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Inductive inference with decision trees 

§  Decision Trees is one of the most widely used and 
practical methods of inductive inference 

§  Features 
§  Method for approximating discrete-valued functions 

(including boolean)  
§  Learned functions are represented as decision trees (or if-

then-else rules) 
§  Expressive hypotheses space, including disjunction 
§  Robust to noisy data 
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Decision tree representation (PlayTennis) 
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〈Outlook=Sunny, Temp=Hot, Humidity=High, Wind=Strong〉     No 

Decision trees expressivity 
§  Decision trees represent a disjunction of conjunctions on 

constraints on the value of attributes: 
(Outlook = Sunny ∧ Humidity = Normal) ∨ 
(Outlook = Overcast) ∨ 
(Outlook = Rain ∧ Wind = Weak) 
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Decision trees representation 
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+ 
- 

When to use Decision Trees 
§  Problem characteristics: 

§  Instances can be described by attribute value pairs  
§  Target function is discrete valued   
§  Disjunctive hypothesis may be required   
§  Possibly noisy training data samples 

§  Robust to errors in training data 
§  Missing attribute values 

§  Different classification problems: 
§  Equipment or medical diagnosis 
§  Credit risk analysis  
§  Several tasks in natural language processing 
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Top-down induction of Decision Trees 
§  ID3 (Quinlan, 1986) is a basic algorithm for learning DT's 
§  Given a training set of examples, the algorithms for building DT 

performs search in the space of decision trees 
§  The construction of the tree is top-down. The algorithm is greedy. 
§  The fundamental question is “which attribute should be tested next? 

Which question gives us more information?” 
§  Select the best attribute 
§  A descendent node is then created for each possible value of this 

attribute and examples are partitioned according to this value 
§  The process is repeated for each successor node until all the 

examples are classified correctly or there are no attributes left 
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Which attribute is the best classifier? 

§  A statistical property called information gain, measures how 
well a given attribute separates the training examples 

§  Information gain uses the notion of entropy, commonly used in 
information theory 

§  Information gain = expected reduction of entropy 
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Entropy in binary classification 
§  Entropy measures the impurity of a collection of examples. It 

depends from the distribution of the random variable p. 
§  S is a collection of training examples 
§  p+ the proportion of positive examples in S 
§  p– the proportion of negative examples in S 

 Entropy (S) ≡  – p+ log2 p+ – p–log2 p–      [0 log20 = 0]	

	
Entropy ([14+, 0–]) = – 14/14 log2 (14/14) –  0 log2 (0) = 0	

	
Entropy ([9+, 5–]) = – 9/14 log2 (9/14) –  5/14 log2 (5/14) = 0,94	

	
Entropy ([7+, 7– ]) = –  7/14 log2 (7/14) –  7/14 log2 (7/14) = 	

	
 	
 	
 	
= 1/2 + 1/2 = 1 	
         	
            	
[log21/2 = – 1]	

 Note: 0 ≤ p ≤ 1, 0 ≤ entropy ≤ 1 
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Entropy 
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Entropy in general 
§  Entropy measures the amount of information in a random 

variable 
 H(X) = – p+ log2 p+ – p– log2 p–   X = {+, –} 
 for binary classification [two-valued random variable] 
             c                             c  

  H(X) = – Σ pi log2 pi = Σ pi log2 1/ pi  X = {i, …, c} 
            i=1             i=1 
 for classification in c classes 

 Example: rolling a die with 8, equally probable, sides 
               8 
 H(X) = – Σ 1/8 log2 1/8 = – log2 1/8 = log2 8 = 3 

 i=1 
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Entropy and information theory 
§  Entropy specifies the number the average length (in bits) of the 

message needed to transmit the outcome of a random variable. 
This depends on the probability distribution. 

§  Optimal length code assigns ⎡- log2 p⎤ bits to messages with 
probability p. Most probable messages get shorter codes. 

