
Design patterns for
programming the fog

M.Danelutto, G.Ferrari, G.Mencagli,
U.Montanari, L.Semini, M.Torquati

FOG vision
User
❏ Extremely distributed and heterogeneous

system
❏ Suitable programming framework providing

mechanisms to implement FOG
applications

❏ Overall the pair may be used to solve the
problem at hand

Programmer
❏ Extremely distributed and heterogeneous

system
❏ Difficult to program and understand
❏ Requiring different mechanisms,

techniques and policies at different levels
❏ To be used to implement hierarchical

orchestration

❏ Implementing the high level mechanisms
envisioned by the user

(user = application designer/programmer)

Why patterns with FOG ?
● They decouple algorithm programming issues from implementation issues
● They provide high level of abstraction to the FOG application designer
● The confine FOG complexity in pattern implementation

Overall

● key mechanism to attack FOG app design
● as advocated by different communities

○ HPC (Berkeley report)
○ SwEng
○ Distributed App Programmers

Through The Fog patterns

patterns

Synergic FOG app development

Structured parallel
programming group

Sw engineering
group

Formal methods
group

Parallel design patterns
Pattern description template

● problem solved
● parallelism exploitation
● different algorithms and policies
● sample implementation code
● typical applications (problems) supported
● …

Often provided to user (application programmer)
through

● ready to use host language mechanisms
(classes, libraries, DSL, …)

Notable examples

● Google MapReduce
● DataFlow graph execution (tensorflow)
● Map, Reduce, Scan, Stencil
● Task farm, Pipeline
● Divide&Conquer
● …

Key point: separation of concerns

● system programmers implement patterns
(optimizations, hw targeting, etc.)

● users only exploit functional semantics of
the patterns

Parallel design pattern and RISC-PBB
Any (?) know parallel pattern expressed in terms of terms of RISC-PBB items

● computation patterns (replication, pipeline, tree generation/collapse)
● communication patterns (1-to-n and n-to-1 (multiple policies), feedback (cycles))
● generic composition + data flow semantics

RISC-pbb implemented on top of existing mechanisms

● e.g. FastFlow (threads & shared memory or sockets and COW/NOW)

Formal rewriting rules to introduce optimizations & hardware targeting

Design patterns hierarchy aware
● Context Oriented Programming

● Orchestration/Choreography

● Mobadtl guardians

● Mediator

● Facade

● Chain of Responsibility

Design patterns for hierarchy unaware
applications

● Orchestration/Choreography

● Publish-subscribe

● Observer

● P2P

Soft mu-calculus for computational fields
Inspired by semiring mu-calculus

Computation corresponds to fixpoints in a graph-
shaped domain

Soft mu calculus formulas ↔� RISC-PBB
patterns:

● which adjacent nodes are read
● how their values are combined.

Differerences

● Smuc: arc labels with a functional meaning;
● RISC-PBB: arcs are connectors to express

only flow;

● Smuc: modalities [a] and <a> combine the
values received on the arcs;

● formulas: high level meanings, global level;
● formula evaluation semantics: low level

communication, evaluation.

Example

● mu calculus for a-reachability
μZ. init ⋁ <a>Z

● soft mu-calculus for shortest distance
μZ. min(init,<dist>Z)

● fix point approximations: essentially
Dijkstra algorithm

Sample FOG app
Looking up most recent
version of a document

● map (fmatch) + reduce (fmost recent) pattern
● implemented as

○ low level search: optimising local resources and power, look up documents, deliver the most

convenient among :

<boolean found, data whenmodified, location loc> and <document doc, data whenmodified>

○ high level search and reduce: broadcast search parameters, gather answers, reduce to the most

recent document, if not included, retrieve it from loc.

● suitability of mechanisms formally proven (e.g. P2P).
● autonomic management of decisions (e.g. : answer type)

Designing apps
(TopDown patterned)
User (application programmer)

● application as proper (comp of) patterns

System programmer

● implements pattern as structured, hierarchical composition of Pattern Building
Blocks (connectors and components)

● on top of primitive mechanisms natively supported by FOG components

Feasibility of the implementation

● formalized and demonstrated correct/incorrect through MuCalculus

Designing programming frameworks
(bottom up, patterned)
FOG infrastructured formalization

● using MuCalculus

Classification of typical
computations supported

● provide palette of FOG
computation patterns

Provisioning of patterns to end users

● use the palette mechanisms to implement FOG specific patterns

Designing autonomic management
High level management policies

● relative to high level resources and algorithms
● quality of service (user perceived)

Low level management policies

● relative to FOG mechanisms
● quality of service (as

perceived/used by tools)

Different policies at different levels

● possibly optimizing different goal functions

Future work
Synergies envisioned

● several distinct directions
● in both an “engineering” and “computer science” first perspective

Research topics individuated

● validation of existing mechanisms
● formal derivation of possible FOG specific mechanisms and computation

patterns
● autonomic computing techniques embedded in the tools provided to the FOG

programmer

Software engineering perspective
Pattern based application development methodology

● Support Pattern-to-Pattern refactoring techniques to improve FOG app
efficiency

● Pattern driven refinement of initial app code through high (pattern) level and
low (implementation) level refactoring rules

Derive implementation mechanisms as requirements directly derived from FOG
patterns

Introduce autonomic decision levels in pattern implementation and management

