
SQL-like language for database mining

Tadeusz Morzy, Maciej Zakrzewicz
Institute of Computing Science

Pozna´n University of Technology
E-mail: morzy@put.poznan.pl

mzakrz@cs.put.poznan.pl

Abstract

Data mining, also referred to as database mining or knowledge dis-
covery in databases (KDD), is a new research area that aims at the
discovery of useful information from large datasets. One of the
most interesting and important research problems is discovering of
different types of rules (e.g. association, characteristic, discrimi-
nant, etc.) from data.

In this work we propose the new SQL-like language for data
mining in relational databases, called MineSQL, developed within
the scope of the data mining research project led in Poznan Univer-
sity of Technology. MineSQL is the extension of industry standard
SQL language developed for expressing rule queries and assisting
a user in rule generation, storage and retrieval. We focus on the
main features of the language, its syntax and semantics, illustrated
by practical examples.

1 Introduction

We are currently witnessing an explosion of interest in data min-
ing technology which is a consequence of growing amount of data
collected and warehoused in all industries. Data mining, also re-
ferred to as database mining or knowledge discovery in databases
(KDD), is a new research area that aims at the discovery of useful
information from large datasets. Data mining uses statistical anal-
ysis and inference to extract interesting trends and events, create
useful reports, support decision making etc. It exploits the massive
amounts of data to achieve business, operational or scientific goals.
The methods of the extraction of useful knowledge from the rapidly
growing volumes of data became the subject of the emerging field
of knowledge discovery in databases [1, 2, 5, 6]. The discovered
knowledge is usually represented by means of rules.

The main step in theKDD process is generation of rules from
a database. By a rule, informally, we mean a formula of the form
X → Y , whereX andY are conjunctions of expressions(A = v),
whereA is an attribute andv is a constant. The constantv is either
contained in a relation, or is defined by a concept hierarchy, or is
defined by a user. For example, the rule shown in Figure 1, gen-
erated from a big-store customer’s purchase database, states that
in 25% of transactions, a customer who purchases bread and milk
also purchases butter, with the probability of 75%. We refer to the

Proceedings of the First East-European Symposium on
Advances in Databases and Information Systems (AD-
BIS’97). St.-Petersburg, September 2–5, 1997.

St.-Petersburg: University of St.-Petersburg, 1997.

left hand side of the rule as the body and to the right hand side as
the head. Additionally, each rule has two associated measures of
statistical significance and strength: support and confidence. The
support is the joint probability to find allX andY expressions in
one group of records. The rule confidence is the conditional prob-
ability to find in the group of recordsY , having foundX. Data
mining distinguishes several types of rules: association rules, char-
acteristic rules, discriminant rules, generalized rules, multiple-level
rules etc.

The knowledge discovery process is interactive and iterative in
nature. A user wants to specify constraints on rules he is looking
for, and then to generate the rules. Receiving a result, the user may
decide to modify his constraints and to generate the rules again.
Such a process requires a high- performance and rapid-response
environment that assists a user in data selection, rule generation
and rule filtering. The core component of theKDD environment is
an algorithm for on-demand rules generation.

To assist a user in interactive data mining, several high-level
query languages have been proposed [1, 6, 8, 9, 12]. The query
language approach assumes that users are capable of expressing
their specific problems by means of rule queries, e.g. using a
declarative SQL-like language, and that the rules are generated on
users demands only. In general, rule queries should generate new
rules as well as retrieve the stored ones that were generated before.
The query language can play a role of a uniformAPI (Application
Programming Interface) for building business applications dealing
with knowledge discovery.

RULE C. S.
product=’bread’ & product=’milk’→ product=’butter’ 0.75 0.25

Figure 1: Example of a rule

1.1 Problem

In the knowledge discovery process, users can express their specific
problems by means of rule queries. The rule queries are processed
by aKDD Management System (KDDMS) [1], which generates de-
manded rules from given database relations. Sets of generated rules
are then returned to the users (see Figure 2). There is a need for an
effective and clear query language, in which users could specify
their queries, store and retrieve rules, define and utilize concept hi-
erarchies etc.