§  Example: 8-sided [unbalanced] die 
 1     2  3  4  5  6  7  8 
 4/16    4/16  2/16  2/16  1/16  1/16  1/16  1/16 
 2 bits   2 bits  3 bits      3 bits  4bits  4bits  4bits  4bits 
 E = (1/4 log2 4) × 2 + (1/8 log2 8) × 2 + (1/16 log2 16) × 4 = 1+3/4+1 = 2,75 
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Information gain as entropy reduction 
§  Information gain is the expected reduction in entropy caused by 

partitioning the examples on an attribute. 
§  Expected reduction in entropy knowing A        

 Gain(S, A) = Entropy(S) − Σ             Entropy(Sv)           v ∈ Values(A)    
 Values(A) possible values for A 
 Sv subset of S for which A has value v 

 
§  The higher the information gain the more effective the attribute 

in classifying training data.  
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|Sv| 

|S| 

Example: expected information gain 
§  Let 

§  Values(Wind) = {Weak, Strong} 
§  S = [9+, 5−] 
§  SWeak = [6+, 2−] 
§  SStrong = [3+, 3−] 

§  Information gain due to knowing Wind: 
     Gain(S, Wind) = Entropy(S) − 8/14 Entropy(SWeak) − 6/14 Entropy(SStrong)  

   = 0,94 − 8/14 × 0,811 − 6/14 × 1,00   

   = 0,048  
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Which attribute is the best classifier? 
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Example 
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First step: which attribute to test at the root? 

§  Which attribute should be tested at the root? 
§  Gain(S, Outlook) = 0.246 
§  Gain(S, Humidity) = 0.151 
§  Gain(S, Wind) = 0.084 
§  Gain(S, Temperature) = 0.029 

§  Outlook provides the best prediction for the target 
§  Lets grow the tree: 

§  add to the tree a successor for each possible value of Outlook 
§  partition the training samples according to the value of Outlook 
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After first step 
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Second step 
§  Working on Outlook=Sunny node: 

Gain(SSunny, Humidity) = 0.970 - 3/5 × 0.0 - 2/5 × 0.0 = 0.970  
Gain(SSunny, Wind) = 0.970 - 2/5 × 1.0 - 3.5 × 0.918 = 0 .019 
Gain(SSunny, Temp.) = 0.970 - 2/5 × 0.0 - 2/5 × 1.0 - 1/5 × 0.0 = 0.570 

§  Humidity provides the best prediction for the target 
§  Lets grow the tree: 

§  add to the tree a successor for each possible value of Humidity 
§  partition the training samples according to the value of Humidity 
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Second and third steps 
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{D1, D2, D8} 
        No 

{D9, D11} 
        Yes {D4, D5, D10} 

        Yes 
{D6, D14} 
        No 

ID3: algorithm 
ID3(X, T, Attrs)  X: training examples:  

   T: target attribute (e.g. PlayTennis),     
   Attrs: other attributes, initially all attributes 

  Create Root node 
  If all X's are +, return Root with class + 
  If all X's are –, return Root with class – 
  If Attrs is empty return Root with class most common value of T in X 
  else 

 A ← best attribute; decision attribute for Root ← A 
 For each possible value vi of A: 
  - add a new branch below Root, for test A = vi 
  - Xi ← subset of X with A = vi 
  - If Xi is empty then add a new leaf with class the most common value of T in X 
       else add the subtree generated by ID3(Xi, T, Attrs - {A}) 

  return Root 
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Search space in Decision Tree learning 
§  The search space is made by 

partial decision trees 
§  The algorithm is hill-climbing 
§  The evaluation function is 

information gain 
§  The hypotheses space is complete 

(represents all discrete-valued 
functions) 

§  The search maintains a single 
current hypothesis 

§  No backtracking; no guarantee of 
optimality 

§  It uses all the available examples 
(not incremental) 

§  May terminate earlier, accepting 
noisy classes 
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Inductive bias in decision tree learning  

§  What is the inductive bias of DT learning? 
1.  Shorter trees are preferred over longer trees 

 Not enough. This is the bias exhibited by a simple breadth 
first algorithm generating all DT's e selecting the shorter one 

2.  Prefer trees that place high information gain attributes close to 
the root 

§  Note: DT's are not limited in representing all possible functions 
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Two kinds of biases  
§  Preference or search biases (due to the search strategy) 

§  ID3 searches a complete hypotheses space; the search strategy is 
incomplete 

§  Restriction or language biases (due to the set of hypotheses 
expressible or considered)                                            
§  Candidate-Elimination searches an incomplete hypotheses space; the 

search strategy is complete 

§  A combination of biases in learning a linear combination of 
weighted features in board games. 
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Prefer shorter hypotheses:  Occam's rasor 
§  Why prefer shorter hypotheses? 
§  Arguments in favor: 

§  There are fewer short hypotheses than long ones 
§  If a short hypothesis fits data unlikely to be a coincidence 
§  Elegance and aesthetics 

§  Arguments against: 
§  Not every short hypothesis is a reasonable one. 

