Concept learning

Maria Simi, 2012/2013
Machine Learning, Tom Mitchell
Mc Graw-Hill International Editions, 1997

Introduction to machine learning

= Introduction to machine learning
= When appropriate and when not appropriate
* Task definition

Learning methodology: design, experiment, evaluation

Learning issues: representing hypothesis

Learning paradigms
= Supervised learning
= Unsupervised learning
= Reinforcement learning

(Cap 1, 2).
AIMA learning architecture
Performance standard
/ A
Critic Sensors
feedback
m
=)
changes <
Lmrwmnmc i
element element =
learnis - E
1IN
o 2
Problem
generator
v\gem Actuators

Machine learning: definition

= A computer program is said to learn from experience E
with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured
by P, improves with experience E [Mitchell]

= Problem definition for a learning agent

= Task T
= Performance measure P

= Experience E

Designing a learning system

1. Choosing the training experience
= Examples of best moves, games outcome ...
2. Choosing the target function
= board-move, board-value, ...
3. Choosing a representation for the target function
= linear function with weights (hypothesis space)
4. Choosing a learning algorithm for approximating the
target function

= A method for parameter estimation

Deterrsine Type
of Training Expericnce

Design of a
learning
system

Mitchell

Compleied Design

Inductive learning

= Inductive learning
= Inducing a general function from training examples
= A supervised paradigm
= Basic schemas that assume a logical representation of
the hypothesis
= Concept learning
= Decision trees learning
= Important issues
+ Inductive bias (definition)
+ The problem of overfitting
= Bibliography:
= Mitchell, cap1,2,3

Definition of concept learning

= Task: learning a category description (concept) from a
set of positive and negative training examples.
= Concept may be a set of events, objects ...

= Target function: a boolean function ¢: X — {0, 1}

= Experience: a set of training instances D:{(x, c(x))}

= A search problem for best hypothesis in a hypotheses
space

= The space is determined by the choice of representation of
the hypothesis (all boolean functions or a subset)

Sport example

= Concept to be learned:
Days in which Aldo can enjoy water sport

Attributes:
Sky: Sunny, Cloudy, Rainy Wind.: Strong, Weak
AirTemp: Warm, Cold Water: Warm, Cool

Humidity: Normal, High Forecast: Same, Change

Instances in the training set (out of the 96 possible):

Sky Temp Humid Wind Water Forecst [EnjoySpt

Sunny Warm Normal Strong Warm Same Yes
Sunny Warm High Strong Warm Same Yes
Rainy Cold High Strong Warm Change No
Sunny Warm High Strong Cool Change Yes

Hypotheses representation

= Jiis a set of constraints on attributes:
= a specific valve: e.g. Water = Warm
= any value allowed: e.g. Water =7
= no value allowed: e.g. Water = @

= Example hypothesis:

Sky AirTemp Humidity Wind Water Forecast
(Sunny, 2, ?2, Strong, ?2, Same)
Corresponding to boolean function:
Sky=Sunny A Wind=Strong A Forecast=Same

= H, hypotheses space, all “representable” h

Hypothesis satisfaction

= An instance x satisfies an hypothesis 4 iff all the
constraints expressed by h are satisfied by the
attribute values in x.
= Example 1:
X,: (Sunny, Warm, Normal, Strong, Warm, Same)
hy: (Sunny, 2,2, Strong, ?, Same) Satisfies? Yes
» Example 2:

X,: (Sunny, Warm, Normal, Strong, Warm, Same)
hy: (Sunny, 2,2, @, ?, Same) Satisfies? No

Formal task description

= Given:
= X all possible days, as described by the attributes

= A set of hypothesis H, a conjunction of constraints on the
attributes, representing a function i: X — {0, 1}

[A(x) = 1 if x satisfies h; h(x) = 0 if x does not satisfy /]
= A target concept: c: X — {0, 1} where
c(x) = 1 iff EnjoySport = Yes;
c(x) = 0 iff EnjoySport = No;
= A training set of possible instances D: {(x, c(x))}
= Goal: find a hypothesis /1 in H such that
h(x) = c(x) for all x in X
Hopefully /1 will be able to predict outside D...

