
1 

Concept learning 
 

Maria Simi, 2012/2013 
Machine Learning, Tom Mitchell 

Mc Graw-Hill International Editions, 1997  
(Cap 1, 2). 

 

Introduction to machine learning 
§  Introduction to machine learning 

§  When appropriate and when not appropriate 
§  Task definition 
§  Learning methodology: design, experiment, evaluation 
§  Learning issues: representing hypothesis 
§  Learning paradigms 

§  Supervised learning 
§  Unsupervised learning 
§  Reinforcement learning 

 

AIMA learning architecture Machine learning: definition 
§  A computer program is said to learn from experience E 

with respect to some class of tasks T and performance 
measure P, if its performance at tasks in T, as measured 
by P, improves with experience E [Mitchell] 

§  Problem definition for a learning agent 
§  Task T 
§  Performance measure P 
§  Experience E 

Designing a learning system 
1.  Choosing the training experience 

§  Examples of best moves, games outcome … 

2.  Choosing the target function 
§  board-move, board-value, … 

3.  Choosing a representation for the target function 
§  linear function with weights (hypothesis space) 

4.  Choosing a learning algorithm for approximating the 
target function 

§  A method for parameter estimation 

Design of a  
learning  
system 
Mitchell 



2 

Inductive learning 
§  Inductive learning 

§  Inducing a general function from training examples 
§  A supervised paradigm 

§  Basic schemas that assume a logical representation of 
the hypothesis 
§  Concept learning 
§  Decision trees learning 
§  Important issues 

§  Inductive bias (definition) 
§  The problem of overfitting 

§  Bibliography:  
§  Mitchell, cap1,2,3  

Definition of concept learning 
§  Task: learning a category description (concept) from a 

set of positive and negative training examples. 
§  Concept may be a set of events, objects …  

§  Target function: a boolean function c: X → {0, 1} 
§  Experience: a set of training instances D:{〈x, c(x)〉}	


§  A search problem for best hypothesis in a hypotheses 

space 
§  The space is determined by the choice of representation of 

the hypothesis (all boolean functions or a subset) 

Sport example 
§   Concept to be learned:  

Days in which Aldo can enjoy water sport 
Attributes:    
Sky: Sunny, Cloudy, Rainy   Wind: Strong, Weak 
AirTemp: Warm, Cold   Water: Warm, Cool 
Humidity: Normal, High   Forecast: Same, Change 

§  Instances in the training set (out of the 96 possible): 
     

 
 

     

Hypotheses representation 
§  h is a set of constraints on attributes: 

§  a specific value: e.g. Water = Warm 
§  any value allowed: e.g. Water = ? 
§  no value allowed: e.g. Water = Ø 

§  Example hypothesis: 
     Sky      AirTemp    Humidity        Wind        Water        Forecast     

  〈Sunny,  ?,  ?,  Strong,          ?,   Same〉 
Corresponding to boolean function:  

  Sky=Sunny ∧ Wind=Strong ∧ Forecast=Same 

§  H, hypotheses space, all “representable” h 

Hypothesis satisfaction 
§  An instance x satisfies an hypothesis h iff all the 

constraints expressed by h are satisfied by the 
attribute values in x. 

§  Example 1: 
 x1: 〈Sunny, Warm, Normal, Strong, Warm, Same〉 
 h1: 〈Sunny, ?, ?, Strong, ?, Same〉   Satisfies? Yes 

§  Example 2: 
 x2: 〈Sunny, Warm, Normal, Strong, Warm, Same〉 
 h2: 〈Sunny, ?, ?, Ø, ?, Same〉   Satisfies? No 

  

Formal task description 
§  Given: 

§  X all possible days, as described by the attributes 
§  A set of hypothesis H, a conjunction of constraints on the 

attributes, representing a function h: X → {0, 1}  
 [h(x) = 1 if x satisfies h; h(x) = 0 if x does not satisfy h] 

§  A target concept: c: X → {0, 1} where  
  c(x) = 1 iff EnjoySport = Yes;  
  c(x) = 0 iff EnjoySport = No;  

§  A training set of possible instances D: {〈x, c(x)〉} 
§  Goal: find a hypothesis h in H such that 

 h(x) = c(x) for all x in X 
Hopefully h will be able to predict outside D… 



3 

The inductive learning assumption 
§  We can at best guarantee that the output hypothesis 

fits the target concept over the training data 
§  Assumption: an hypothesis that approximates well the 

training data will also approximate the target 
function over unobserved examples 

§  i.e. given a significant training set, the output 
hypothesis is able to make predictions 

Concept learning as search 
§  Concept learning is a task of searching an hypotheses space  
§  The representation chosen for hypotheses determines the 

search space 

§  In the example we have: 