In this paper we discuss the new SQL-like language for data
mining, called MineSQL, developed within the scope of the data
mining research project led in Poznan University of Technology.
MineSQL is the extension of industry standard SQL language to
assist a user in rule generation, storage and retrieval. We focus on
the main features of the language, its syntax and semantics, illus-
trated by practical examples.

311

Management
System

KDD
User Query

Input Data

Demanded Rules

Figure 2: KDD Process

1.2 Knowledge rules

Let r be a relation over the schemeR(A1, A2, . . . , An), where
Ai is an attribute. Records fromr are divided into record groups
G1, G2, ..., Gk. Let the expression(Ai = v) mean that the at-
tributeAi has the valuev. LetX andY be conjunctions of expres-
sions(Ai = v), i.e. X = (Aa = va) ∧ (Ab = vb) ∧ . . . ∧ (Az =
vz) andY = (Aα = vα) ∧ (Aβ = vβ) ∧ . . . ∧ (Aω = vω), and
X∩Y = ∅. The knowledge rule overr is an expression of the form
X → Y . We say that a group of recordsGi supports a conjunc-
tion X, if for each(Ai = v) from X, the attributeAi has in the
groupGi the valuev. We say that a group of recordsGi supports
a rule X → Y , if for each(Ai = v) from X ∪ Y , the attribute
Ai has in the groupGi the valuev. For a ruleX → Y we define
two measures of statistical significance and strength:supportand
confidence:

support(X → Y) =
num. of record groups supportingX→Y

num. of all record groups

confidence(X → Y) =
num. of record groups supportingX→Y

num. of record groups supportingX

We say that a group of recordsGi satisfiesthe ruleX → Y , if the
group supports the rule. We say that a group of recordsGi violates
the ruleX → Y , if the group supports the conjunctionX but does
not support the rule. We refer toX as the body and toY as the
head of the rule. Data mining distinguishes several types of rules:
association rules, characteristic rules, discriminant rules, general-
ized rules, multiple-level rules etc. The basic difference between
those types of rules is the way of grouping records, over which
they are generated. The records may be grouped according to the
value of a certain attribute (association rules), or each record can
make a separate group (characteristic and discriminant rules).

A characteristic rulepresents the characteristics of the data set,
defined by a specific value for a given attribute. For example, the
symptoms of a specific disease can be summarized by a set of char-
acteristic rules. Then, the characteristic rule body represents the
symptoms and the head represents the disease. A similar rule type
is a classification rule, that is used to classify future data into a
collection of known data sets.

A discriminant rulecontains features or properties that distin-
guish the data set being examined from other data sets. For ex-
ample, to distinguish one disease from others, a discriminant rule
summarizes the symptoms that differentiate this disease from oth-
ers. The meaning of discriminant rule body and head is the same
as of the characteristic rule.

An association rulerepresents connections or associations be-
tween items in data groups. For example, one may discover that a
set of symptoms often occur together with another set of symptoms,
and then study the reasons of this association. To discover associ-
ation rules, a user need first to define the method of data grouping
(e.g. by personal id number, by date, by disease).

In many cases, the data from a database can be additionally de-
scribed by some background knowledge. For example, products in

bananas

grapes

pears

apples

oranges

pork

sausages

ham

bread

crescent

roll

fruitmeatbakery

drugstorehouseholdclothesgrocery

supermarket

Figure 3: A taxonomy example

a big-store are divided into multiple-level is-a groups, e.g. bread
is a bakery item, bakery is a grocery item and finally grocery is a
product item. To utilize the background knowledge in a rule gener-
ation process, the term of conceptual hierarchies was introduced.