The inductive learning assumption

= We can at best guarantee that the output hypothesis
fits the target concept over the training data

= Assumption: an hypothesis that approximates well the
training data will also approximate the target
function over unobserved examples

= i.e. given a significant training set, the output

Concept learning as search

= Concept learning is a task of searching an hypotheses space
= The representation chosen for hypotheses determines the

search space

= In the example we have:

= 3 x 25= 96 possible instances (6 attributes)
= 1+ 4 x 35= 973 possible hypothesis

considering that all the hypothesis with some & are

.. .. semantically equivalent, i.e. inconsistent
hypothesis is able to make predictions '

= Structuring the search space may help in searching more
efficiently

s . General to specific ordering: induced structure
General to specific ordering P g

Instances X Hypotheses H
= Consider:
hy = (Sunny, ?, ?, Strong, ?, ?)
hy=(Sunny, ?,?2, 2,2, ?)
= Any instance classified positive by /; will also be classified
positive by 7,

0 / Specific

= h,is more general than /;
* Definition: i,z by iff (VxE€X) [(l,=1)— (h;=1)]
=, more general or equal; >, strictly more general

A WAN
General

= Most general hypothesis: (?, 2,227, ?>
= Most specific hypothesis: (2, @, @, @, @, @)

x= <Sunny, Warm, High, Strong, Cool, Same>
= <Sunny, Warm, High, Light, Warm, Same>

Find-S: finding the most specific hypothesis Find-S in action

. . Instances X Hypotheses H
= Exploiting the structure we have alternatives to
enumeration ... Specific
1. Initialize /1 to the most specific hypothesis in H
2. For each positive training instance:
for each attribute constraint ain /i: G
eneral
If the constraint a is satisfied by X then do nothing
else replace ain /i by the next more general constraint
hy=<2.2.9, 2.2,2>
satified by X (move towards a more general hp) xy = <Sunny Warm Normal Strong Warm Same>, + hy = <Sunny Warm Normal Strong Warm San
. x, = <Sunny Warm High Strong Warm Same>, + hy = <Sunny Warm ? Strong Warm Same>
3. OUTpr hypoThes is h x4= <Rainy Cold High Strong Warm Change>, - hy = <Sunny Warm ? Strong Warm Same>

X4 = <Sunny Warm High Strong Cool Change>, + hy = <Sunny Warm ? Strong ? ? >

Properties of Find-S

= Find-S is guaranteed to output the most specific hypothesis
within H that is consistent with the positive training examples
= The final hypothesis will also be consistent with the negative
examples
= Problems:
= There can be more than one “most specific hypotheses”
= We cannot say if the learner converged to the correct target
Why choose the most specific?

= If the training examples are inconsistent, the algorithm can be mislead:
no tolerance to rumor.

Negative example are not considered

Candidate elimination algorithm: the idea

= The idea: output a description of the set of all
hypotheses consistent with the training examples
(correctly classify training examples).
= Version space: a representation of the set of
hypotheses which are consistent with D
1. an explicit list of hypotheses (List-Than-Eliminate)
2. a compact representation of hypotheses which exploits the

more_general_than partial ordering (Candidate-
Elimination)

Version space

= The version space VS, is the subset of the hypothesis from H
consistent with the training example in D

VSyp={h € H| Consistent(h, D)}

= An hypothesis % is consistent with a set of training examples D iff
h(x) = c(x) for each example in D

Consistent(h, D) = (¥ (x, ¢(x)) € D) h(x) = c(x))
Note: "x satisfies h" (h(x)=1) different from “h consistent with x"

In particular when an hypothesis / is consistent with a negative
example d =(x, c(x)=No), then x must not satisfy