§  3 x 25 = 96 possible instances (6 attributes) 

§  1 + 4 x 35= 973 possible hypothesis  

 considering that all the hypothesis with some ∅ are 
semantically equivalent, i.e. inconsistent 

§  Structuring the search space may help in searching more 
efficiently 

General to specific ordering 
§  Consider: 

 h1 = 〈Sunny, ?, ?, Strong, ?, ?〉 
 h2 = 〈Sunny, ?, ?, ?, ?, ?〉 

§  Any instance classified positive by h1 will also be classified 
positive by h2 

§  h2 is more general than h1 
§  Definition: hj ≥g hk    iff   (∀x ∈ X ) [(hk = 1) → (hj = 1)] 

 ≥g  more general or equal;  >g strictly more general 

§  Most general hypothesis: 〈?, ?, ?, ?, ?, ?〉 
§  Most specific hypothesis: 〈Ø, Ø, Ø, Ø, Ø, Ø〉 

General to specific ordering: induced structure 

Find-S: finding the most specific hypothesis 
§  Exploiting the structure we have alternatives to 

enumeration … 

1.  Initialize h to the most specific hypothesis in H 
2.  For each positive training instance: 

 for each attribute constraint a in h: 
 If the constraint a is satisfied by x then do nothing 
 else replace a in h by the next more general constraint      
       satified by x (move towards a more general hp) 

3.  Output hypothesis h 

Find-S in action 



4 

Properties of Find-S 
§  Find-S is guaranteed to output the most specific hypothesis 

within H that is consistent with the positive training examples 
§  The final hypothesis will also be consistent with the negative 

examples 
§  Problems: 

§  There can be more than one “most specific hypotheses” 
§  We cannot say if the learner converged to the correct target 
§  Why choose the most specific? 
§  If the training examples are inconsistent, the algorithm can be mislead: 

no tolerance to rumor. 
§  Negative example are not considered 

Candidate elimination algorithm: the idea 

§  The idea: output a description of the set of all 
hypotheses consistent with the training examples 
(correctly classify training examples). 

§  Version space: a representation of the set of 
hypotheses which are consistent with D 
1.  an explicit list of hypotheses (List-Than-Eliminate) 
2.  a compact representation of hypotheses which exploits the 

more_general_than partial ordering (Candidate-
Elimination) 

Version space 
§  The version space VSH,D is the subset of the hypothesis from H 

consistent with the training example in D 

  VSH,D ≡{h ∈ H | Consistent(h, D)} 
§  An hypothesis h is consistent with a set of training examples D iff  

h(x) = c(x) for each example in D 

  Consistent(h, D) ≡ (∀ 〈x, c(x)〉 ∈ D) h(x) = c(x)) 

 Note: "x satisfies h" (h(x)=1) different from “h consistent with x"  

 In particular when an hypothesis h is consistent with a negative 
example d =〈x, c(x)=No〉, then x must not satisfy h  

The List-Then-Eliminate algorithm 
Version space as list of hypotheses 
1.  VersionSpace ← a list containing every hypothesis in H 
2.  For each training example, 〈x, c(x)〉 

 Remove from VersionSpace any hypothesis h for which 
h(x) ≠ c(x) 

3.  Output the list of hypotheses in VersionSpace 
§  Problems 

§  The hypothesis space must be finite 
§  Enumeration of all the hypothesis, rather inefficient 

A compact representation for Version Space 

§  Version space represented by its most general members G and 
its most specific members S (boundaries) 

Note: The output of Find-S is just 〈Sunny, Warm, ?, Strong, ?, ?〉 

General and specific boundaries 
§  The Specific boundary, S, of version space VSH,D is the set of its 

minimally general (most specific) members 
 S ≡{s ∈ H | Consistent(s, D)∧(¬∃s' ∈ H)[(s >gs') ∧ Consistent(s', D)]} 

 Note: any member of S is satisfied by all positive examples, 
but more specific hypotheses fail to capture some 

§  The General boundary, G, of version space VSH,D is the set of its 
maximally general members 
 G ≡{g ∈ H | Consistent(g, D)∧(¬∃g' ∈ H)[(g' >g g) ∧ Consistent(g', D)]} 
 Note: any member of G is satisfied by no negative example 
but more general hypothesis cover some negative example 



5 

Version Space representation theorem 
§  G and S completely define the Version Space 
§  Theorem: Every member of the version space (h consistent with 

D) is in S or G or lies between these boundaries 
  VSH,D={h ∈ H |(∃s ∈ S) (∃g ∈ G) (g ≥g h ≥g s)} 
 where x ≥g y means x is more general or equal to y 
 Sketch of proof: 