A conceptual hierarchy, also calledtaxonomy, consists of a set
of nodes organized in a tree, where nodes in the tree represent val-
ues of an attribute, calledconcepts. The generalizedvalue of an
attribute is the replacement of its value with its ancestor located on
given level in the conceptual hierarchy. The example of a concep-
tual hierarchy is shown in Figure 3. Generalized values for apples
are: fruit, grocery, supermarket. Conceptual hierarchies are pro-
vided by domain experts or users, or generated automatically.

A generalized rule(association, characteristic etc.) is the rule
that refers to generalized values of its attributes. All values are gen-
eralized on the same level. A rule that refers to values generalized
on multiple levels is called amultiple-level rule.

1.3 Related work

Several rule query languages and operators have been proposed so
far [6, 8, 9, 10, 12]. These languages can be classified as follows:
(1) declarative rule query languages that extend traditional SQL,
(2) logic programming languages, and (3) template and graphical
languages. We briefly review their main features.

Recently, certain declarative rule query languages extending the
traditional SQL have been proposed [6, 8, 9]. In [6], a new SQL-
like operator, named MINE RULE was presented. The operator is
capable of expressing the problems concerning the mining of asso-
ciation rules only. In [8], a data mining query language DMQL for
expressing problems related to association, classification, discrim-
inant and generalized rules discovery was introduced. In [9], an
additional MINE() operator to SQL was added, allowing proposi-
tional rule generation from the database as well as retrieval from the
rulebase, created to store some of the previously generated rules.

Shen, et al. [12] consider the logic programming language
LDL++ as a metapattern querying language. In [10], the authors
introduce a formalism of rule templates, that allow describing the
structure of demended rules.

1.4 Outline

The paper is organized as follows. In Section 2 we present the
elements of MineSQL language. Section 3 contains practical ex-
amples of MineSQL statements. In Section 4, query execution and
rule generation issues are addressed. Section 5 contains final con-
clusions.

312

2 MineSQL language

2.1 Rule datatype

In this Section we introduce a new datatype, calledRULE, which is
used to store and manipulate rules. EachRULEconsists of the fol-
lowing components: set of body elements (expressions(Ai = v)),
set of head elements (expressions(Ai = v)), support and confi-
dence values. TheRULEdatatype can be also used in SQLCRE-
ATE TABLEstatement to describe the type of an attribute of a cre-
ated table.

To help a user in rule managing, we define several rule func-
tions. The rule functions provide access to the rule elements (body,
head, support, confidence) as well as convert values fromRULEda-
tatype to other datatypes, or vice versa. The most commonly used
rule functions are:

• support(r)- returns the support value of the ruler,

• confidence(r)- returns the confidence value of the ruler,

• body(r)- returns the ruler body,

• head(r)- returns the ruler head,

• bodylen(r)- returns the number of ruler body elements,

• headlen(r)- returns the number of ruler head elements,

• rulelen(r) - returns the number of all ruler body and head
elements,

• bodyname(r, n)- returns the attribute name of then-th body
element,

• headname(r, n)- returns the attribute name of then-th head
element,

• bodyval(r, n)- returns the attribute value of then-th body
element,

• headval(r, n)- returns the attribute value of then-th head
element,

• to char(r, fmt)- converts a value ofRULEdatatype to a value
of CHARdatatype, using the optional format stringfmt,

• to rule(char, fmt)- converts a value ofCHAR datatype to
a value ofRULE datatype, using the optional format string
fmt.

In order to join rules with records or groups of records stored
in database tables, two rule operators are defined:SATISFIED BY
andVIOLATED BY. The operatorr SATISFIED BYrec evaluates
to True if the record or group of recordsrec satisfies the ruler.
The operatorr VIOLATED BYrec evaluates toTrue if the record
or group of recordsrec violates the ruler. For example, users can
easily find records that violate rules stored in a prepared table.