The List-Then-Eliminate algorithm

Version space as list of hypotheses
1. VersionSpace <— a list containing every hypothesis in H
2. For each training example, {(x, c(x))
Remove from VersionSpace any hypothesis h for which
h(x) = c(x)
3. Output the list of hypotheses in VersionSpace
= Problems
= The hypothesis space must be finite
= Enumeration of all the hypothesis, rather inefficient

A compact representation for Version Space

S: I { <Sunny, Warm, ?, Strong, ?, 7>} |

G:| {<Sunny, 2,2, 2,2, 75, <2, Warm, 2,2, 2, 7>} I

Note: The output of Find-S is just (Sunny, Warm, ?, Strong, ?, ?)

= Version space represented by its most general members G and
its most specific members S (boundaries)

General and specific boundaries

= The Specific boundary, S, of version space VS, is the set of its
minimally general (most specific) members
S ={s € H| Consistent(s, D)r(~3s' € H)[(s >,5") n Consistent(s', D)]}

Note: any member of S is satisfied by all positive examples,
but more specific hypotheses fail to capture some

* The General boundary, G, of version space VS, j, is the set of its
maximally general members
G ={g € H| Consisten(g, D)N(-3g' € H)[(g' >, g) A Consistent(g', D)]}
Note: any member of G is satisfied by no negative example
but more general hypothesis cover some negative example

Version Space representation theorem

= G and S completely define the Version Space

= Theorem: Every member of the version space (/ consistent with
D) isin S or G or lies between these boundaries

VSup=th€H|3sE€S) g EG) (g2, h=,5)}

where x =,y means x is more general or equal to y
Sketch of proof:

<If gz hz= s, sincesisin S and h = s, his satisfied by all
positive examples in D; g is in G and g = h, then h is satisfied
by no negative examples in D; therefore h belongs to VS, ,

=> It can be proved by assuming a consistent h that does not
satisfy the right-hand side and by showing that this would lead
to a contradiction

Candidate elimination algorithm-1

§ < minimally general hypotheses in H,

G < maximally general hypotheses in H

Initilly any hypothesis is still possible
$,=(9,9,9,2,2,9) G, =(2,2,2,2,2,7

For each training example d, do:

If d is a positive example:

1. Remove from G any / inconsistent with d

2. Generalize(S, d)

If d is a negative example:

1. Remove from S any A inconsistent with d

2. Specialize(G, d)

Note: when d =(x, No) is a negative example, an hypothesis / is
inconsistent with d iff & saisfies x

Candidate elimination algorithm-2

Generalize(S, d): d is positive
For each hypothesis § in S not consistent with d:
1. Remove § from §
2. Add to S all minimal generalizations of s consistent with d and
having a generalization in G
3. Remove from S any hypothesis with a more specific / in §
Specialize(G, d) d is negative
For each hypothesis g in G not consistent with d: ie. g satisfies d,
1. Remove g from G but d is negative
2. Add to G all minimal specializations of g consistent with d and
having a specialization in §

3. Remove from G any hypothesis having a more general hypothesis
inG

Example: initially

Si: (2,00 0 0.2) |

.

Example:
after seing (Sunny,Warm, Normal, Strong, Warm, Same) +

S [(©,0,0,0,0.0 |

Sy |<Sunny, Warm, Normal, Strong, Warm, Same) |

Gy, G, (22222

Example:
after seing (Sunny,Warm, High, Strong, Warm, Same) +

Syt |(Sunny, Warm, Normal, Strong, Warm, Same) |

S, |<Sunny, Warm, ?, Strong, Warm, Same) |

G, G, (22222

Example:
after seing (Rainy, Cold, High, Strong, Warm, Change)-

S, 85t |(Sunny, Warm, ?, Strong, Warm, Same> |

Gy |(Sunny, ?2,2,2,2 2)(?, Warm, 2, 2, 2, 2)(?, ?, 2, ?, ?, Same) |

G, (3,2,2,2,2,2

Example:
after seing (Sunny, Warm, High, Strong, Cool Change) +

S, |(Sunny, Warm, ?, Strong, Warm, Same) |
S, |<Sunny, Warm, ?, Strong, ?, ?) |
G [(sunny, 2,2, 2,2,2) (2, warm, 2,2, 2,2) |

|<Sunny, 2,2,2,2,2)(2 Warm, 2,2, 2,2)(?, 2, 2, 2, ?, Same)

