

OpenFog Reference Architecture

Presented by Dr. Maria Gorlatova

OpenFog Consortium Communications Working Group Co-chair, Technical Committee Member

My background

- Associate Research Scholar at Princeton University
- Ph.D. from Columbia University

- Research in fog computing
 - Enabling interactivity and cognition in IoT systems
 - Communication protocols for fog computing (as part of a DARPA program jointly with BAE Systems, LGS, MIT, and NYU)
- Co-chair of the OpenFog Consortium Communications Working Group
 - Member of the technical committee
 - > TPC member of the 2017 Fog World Congress

RINCETON

55 members strong, headquartered in 14 countries as of February 2017

OpenFog Consortium goals

Technology	Develop an open architecture framework for fog computing Solve tough challenges in distributed systems, security, communications, networking Identify, build and share fog computing use cases and requirements Create testbeds to promote and demonstrate interoperability and composability of solutions		
Industry-wide Collaboration	Foster university and industry partnerships to tackle challenging technical problems, leverage research and educate future workers Initiate and support operational models and testbeds that showcase innovation Provide a forum to share ideas and facilitate business development opportunities Influence standards development through strategic affiliations		
Education	ducation Gain exposure to advanced research concepts from university & industry members Promote innovation through global industry events and plugfests Evangelize value, share best practices, showcase real-world applications Educate through e-learning, publications and conferences		

What is fog computing?

System-Level

from things to the edge, and over the core to the cloud, spanning multiple protocol layers (works over and inside wireless and wireline networks)

CLOUD

Architecture

for distributing, orchestrating, managing, securing resources and services

(not just placing servers, computing resources, apps, or small clouds at the edges)

FOG COMPUTING

A system-level horizontal architecture that distributes computing, storage, and networking closer to users, and anywhere along the cloud-to-thing continuum

Fog enables advanced IoT, 5G & AI use cases

Building the necessary interoperability of fog-enabled applications requires a collaborative approach

Proprietary or single vendor solutions slows down adoption and innovation

An open architecture will:

- Provide a robust new platform for product development
- Increased quality and innovation through competition in the open environment
- Lead to a vibrant, growing supplier ecosystem
- Accelerate market adoption
- Lower system costs

Unified framework approach parallels Internet approach

OpenFog Reference Architecture

www.OpenFogConsortium.org/RA

OpenFog reference architecture: core principles

Requirements to every part of supply chain:

- Component manufacturers
- System vendors
- Software providers
- Application developers

Multi-tier deployments

- Hierarchy, reliability, programmability
 - > Applications can span multiple nodes

OpenF

> Number of tiers determined by a use case

Smart city deployment example

- Nodes communicate up and down and laterally
- Nodes form a mesh, aiding with
 - Load balancing
 - ➢ Resilience
 - Fault tolerance
- Computing logic, decisionmaking at multiple points in the hierarchy

Smart city fog deployment: buildings, neighborhoods, regions connected with each other

Multi-layer architecture addressing cross-cutting concerns

Lowest level of architecture description: node view

- Targeted at chip designers, silicon manufacturers
- Architecture ideas, design considerations from IoT/sensor, mobile, server computing nodes

OpenFog Node Security				
OpenFog Node management (OOB)				
Network TSN, TCC, Comms,	Accelerators FPGA, GPGPU,	Compute	Storage	
Protocol Abstraction Layer (Legacy Protocol Bridge)				
Sensors, Actuators, & Control				
Eag pada architactura				

Fog node architecture

System architecture view

- Targeted at system architects, electronics manufacturers
- Creating a fog platform, small (resembling a WiFi router) or large (resembling a server blade)
- Concerns: physical form factor, serviceability, modularity

Software architecture view

- Targeted at software architects, solution designers
- Software backplane: drivers, OS, communication and security services
 Under active development
- Fog-specific application services: core, analytics, integration services

OpenFog architecture view with perspectives

End-to-end use case: securing air travel

- Multiple locations need to work together
- Cameras important part of the system
 - > 1 Tb/day/camera
- Immediate action needed
- Applications deployed: risk scoring, vehicle capture, baggage capture

Airport terminal provisioned with a hierarchy of fog nodes 19

Next steps for the OpenFog architecture

- Next level of detail:
 - Detailed specifications, APIs
 - > Testbeds, architecture demonstrations
 - Additional use cases
- Next level of openness and interoperability:
 - Partnership with ETSI Multi-access Edge Computing (MEC)
- Steps towards technology certification

OpenFog reference architecture: a baseline document

- Unified vision of the architecture for enabling exciting future applications
- First step in creating new industry standards

- Requirements
 - E.g., pillars: security, scalability, openness, autonomy, reliability & serviceability, agility, hierarchy, programmability
- Touching upon every part of fog supply chain

Industry commitment towards

cooperative, open, interoperative fog systems

Thank you!

Download the OpenFog Reference Architecture at

www.OpenFogConsortium.org/RA

info@OpenFogConsortium.org

55 members strong, headquartered in 14 countries as of February 2017

www.OpenFogConsortium.org