The main advantage of introducing the new datatype is that
rules can be integrated into existing databases of structured data.
Hence, discovered rules can be stored in database tables, together
with their descriptions, rule numbers and date of discovery. Then,
both the structured data and the rules can be searched in a single
query. However, rules managed byKDDMS may be physically
stored in relational database tables as well as in external reposi-
tories, such as object databases or plain files.

2.2 Conceptual hierarchies and user-defined
attributes

Sets of generalized attribute values are represented in the form of
conceptual hierarchies. To store a conceptual hierarchy structure,
we introduce a new database object type, calledTAXONOMY. Each
TAXONOMYhas a unique name and contents. The contents is a di-
rected acyclic graph on the set of attribute values and domain con-
cept values. Each domain concept value is stored in aNODEand
each attribute value is stored in aLEAF. Taxonomies are defined
and managed by a user by means of additional MineSQL state-
ments:

• CREATE TAXONOMY- defines the conceptual hierarchy
name and optionally, its nodes and leaves,

• ALTER TAXONOMY- modifies contents of a conceptual hi-
erarchy,

• DROP TAXONOMY- removes given conceptual hierarchy,

In many cases, users want to generate rules from discretized
data or complex aggregate values. Such values are calleduser-
defined attributes(or virtual attributes). They are treated as table
attributes, but they are not materialized any time. On every exter-
nal reference to a user-defined attribute, the attribute’s value is cal-
culated. The user-defined attributes can be implemented by users
by means of standard database stored functions. MineSQL allows
generating rules over such user-defined attributes.

2.3 MINE statement

Now, we present a new statement, calledMINE, which is used to
control rule generation from the database. TheMINE statement
can also be used as a query or subquery in another statement (e.g.
SELECT, INSERT). The syntax of theMINE statement is defined as
follows:

MINE rule expr [[AS] alias][, . . .]
[FOR {data expr [USING tax name][AS
alias][, . . .]|* }]
[TO {data expr [USING tax name][AS
alias][, . . .]|* }]
FROM table [,table] . . .
[WHERE {data condition|rule condition }
[{AND|OR} {data condition|rule condition }] . . .
]
[GROUP BY data expr [,data expr] . . .

[HAVING condition]]
[ORDER BY rule expr [{ASC|DESC}][, . . .]]

In the above description,rule exprdenotes rule expression, which
is a combination of: pseudo-attributeRULE, constants and rule
functions. The pseudo-attributeRULE represents the rule being
generated.Data exprdenotes data expression, which is a combina-
tion of: attributes, constants, user-defined attributes and database
functions. Data conditionand rule conditiondenotes constraints
on data used to generate rules, and constraints on rules generated.
The rule conditionsection of theMINE statement also allowsIN
andNOT IN set operators to be used on a rule, rule body and
rule head items. For two sets of itemsA andB, the expression
A IN B is true if: A 6= ∅ andA ⊆ B. TheMINE statement gen-
erates a set of rules or rule expressions. It defines the structure of
rules: the body is defined as a subset of attribute expressions in the
FORclause, the head is defined as a subset of attribute expressions
in theTO clause. If bothFORandTO clauses are omitted, all at-
tributes are used. If theTOclause is omitted, the head contains the
same set of attribute expressions thatFORclause does. TheUSING

313

trans id customer product date day hour quantity
1 100 roll 30-12-96 Monday 9:20 6
1 100 crescent 30-12-96 Monday 9:20 3
1 100 pork 30-12-96 Monday 9:20 5
2 100 roll 30-12-96 Monday 11:10 3
2 100 crescent 30-12-96 Monday 11:10 2
2 100 sausage 30-12-96 Monday 11:10 10
2 100 apple 30-12-96 Monday 11:10 20
2 100 pork 30-12-96 Monday 11:10 10
3 101 bread 30-12-96 Monday 12:40 1
3 101 ham 30-12-96 Monday 12:40 1
3 101 oranges 30-12-96 Monday 12:40 10
4 102 apple 02-01-97 Thursday 16:00 5
4 102 pears 02-01-97 Thursday 16:00 5
4 102 pork 02-01-97 Thursday 16:00 5
4 102 crescent 02-01-97 Thursday 16:00 2
5 103 bananas 03-01-97 Friday 9:50 3
5 103 oranges 03-01-97 Friday 9:50 7

