'input (tipicamente %s e %x per
esaminare il contenuto della memoria e %n per sovrascriverne
parti, in particolare dello stack) si permette 1'avvio di un attacco di
tipo stack overflow e return to libc.

Per proteggersi da questo attacco, quando si vuole stampare una
stringa s usando la printf() o una qualsiasi funzione C che accetti
un numero illimitato di identificatori di formato, bisogna scrivere
la funzione printf(''%s", s) e non printf(s)

History

A i 1

First exploit discovered in June 2000.

Examples:

- wu-ftpd 2.*: remote root
— Linux rpc.statd: remote root
— |RIX telnetd: remote root

— BSD chpass: local root

Vulherable functions

;$ 1

Any function using a format string.

Printing:

printf, fprintf, sprintf, ...
vprintf, vfprintf, vsprintf, ...
Logging:

syslog, err, warn

Exploit

k$ 1

ml
Dumping arbitrary memory:

— Walk up stack until desired pointer is found.
— printf(“%08x.%08x.%08x.%08x | %s|”)

Writing to arbitrary memory:

= printf(“hello %n”, &temp) - ‘6" into temp.
= printf(“%08x.%08x.%08x.%08x.%n")

Control Hijacking

Platform Defenses

Contromisure

Preventing hijacking attacks

;$ 1

\ ||
*a) Fix bugs:

— Audit software
- Automated tools: Coverity, Prefast/Prefix.

— Rewrite software in a type safe languange (Java, ML)
* Difficult for existing (legacy) code ...

b) Concede overflow, but prevent code execution

c) Add runtime code to detect overflows exploits
— Halt process when overflow exploit detected
— StackGuard, LibSafe, ...

$ Marking stack and heap as non-executable
-

it on AMD Athlon 64,

- XD-bit on Intel P4 Prescott
- NX bit in every Page Table Entry (PTE)

Deployment: Linux (via PaX project);

— OpenBSDWindows: since XP SP2 (DEP)

— Visual Studio: /NXCompat[:NO]
Limitations:

— Some apps need executable heap (e.g. JITs).

— Does not defend against Return Oriented Programming’

Attack: Return Oriented Programming (ROP)

o4

Control hijacking without executing code

stack libc.so

Examples: DKcontroIs in Windows

Performance Options

| Visual Effects | Advanced | Data Execution Prevention |

Data Execution Prevention (DEP) helps protect
3 d against damage From wiruses and okher security
threats, How does ik works

(@) Turn on DEP For essential Windows programs and services
anly

(") Turn on DEP For all programs and services excepk those 1
select:

add. ., Remove

Your computer's processor supports hardware-based DEP,

Data Execution Prevention - Microsoft Windows

To help protect your computer, Windows has closed this program.

Windows Explorer

;:‘-I Mame:
'__;g Publisher: Microsoft Corporation

| Close Message |

Data Execution Prevention helps protect against damage from viruses and other
security threats, What should T do?

Ik][Zancel H Apply

DEP terminating a program

Response: ASLR =Address space

$ layout randomization
L Ex

— Shared libraries to random location in process memory
—> Attacker cannot jump directly to exec function

— Deployment: (/DynamicBase)
* Windows Vista: 8 bits of randomness for DLLs
— aligned to 64K page in a 16MB region = 256 choices
* Windows 8: 24 bits of randomness on 64-bit processors

Other randomization methods:
— Sys-call randomization: randomize sys-call id’s

— Instruction Set Randomization (ISR)

ASLR Example

;i 1

L
Booting twice loads libraries into different locations:

rtlanman. dll LRG0 FFOOOD | Microzoft® Lan Manager
rtrmarta. dll O /5370000 | \wWindows MT MARTA provider
rikzhiru. dll O=EFZC0000 | Shell extenzions for sharng
ole32.dll O=/&1R0000 | Microsoft OLE for Windows
rtlanmmar. di CbDAS0000 | Microzoft® Lan Manager
rtrnarta. dll Cee AAEROOCD | “windows NT MARTA provider
rikzhiru dll CebErS0000C | Shell extensions for sharing
ole3E. dll Cee ABACON0C0 | Microzoft OLE far \Windows

Note: everything in process memory must be randomized
stack, heap, shared libs, image

* Win 8 Force ASLR: ensures all loaded modules use ASLR

More attacks : JiT spraying

1. Force Javascript JiT to fill heap with
executable shellcode

2. then point Saved Frame Pointer anywhere in
spray area

siteilco
o [=

NOP slide

More attacks : JiT spraying

A $ 1

Most modern interpreters implement a Just-In-Time (JIT) compiler to transforn
the parsed input or bytecode into machine code for faster execution.