§  Occam's razor:"The simplest explanation is usually the best one." 
§  a principle usually (though incorrectly) attributed14th-century English 

logician and Franciscan friar, William of Ockham. 
§  lex parsimoniae ("law of parsimony", "law of economy", or "law of 

succinctness") 
§  The term razor refers to the act of shaving away unnecessary 

assumptions to get to the simplest explanation. 
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Issues in decision trees learning 
§  Overfitting 

§  Reduced error pruning 
§  Rule post-pruning 

§  Extensions 
§  Continuous valued attributes 
§  Alternative measures for selecting attributes 
§  Handling training examples with missing attribute values 
§  Handling attributes with different costs 
§  Improving computational efficiency 
§  Most of these improvements in C4.5 (Quinlan, 1993) 
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Overfitting: definition 
§  Building trees that “adapt too much” to the training examples 

may lead to “overfitting”. 
§  Consider error of hypothesis h over 

§  training data: errorD(h)    empirical error 
§  entire distribution X of data: errorX(h)  expected error 

§  Hypothesis h overfits training data if there is an alternative 
hypothesis h' ∈ H such that 
   errorD(h) < errorD(h’)   and 
   errorX(h’) < errorX(h) 
 i.e. h’ behaves better over unseen data 
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Example 
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 D15     Sunny              Hot             Normal     Strong           No 

Overfitting in decision trees 
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〈Outlook=Sunny, Temp=Hot, Humidity=Normal, Wind=Strong, PlayTennis=No 〉 
 
New noisy example causes splitting of second leaf node. 

Overfitting in decision tree learning 
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Avoid overfitting in Decision Trees 
§  Two strategies: 

1.  Stop growing the tree earlier, before perfect classification 
2.  Allow the tree to overfit the data, and then post-prune the tree 

§  Training and validation set 
§  split the training in two parts (training and validation) and use 

validation to assess the utility of post-pruning 
§  Reduced error pruning 
§  Rule pruning 

§  Other approaches 
§  Use a statistical test to estimate effect of expanding or pruning 
§  Minimum description length principle: uses a measure of complexity of 

encoding the DT and the examples, and halt growing the tree when this 
encoding size is minimal 

5/7/13 Maria Simi 

Reduced-error pruning (Quinlan 1987) 
§  Each node is a candidate for pruning 
§  Pruning consists in removing a subtree rooted in a node: the 

node becomes a leaf and is assigned the most common 
classification 

§  Nodes are removed only if the resulting tree performs no 
worse on the validation set. 

§  Nodes are pruned iteratively: at each iteration the node  
whose removal most increases accuracy on the validation set is 
pruned. 

§  Pruning stops when no pruning increases accuracy 
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Effect of reduced error pruning 
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Rule post-pruning 
1.  Create the decision tree from the training set 
2.  Convert the tree into an equivalent set of rules 

§  Each path corresponds to a rule 
§  Each node along a path corresponds to a pre-condition 
§  Each leaf classification to the post-condition 

3.  Prune (generalize) each rule by removing those preconditions 
whose removal improves accuracy … 
§  … over validation set 
§  … over training with a pessimistic, statistically inspired, measure 

4.  Sort the rules in estimated order of accuracy, and consider 
them in sequence when classifying new instances 
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Converting to rules 
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(Outlook=Sunny)∧(Humidity=High) ⇒ (PlayTennis=No) 