Table 1: TheShoppingsrelation

keyword specifies a taxonomy used in the process of generating
generalized rules. Each body and head element as well as a rule
expression can be aliased by means ofAS keyword. The clause
FROMspecifies which tables or views to explore. The selection of
both table data and rules extracted depends on conditions specified
in theWHEREsection. TheMINE statement inspects table records
grouped by attributes indicated by theGROUP BYclause: records
belonging to a group are characterized by the same value of the
grouping attribute. The result rules may be sorted by theORDER
BYexpressions in ascending or descending order.

3 Examples

3.1 Example Relation

In this section we illustrate ourMINE statement showing its ap-
plication to mining problems based on a big-store relationShop-
pingscollecting purchase data. Customers buy a set ofproducts.
The whole purchase is referred to as atransactionwith a unique
identifier, a date, a day, an hour and a customer identifier. Each
transaction contains the set of bought products with the purchased
quantity. The customer’s purchase relationShoppingsis depicted
in Table 1.

3.2 Mining of simple association rules

Let us assume that a user looks for all association rules about prod-
ucts of big-store transactions such that the rule support value is
greater than 50%. The MineSQL query is represented as follows:

MINE rule, support(rule) s.,
confidence(rule) c.
FOR product
FROM shoppings
WHERE support(rule) > 0.5
GROUP BY trans id

The rule selection condition is formulated in theWHEREsec-
tion of the query. Only rules with confidence value greater than 0.5
will be generated. Records are grouped by the value oftrans id.
The result of the query is the following:

rule s. c.
product=’crescent’→ product=’pork’ 0.6 1.0
product=’pork’→ product=’crescent’ 0.6 1.0

Two rules with support greater than 50% have been found in the
example database.

The MineSQL language provides advanced rule selection tech-
niques. As an example, we present the query that generates all
rules containing the product ”crescent” in their body. Moreover, let
us assume that we are interested only in those rules, whose body
contains exactly two elements and whose support is greater than
20%. The query is constructed as follows:

MINE rule, support(rule) s.,
confidence(rule) c.
FOR product
FROM shoppings
WHERE ’product=’’crescent’’’ IN body(rule)
AND bodylen(rule) = 2
AND support(rule) > 0.2
GROUP BY trans id

The rule functionbodylen(rule)is used to determine the number
of rule body elements. The condition’product = ”crescent”’ IN
body(rule)evaluates toTrue for all rules, whose body contains the
elementproduct = ”crescent”. The query gives the following re-
sult:

rule s. c.
product=’roll’ & product=’crescent’→ product=’pork’ 0.4 1.0
product=’crescent’ & product=’pork’→ product=’roll’ 0.4 0.66

3.3 Generalized and multiple-level rules

To generate generalized and multiple-level rules, users first define
their individual conceptual hierarchies. The hierarchy is defined
for a particular attribute. In this example, we present the statement
that creates a newTAXONOMYobject for a part of the conceptual
hierarchy shown in Figure 3. The statement is as follows:

CREATE TAXONOMY supermarkettaxonomy
(NODE ’supermarket’,
NODE ’grocery’ REFERENCES ’supermarket’,
NODE ’bakery’ REFERENCES ’grocery’,
LEAF ’roll’ REFERENCES ’bakery’,
LEAF ’crescent’ REFERENCES ’bakery’,
LEAF ’bread’ REFERENCES ’bakery’)

After the concept hierarchy has been defined, generalized and
multiple-level rules can be generated. The next example presents
theMINE statement that generates multiple-level rules about prod-

314

ucts, using previously created taxonomy. Only those rules, whose
support value is greater than 50% and confidence value is greater
than 80% are returned. The result rules are ordered according to
the value of the rule support.