JIT spraying is the process of coercing the JIT engine to write many executable
pages with embedded shellcode.
This shellcode will entered through the middle of a normal JIT instruction.

For example, a Javascript statement such as “var x = 0x41414141 +
0x42424242;” might be compiled to contain two 4 byte constants in the
executable image

(“mov eax, 0x41414141; mov ecx, 0x42424242; add eax, ecx”).

By starting execution in the middle of these constants, a completely different
instruction stream 1s revealed.

Control Hijacking

Run-time Defenses

StackGuard

;$ 1

il 1
Minimal performance effects: 8% for Apache.
StackGuard implemented as a GCC patch.
— Program must be recompiled.

Note: Canaries don’t provide full proof protection.
— Some attacks leave canaries unchanged

Heap protection: PointGuard.
— Protects pointers and buffers by encryption
— Less effective, more noticeable performance effects

Heap protection: PointGuard.

LE

A
* Protects pointers and buffers by

encryption

» Key generated when the program
starts

* Never shared so it is secure

» Less effective, more noticeable
performance effects

StackGuard enhancements: ProPolice IBM

k§ :

Rearrange stack layout to prevent ptr overflow.

string 4 [aES
Protects pointer args and local
_ pointers from a buffer overflow
Stack _
Growth _ pointers, but no arrays

» reorder local variables to place buffers after
pointers to avoid the corruption of pointers

» copying of pointers in function arguments
to an area preceding local variable buffers
to prevent the corruption of pointers

* omission of instrumentation code from
some functions to decrease the
performance overhead.

$ ProPolice IBM
.

MS Visual Studio /GS [since 2003]

A B

il U
Compiler /GS option:

— Combination of ProPolice and Random canary.

— If cookie mismatch, default behavior is to call _exit(3)

Function prolog:

sub esp,8 //allocate 8 bytes for cookie

mov eax, DWORD PTR ___security_cookie

Xor eax, esp //xor cookie with current esp
mov DWORD PTR [esp+8], eax // save in stack

Function epilog:

mov ecx, DWORD PTR [esp+8]
Xor ecx, esp

call @ __security_check_cookie@4
add esp, 8

Enhanced /GS in Visual Studio 2010:

- /GS protection added to all functions, unless can be proven unnecessary

/GS stack frame

o4

String _
crowth| [ret AR
Canary protects ret-addr and
DSERRI - cxception handier frame
 exception handlers | -
Stack | localstring buffers |
Growth _ pointers, but no arrays

Summary: Canaries are not full proof

k$ 1

mll N

Canaries are an important defense tool, but do not prevent all
control hijacking attacks:

— Heap-based attacks still possible
— Integer overflow attacks still possible

- /GS by itself does not prevent Exception Handling attack

	Diapositiva 1
	Control hijacking attacks
	Example 1: buffer overflows
	What is needed
	Linux process memory layout
	Stack Frame
	What are buffer overflows?
	Basic stack exploit
	The NOP slide
	Details and examples
	Many unsafe libc functions
	Buffer overflow opportunities
	Diapositiva 13
	Corrupting method pointers
	Finding buffer overflows
	More Hijacking Opportunities
	Integer Overflows (see Phrack 60)
	An example
	Integer overflow exploit stats
	Diapositiva 20
	Format string problem
	Diapositiva 22
	History
	Vulnerable functions
	Exploit
	Diapositiva 26
	Preventing hijacking attacks
	Marking memory as non-execute (W^X)
	Attack: Return Oriented Programming (ROP)
	Examples: DEP controls in Windows
	Response: randomization
	ASLR Example
	More attacks : JiT spraying
	Diapositiva 34
	Diapositiva 35
	StackGuard (Cont.)
	Diapositiva 37
	StackGuard enhancements: ProPolice
	Diapositiva 39
	MS Visual Studio /GS [since 2003]
	/GS stack frame
	Summary: Canaries are not full proof