⇐ If g ≥g h ≥g s, since s is in S and h ≥g s, h is satisfied by all 
positive examples in D; g is in G and g ≥g h, then h is satisfied 
by no negative examples in D; therefore h belongs to VSH,D 

⇒ It can be proved by assuming a consistent h that does not 
satisfy the right-hand side and by showing that this would lead 
to a contradiction 

 

Candidate elimination algorithm-1 
S ← minimally general hypotheses in H,  
G ← maximally general hypotheses in H 
Initially any hypothesis is still possible 

  S0 = 〈∅, ∅, ∅, ∅, ∅, ∅〉    G0 = 〈?, ?, ?, ?, ?, ?〉   
For each training example d, do: 
If d is a positive example: 
1.  Remove from G any h inconsistent with d 
2.  Generalize(S, d) 
If d is a negative example: 
1.  Remove from S any h inconsistent with d 
2.  Specialize(G, d) 
Note: when d =〈x, No〉 is a negative example, an hypothesis h is 

inconsistent with d iff h satisfies x 

Candidate elimination algorithm-2 
Generalize(S, d):      d is positive  

For each hypothesis s in S not consistent with d: 
1.  Remove s from S 
2.  Add to S all minimal generalizations of s consistent with d and 

having a generalization in G 
3.  Remove from S any hypothesis with a more specific h in S 

Specialize(G, d):      d is negative  
For each hypothesis g in G not consistent with d:  i.e. g satisfies d,  
1.  Remove g from G          but d is negative 
2.  Add to G all minimal specializations of g consistent with d and 

having a specialization in S 
3.  Remove from G any hypothesis having a more general hypothesis 

in G 

Example: initially 
〈∅, ∅, ∅, ∅, ∅. ∅〉 S0: 

〈?,  ?,  ?,  ?,  ?,  ?〉 G0 

Example:  
after seing 〈Sunny,Warm, Normal, Strong, Warm, Same 〉 + 

〈Sunny,Warm, Normal, Strong, Warm, Same〉 S1: 

 〈∅, ∅, ∅, ∅, ∅. ∅〉 S0: 

〈?, ?, ?, ?, ?, ?〉 G0, G1 

Example:  
after seing 〈Sunny,Warm, High, Strong, Warm, Same〉 + 

〈Sunny,Warm, Normal, Strong, Warm, Same〉 S1: 

〈?, ?, ?, ?, ?, ?〉 G1, G2 

〈Sunny,Warm, ?, Strong, Warm, Same〉 S2: 



6 

Example:  
after seing 〈Rainy, Cold, High, Strong, Warm, Change 〉- 

S2, S3: 

 〈?, ?, ?, ?, ?, ?〉 G2: 

〈Sunny, Warm, ?, Strong, Warm, Same〉 

〈Sunny, ?, ?, ?, ?, ?〉 〈?, Warm, ?, ?, ?, ?〉 〈?, ?, ?, ?, ?, Same〉 G3: 

Example:  
after seing  〈Sunny, Warm, High, Strong, Cool Change 〉 + 

S3 

G3: 

〈Sunny, Warm, ?, Strong, Warm, Same〉 

〈Sunny, ?, ?, ?, ?, ?〉 〈?, Warm, ?, ?, ?, ?〉 〈?, ?, ?, ?, ?, Same〉 

G4: 

〈Sunny, Warm, ?, Strong, ?, ?〉 S4 

〈Sunny, ?, ?, ?, ?, ?〉 〈?, Warm, ?, ?, ?, ?〉 

Learned Version Space Observations 
§  The  learned Version Space correctly describes the target 

concept, provided: 
1.  There are no errors in the training examples 
2.  There is some hypothesis that correctly describes the target concept 

§  If S and G converge to a single hypothesis the concept is 
exactly learned 

§  In case of errors in the training, useful hypothesis are 
discarded, no recovery possible 

§  An empty version space means no hypothesis in H is consistent 
with training examples 

Ordering on training examples 
§  The learned version space does not change with 

different orderings of training examples 
§  Efficiency does 
§  Optimal strategy (if you are allowed to choose) 

§  Generate instances that satisfy half the hypotheses in the 
current version space. For example: 
  〈Sunny, Warm, Normal, Light, Warm, Same〉 satisfies 3/6 hyp. 