MINE rule, suport(rule) s., confidence(rule)
c.
FOR product USING supermarket taxonomy
FROM shoppings
WHERE confidence(rule) > 0.8
AND support(rule) > 0.5
GROUP BY trans id
ORDER BY support(rule) DESC

In the above statement, the keywordUSINGspecifies the name
of the conceptual hierarchy to be used for the attributeproduct.
To sort the result rules,ORDER BYclause has been added. The
generated set of multiple-level association rules is as follows:

rule s. c.
product=’bakery’→ product=’meat’ 0.8 1.0
product=’meat’→ product=’bakery’ 0.8 1.0
product=’crescent’→ product=’pork’ 0.6 1.0
product=’pork’→ product=’crescent’ 0.6 1.0
product=’bakery’→ product=’fruit’ 0.6 1.0
product=’bakery’ & product=’fruit’→ product=’meat’ 0.6 1.0
product=’pork’→ product=’bakery’ 0.6 1.0
product=’crescent’→ product=’meat’ 0.6 1.0

Notice, that the above table of rules contains both one-level
rules (e.g. product = ’bakery’ → product = ’meat’) as well as
multiple-level rules (e.g.product = ’pork’ → product = ’bakery’).

In the next example, we show the MineSQL ability to generate
generalized rules, whose conceptual level is specified by a user. Let
us assume, that the user looks for association rules at the second
level of the hierarchysupermarkettaxonomy:

MINE rule, support(rule) s.,
confidence(rule) c.
FOR TAXNODE(product, 2)
FROM shoppings
WHERE confidence(rule) > 0.8
GROUP BY trans id

The rule query result is the following:

rule s. c.
product=’bakery’→ product=’meat’ 0.8 1.0
product=’meat’→ product=’bakery’ 0.8 1.0
product=’bakery’→ product=’fruit’ 0.6 1.0
product=’bakery’ & product=’fruit’→ product=’meat’ 0.6 1.0

All rules returned by the above query contain the values from
one conceptual level only.

3.4 Multiattribute association rules

Traditional association rules operate on values of only one attribute.
The MineSQL language allows mining of multiattribute association
rules, that operate on values of two or more attributes. As an ex-
ample, we show the MineSQL ability to generate association rules
between products and their day of purchase. The query is repre-
sented as follows:

MINE rule, support(rule) s.,
confidence(rule) c.
FOR product
TO day
FROM shoppings
WHERE support(rule) > 0.3
AND confidence(rule) > 0.8
GROUP BY trans id

The bodies of generated rules will contain the attributeproduct,
specified in theFORclause. The heads of the rules will contain the
attributeday, specified in theTO clause. The result of the query is
the following:

rule s. c.
product=’roll’ → day=’Monday’ 0.4 1.0
product=’roll’ & product=’crescent’ & product=’pork’
→ day=’Monday’ 0.4 1.0
product=’roll’ & product=’crescent’→ day=’Monday’ 0.4 1.0
product=’roll’ & product=’pork’→ day=’Monday’ 0.4 1.0

3.5 User-defined attributes

To generate rules over user-defined attributes, we first define the
database functionquarter that returns the quarter’s name of the
given date:

function quarter(date) returns char is
begin

if month(date) in (1,2,3) then return
’1st’

elsif month(date) in (4,5,6) then return
’2nd’

elsif month(date) in (7,8,9) then return
’3rd’

elsif month(date) in (10,11,12) then
return ’4th’

end if;
end;

Now, we generate rules over values of the attributeproductand
the new virtual attributequarter. The attributeproductwill appear
in the rule body, whereas the head of the rule will contain the user-
defined attributequarter.