Learned Version Space

S: | { <Sunny, Warm, ?, Strong, ?, 7>} |

T~

<Sunny, ?, 7, Strong, ?, 7> <Sunny, Warm, ?, 2, 7, 7> <2, Warm, ?, Strong, ?, 7>

~N 7 \/

GI {<Sunny, ?, 2,2, 2, 7>, <? Warm, ?, 7, 2, 7> }

Observations

= The learned Version Space correctly describes the target
concept, provided:
1. There are no errors in the training examples
2. There is some hypothesis that correctly describes the target concept

= If S and G converge to a single hypothesis the concept is
exactly learned

= Incase of errors in the training, useful hypothesis are
discarded, no recovery possible

= An empty version space means no hypothesis in H is consistent
with training examples

Ordering on training examples

= The learned version space does not change with
different orderings of training examples
= Efficiency does

= Optimal strategy (if you are allowed to choose)

= Generate instances that satisfy half the hypotheses in the
current version space. For example:

(Sunny, Warm, Normal, Light, Warm, Same) satisfies 3/6 hyp.
= Ideally the V'S can be reduced by half at each experiment
= Correct target found in [log,|VS|] experiments

Use of partially learned concepts

s: I|<Sunny, Warm, 2, Strong, ?, 7> } |

/\

<Sunny, ?, ?, Strong, ?, 7> <Sunny, Warm, ?, 2, 2, 7> <?, Warm, ?, Strong, 7, 7>

NSNS

G:l {<Sunny, 2,2, 7,2, 7>, <? Warm, 2, 2, 7, 7> } I

(Sunny Warm Normal Strong Cool Change)

Classified as positive by all hypothesis, since
satisfies any hypothesis in S

Classifying new examples

s: I|<Surmy, Warm, 2, Strong, 2, 7>} |

el

<Sunny, ?, ?, Strong, ?, 7> <Sunny, Warm, ?, ?, 2, 7> <7, Warm, ?, Strong, 7, 7>

NN

G:I {<Sunny, ?, 2, 2,7, 7>, <2, Warm, ?, 2, ?, 7> } I

(Rainy Cool Normal Light Warm Same)

Classified as negative by all hypothesis, since
does not satisfy any hypothesis in G

Classifying new examples

s: | (<Sunny, Warm, 2, Strong, 7, 7> } |

/\

<Sunny, ?, ?, Strong, ?, 7> <Sunny, Warm, ?, 2, 2, 7> <?, Warm, ?, Strong, 7, 7>

NN

G.‘l {<Sunny, ?,2,2, 7 7>, <? Warm, 7, 7, 2, 7> } I

(Sunny Warm Normal Light Warm Same)

Uncertain classification: half hypothesis are
consistent, half are not consistent

Classifying new examples

S: I { <Sunny, Warm, ?, Strong, ?, 7>} |

/\

<Sunny, ?, 7, Strong, ?, 7> <Sunny, Warm, ?, ?, ?, 7> <7, Warm, ?, Strong, 7, 7>

NSNS

G:l {<Sunny, ?, 2, 2,2, 7>, <2, Warm, 2, 2, 2, 7> } I

Sunny, Cold, Normal, Strong, Warm, Same
g

4 hypothesis not satisfied; 2 satisfied
Probably a negative instance. Majority vote?

Questions

= What if H does not contain the target concept?

= Can we improve the situation by extending the
hypothesis space?

= Will this influence the ability to generalize?