§  Ideally the VS can be reduced by half at each experiment 
§  Correct target found in ⎡log2|VS|⎤ experiments 

Use of partially learned concepts 

Classified as positive by all hypothesis, since 
satisfies any hypothesis in S 



7 

Classifying new examples 

Classified as negative by all hypothesis, since 
does not satisfy any hypothesis in G 

Classifying new examples 

Uncertain classification: half hypothesis are 
consistent, half are not consistent 

Classifying new examples 

         〈Sunny, Cold, Normal, Strong, Warm, Same〉 

4 hypothesis not satisfied; 2 satisfied 
Probably a negative instance.  Majority vote? 

Questions 
§  What if H does not contain the target concept? 
§  Can we improve the situation by extending the 

hypothesis space? 
§  Will this influence the ability to generalize? 
§  These are general questions for inductive inference, 

addressed in the context of Candidate-Elimination 
§  Suppose we include in H every possible hypothesis … 

including the ability to represent disjunctive concepts 
 

 Extending the hypothesis space 

§  No hypothesis consistent with the three examples with the 
assumption that the target is a conjunction of constraints 
 〈?, Warm, Normal, Strong, Cool, Change〉 is too general 

§  Target concept exists in a different space H', including 
disjunction and in particular the hypothesis 
Sky=Sunny or Sky=Cloudy 

§  Removing the bias … 

Sky AirTemp Humidity Wind Water Forecast EnjoyS 

1 Sunny Warm Normal Strong Cool Change YES 

2 Cloudy Warm Normal Strong Cool Change YES 

3 Rainy Warm Normal Strong Cool Change NO 

An unbiased learner 
§  Every possible subset of X is a possible target 

 |H'| = 2|X|, or 296  (vs |H| = 973, a strong bias) 
§  This amounts to allowing conjunction, disjunction and 

negation 
 〈Sunny, ?, ?, ?, ?, ?〉 V <Cloudy, ?, ?, ?, ?, ?〉  
 Sunny(Sky) V Cloudy(Sky) 

§  We are guaranteed that the target concept exists 
§  No generalization is however possible!!!  

 Let's see why … 



8 

A bad learner 
§  VS after presenting three positive instances x1, x2, x3, and two 

negative instances x4, x5 
S = {(x1 v x2 v x3)}  
G = {¬(x4 v x5)}  
… all subsets including x1 x2 x3 and not including x4 x5 

§  We can only classify precisely examples already seen! 
§  Take a majority vote? Impossible … 

§  Unseen instances, e.g. x, are classified positive (and negative) by half 
of the hypothesis 

§  For any hypothesis h that classifies x as positive, there is a 
complementary hypothesis  ¬h that classifies x as negative 

No inductive inference without a bias 
§  A learner that makes no a priori assumptions regarding 

the identity of the target concept, has no rational basis 
for classifying unseen instances 

§  The inductive bias of a learner are the assumptions 
that justify its inductive conclusions or the policy 
adopted for generalization 

§  Different learners can be charact                                                                                                                                                                                                                                                                                                                                                                                                                                                            
erized by their bias 

Inductive bias: definition 
§  Given: 

§  a concept learning algorithm L for a set of instances X 
§  a concept c defined over X 
§  a set of training examples for c: Dc = {〈x, c(x)〉} 
§  L(xi, Dc) outcome of classification of xi after learning  

§  Inductive inference ( ≻ ): 
      Dc ∧ xi  ≻  L(xi, Dc)  

§  The inductive bias is defined as a minimal set of assumptions B, 
such that (|−  for deduction) 
      ∀ (xi ∈ X) [ (B ∧ Dc ∧ xi) |−  L(xi, Dc) ] 
  

Inductive bias of Candidate-Elimination 

§  Assume L is defined as follows: 
§  compute VSH,D 
§  classify new instance by complete agreement of all the hypotheses in 

VSH,D 

§  Then the inductive bias of Candidate-Elimination is simply  
 B ≡ (c ∈ H)  

§  In fact by assuming c ∈ H: 
1.  c ∈ VSH,D , in fact VSH,D includes all hypotheses in H consistent with D 
2.  L(xi, Dc) outputs a classification "by complete agreement", hence any 

hypothesis, including c, outputs L(xi, Dc) 

Inductive system Equivalent deductive system 



9 

Each learner has an inductive bias 
§  Three learner with three different inductive bias: 

1.  Rote learner: no inductive bias, just stores examples and is 
able to classify only previously observed examples 

2.  CandidateElimination: the concept c is in H and is a 
conjunction of constraints  

3.  Find-S: the concept c is in H, is a conjunction of constraints 
plus "all instances are negative unless seen as positive 
examples” (stronger bias) 

§  The stronger the bias, greater the ability to generalize and 
classify new instances (greater inductive leaps). 

Bibliography 
§  Machine Learning, Tom Mitchell, Mc Graw-Hill 

International Editions, 1997 (Cap 2). 