MINE rule
FOR product
TO quarter(date) AS quarter
FROM shoppings
WHERE support(rule) > 0.3
AND confidence(rule) > 0.8
GROUP BY trans id

The user-defined attribute is specified inTO clause, because it
will be contained in the rule head. The rules found are the follow-
ing:

rule
product=’roll’ → quarter=’4th’
product=’roll’ & product=’crescent’ & product=’pork’→
→ quarter=’4th’
product=’roll’ & product=’crescent’→ quarter=’4th’
product=’roll’ & product=’pork’→ quarter=’4th’

The values of the user-defined attributes are calculated by
the database functionquarter(). The above example showed the
method of simple discretization of continuous values.

3.6 Mining of characteristic rules

Suppose, we would like to find rules characterizing the valuemorn-
ing of the user-defined attributetime(hour). The definition of the
user-defined attributetimeis given below, followed by the rule gen-
eration statement.

function time(hour) returns char is
begin

if hour < ’06:00’ then return ’night’
elsif hour < ’12:00’ then return ’morning’
elsif hour < ’18:00’ then return

’afternoon’

315

elsif hour < ’24:00’ then return ’evening’
end if;

end;

MINE rule, suport(rule) s., confidence(rule)
c.
FOR product, customer
TO time(hour) AS time
FROM shoppings
WHERE head(rule) = ’time=’’morning’’’
AND support(rule) > 0.1

The above statement does not contain aGROUP BYclause. It
means that the default grouping is used. By default, theMINEstate-
ment processes groups of one record each. The attributes for the
rule body areproductandcustomer, and the attribute for the rule
head istime. The result of the query is the following:

rule s. c.
customer=100 & product=’roll’→ time=’morning’ 0.12 1.0
customer=100 & product=’crescent’→ time=’morning’ 0.12 1.0
customer=100 & product=’pork’→ time=’morning’ 0.12 1.0
customer=103→ time=’morning’ 0.12 1.0
customer=100→ time=’morning’ 0.47 1.0
product=’roll’ → time=’morning’ 0.12 1.0
product=’crescent’→ time=’morning’ 0.12 0.66
product=’pork’→ time=’morning’ 0.12 0.66

All the above rules characterizes the shoppings purchased at the
morning.

3.7 Storing rules in tables

Rules generated by means of theMINE statement can be stored in
database tables. The tables are created with SQLCREATE TABLE
statement. Let us create the following table:

CREATE TABLE myrules
(r RULE,
description CHAR(20))

The tablemy ruleshas two attributes:r which contains a rule,
and description, containing additional comments about the rule.
The tablemy rules can be filled with the result of the following
exampleMINE statement:

INSERT INTO my rules (r)
MINE rule, suport(rule), confidence(rule)
FOR product, customer
TO time(hour) AS time
FROM shoppings
WHERE head(rule) = ’time=’’morning’’’
AND support(rule) > 0.1

TheMINE statement above is a subquery of the standard SQL
INSERTstatement. As the result, all the rules generated by the
MINE statement will be inserted into the tablemy rules. Having
stored the rules, we can find all the tuples that violates the rules.
For example, the following statement find all tuples inshoppings
table that violate rules stored in the tablemy rules:

SELECT s.trans id, s.customer, s.product
FROM shoppings s, my rules m
WHERE m.r VIOLATED BY s.*

The result of the query is the following:

s.transid s.customer s.product
4 102 pork
4 102 crescent

RULE
* RULE_ID
* SUPPORT
* CONFIDENCE

* USER_ID

BODY ELEMENT
* ELEMENT_ID
* ATTRIBUTE
* RELATION
o VALUE

HEAD ELEMENT
* ELEMENT_ID
* ATTRIBUTE
* RELATION
o VALUE

Figure 4: Data model for rule storage

4 Rule generation and storage

The interactive approach to data mining presented in the paper re-
quires fast and effectiveKDDMS that is capable of on-demand
generation of rules. Most of known algorithms for mining rules
generate the rules that have only support and confidence greater
than given minimum values [3, 4, 7, 13, 14, 15]. The application
of these algorithms to the on-demand rule generation is straight-
forward, though very ineffective. It consists in first generating all
rules satisfying only support and confidence constraints, and then
filtering the rules with the remaining constraints. However, this
approach to query execution is time and memory consuming.