Why converting to rules? 
§  Each distinct path produces a different rule: a condition 

removal may be based on a local (contextual) criterion.  
§  Pruning of preconditions is rule specific, node pruning is global 

and affects all the rules 
§  In rule form, tests are not ordered and there is no book-

keeping involved when conditions (nodes) are removed 
§  Converting to rules improves readability for humans 
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Dealing with continuous-valued attributes 
§  So far discrete values for attributes and for outcome. 
§  Given a continuous-valued attribute A, dynamically create a 

new attribute Ac 
  Ac = True if A < c, False otherwise 

§  How to determine threshold value c ?  
§  Example. Temperature in the PlayTennis example 

§  Sort the examples according to Temperature 

 Temperature  40  48     |  60  72  80      |  90 
 PlayTennis  No  No   54  Yes  Yes  Yes  85  No 

§  Determine candidate thresholds by averaging consecutive values where 
there is a change in classification: (48+60)/2=54 and (80+90)/2=85 

§  Evaluate candidate thresholds (attributes) according to information gain. 
The best is Temperature>54.The new attribute competes with the other 
ones 
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Problems with information gain 
§  Natural bias of information gain: it favours attributes with 

many possible values. 
§  Consider the attribute Date in the PlayTennis example.  

§  Date would have the highest information gain since it perfectly 
separates the training data. 

§  It would be selected at the root resulting in a very broad tree 
§  Very good on training, this tree would perform poorly in predicting 

unknown instances. Overfitting. 

§  The problem is that the partition is too specific, too many small 
classes are generated. 

§  We need to look at alternative measures … 
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An alternative measure: gain ratio 
            c       |Si |          |Si | 

 SplitInformation(S, A) ≡ − Σ        log2              
                             i=1   |S |           |S | 

§  Si are the sets obtained by partitioning on value i of A 
§  SplitInformation measures the entropy of S with respect to the values of A. The 

more uniformly dispersed the data the higher it is. 
                 Gain(S, A)  

      GainRatio(S, A) ≡ 
         SplitInformation(S, A)  

§  GainRatio penalizes attributes that split examples in many small classes such as 
Date. Let |S |=n, Date splits examples in n classes 
§  SplitInformation(S, Date)= −[(1/n log2 1/n)+…+ (1/n log2 1/n)]= −log21/n =log2n 

§  Compare with an A which splits data in two even classes: 
§  SplitInformation(S, A)= − [(1/2 log21/2)+ (1/2 log21/2) ]= − [− 1/2 −1/2]=1 
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Adjusting gain-ratio 
§  Problem: SplitInformation(S, A) can be zero or very small 

when |Si | ≈ |S | for some value i 
§  To mitigate this effect, the following heuristics has been used: 

1.  compute Gain for each attribute 
2.  apply GainRatio only to attributes with Gain above average 

§  Other measures have been proposed: 
§  Distance-based metric [Lopez-De Mantaras, 1991] on the  partitions of 

data 
§  Each partition (induced by an attribute) is evaluated according to the 

distance to the partition that perfectly classifies the data. 
§  The partition closest to the ideal partition is chosen 
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Handling incomplete training data 
§  How to cope with the problem that the value of some attribute 

may be missing? 
§  Example: Blood-Test-Result in a medical diagnosis problem 

§  The strategy: use other examples to guess attribute 
1.  Most common. Assign the value that is most common among all the 

training examples at the node|those in the same class 
2.  Assign a probability to each value, based on frequencies, and assign 

values to missing attribute, according to this probability distribution 

§  Missing values in new instances to be classified are treated 
accordingly, and the most probable classification is chosen 
(C4.5) 
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Handling attributes with different costs 
§  Instance attributes may have an associated cost: we would 

prefer decision trees that use low-cost attributes 
§  ID3 can be modified to take into account costs: 

1.  Tan and Schlimmer   (1990) 

                              Gain2(S, A)    

        Cost(S, A) 

2.  Nunez (1988)  

    2Gain(S, A)  - 1    

    (Cost(A) + 1)w     
w ∈ [0,1] 
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Conclusions 
§  DT’s are a practical method for classification in a discrete 

number of classes. 
§  ID3 searches a complete hypothesis space, with a greedy 

incomplete strategy 
§  The inductive bias is preference for smaller trees (Occam 

razor) and preference for attributes with high information gain 
§  Overfitting is an important problem, tackled by post-pruning 

and generalization of induced rules 
§  Many extensions to the basic scheme … 
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