= These are general questions for inductive inference,
addressed in the context of Candidate-Elimination

= Suppose we include in H every possible hypothesis ...
including the ability to represent disjunctive concepts

Extending the hypothesis space

Sky | AirTemp | Humidity | Wind Water | Forecast | EnjoyS
1| Sunny Warm Normal | Strong Cool Change YES
2 | Cloudy Warm Normal | Strong Cool Change YES
3 | Rainy Warm Normal | Strong Cool | Change NO

= No hypothesis consistent with the three examples with the
assumption that the target is a conjunction of constraints

(?, Warm, Normal, Strong, Cool, Change} is foo general

= Target concept exists in a different space H', including
disjunction and in particular the hypothesis

Sky=Sunny or Sky=Cloudy
= Removing the bias ...

An unbiased learner

= Every possible subset of X is a possible target
|H'| = 2W, or 2% (vs |[H| = 973, a strong bias)
= This amounts to allowing conjunction, disjunction and
negation
(Sunny, 2, ?,?2,2,2)V <Cloudy, ?, ?,?, 2, ?)
Sunny(Sky) V Cloudy(Sky)
= We are guaranteed that the target concept exists
* No generalization is however possiblell!

Let's see why ...

A bad learner

= VS after presenting three positive instances x,, X, X3, and two
negative instances x,, X5
S={lx; vx, v}
G ={7lxy v x5)}
... all subsets including x, x, x; and not including x, x5
= We can only classify precisely examples already seen!
» Take a majority vote? Impossible ...

= Unseen instances, e.g. x, are classified positive (and negative) by half
of the hypothesis

For any hypothesis / that classifies x as positive, there is a
complementary hypothesis —/ that classifies x as negative

No inductive inference without a bias

= A learner that makes no a priori assumptions regarding
the identity of the target concept, has no rational basis
for classifying unseen instances

= The inductive bias of a learner are the assumptions
that justify its inductive conclusions or the policy
adopted for generalization

= Different learners can be charact
erized by their bias

Inductive bias: definition

= Given:
= a concept learning algorithm L for a set of instances X
= a concept ¢ defined over X
= a set of training examples for ¢: D, = {(x, c(x))}
= L(x; D,) outcome of classification of x; after learning
= Inductive inference (>):
D, A x; > L(x;, D)
= The inductive bias is defined as a minimal set of assumptions B,
such that (|- for deduction)
V (x; €EX) [(B ADgA x) I-L(x;, D)]

Inductive bias of Candidate-Elimination

= Assume L is defined as follows:
= compute VS
= classify new instance by complete agreement of all the hypotheses in
VSup
= Then the inductive bias of Candidate-Elimination is simply
B=(cEH)
= Infact by assuming ¢ € H:
1. ¢ € VSyp, in fact VS pincludes all hypotheses in H consistent with D

2. L(x; D) outputs a classification "by complete agreement”, hence any
hypothesis, including ¢, outputs L(x; D,)

Inductive system

Inductive system

Cla
. . . Candidate new instance, or
Training examples Elimination "don’t know"
Algorithm —
New instance | Using Hypothesis
Space H

Equivalent deductive system

Equivalent deductive system

Classification of

new instance, or

"don’t know”
— =

Training examples

) Theorem Prover
New instance

Assertion " H contains
the target concept”

/

Inductive bias
made explicit

Each learner has an inductive bias

= Three learner with three different inductive bias:

1. Rote learner: no inductive bias, just stores examples and is
able to classify only previously observed examples

2. CandidateElimination: the concept cis in H and is a
conjunction of constraints

3. Find-S: the concept c is in H, is a conjunction of constraints
plus "all instances are negative unless seen as positive
examples” (stronger bias)

= The stronger the bias, greater the ability to generalize and

classify new instances (greater inductive leaps).

Bibliography

= Machine Learning, Tom Mitchell, Mc Graw-Hill
International Editions, 1997 (Cap 2).