Within the scope of the data mining research project led in Poz-
nan University of Technology, we developed a constraints-driven
algorithm that employs the specific rule query constraints to con-
trol the association rule generation process [11]. The key idea of the
constraints-driven algorithm is following. User expresses the rule
query using MineSQL language. The rule query contains selection
constraints that should be satisfied by generated rules. These con-
straints are then converted into the form which is directly applied in
generating the rules. We showed that utilizing the query constraints
knowledge by the core of the data mining algorithm may reduce the
processing time as well as temporary storage requirements.

MineSQL allows logical storing of the generated rules in
database tables. Physically, the rules managed byKDDMS may
be stored in relational database tables as well as in external reposi-
tories, such as object databases or even plain files. As an example,
in Figure 4 we present the data model (ERmodel) that can be used
to physically store rules.

To generate generalized and multiple-level rules, concept hier-
archies should be stored in the database. The conceptual hierarchies
(TAXONOMY) can be internally stored by means of database ta-
bles. As an example, in Figure 5 we present the relational structure
that can be used to internally store the conceptual hierarchies.

5 Conclusions

We presented the new SQL-like language for data mining from re-
lational databases, called MineSQL, developed within the scope
of the data mining project led at Pozna´n University of Technol-
ogy. MineSQL is the extension of industral standard SQL. It allows
users to express different types of rule queries for discovering asso-
ciation, characteristic, classification and discriminant rules. More-
over, MineSQL allows specifying the generalized, multiple-level
and multiattribute asociation rules as well as specifying rule queries
over user-defined attributes. The main features of the language, its
syntax and semantics are illustrated by practical examples.

316

TAXONOMY
* TAX_ID
* TAX_NAME
* USER_ID

NODE
* NODE_ID
* TYPE
* VALUE
* LEVEL

Figure 5: Data model for taxonomy storage

In the paper we focused our attention on the rule query lan-
guage. Besides the problem of the language for expressing rule
queries there are a lot of problems that should be solved and that
we have looked into: generation of rules on-demand, storing and in-
dexing rules, handling attributes with continuous values, etc. More-
over, in the same way as today’s business applications are cur-
rently supported using SQL based API, the data mining applica-
tions needs to be provided an application development support. The
development of rule querying tools for data mining is one of the big
challenges to the database and machine learning communities.

References

[1] Imielinski T., Manilla H.,A Database Perspective on Knowl-
edge Discovery, Communications of the ACM, Vol. 39, No.
11, Nov. 1996

[2] Agrawal R., Imielinski T., Swami A.,Database Mining: A
Performance Perspective, IEEE Transactions on Knowledge
and Data Engineering”, Vol. 5, No. 6, Dec. 1993

[3] Agrawal R., Imielinski T., Swami A.,Mining Association
Rules Between Sets of Items in Large Databases, Proc. of the
1993 ACM SIGMOD International Conference on Manage-
ment of Data, Washington, DC, 1993,

[4] Agrawal R., Srikant R.,Fast Algorithms for Mining Associ-
ation Rules, Proc. of the 20th VLDB Conference, Santiago,
Chile, 1994,

[5] Fayyad U., Piatetsky-Shapiro G., Smyth P.,The KDD Pro-
cess for Extracting Useful Knowledge from Volumes of Data,
Communications of the ACM, Vol. 39, No. 11, Nov. 1996

[6] Ceri S., Meo R., Psaila G.,A New SQL-like Operator for Min-
ing Association Rules, Proceedings of the 22nd VLDB Con-
ference, Bombay, India, 1996

[7] Han J., Fu Y.,Discovery of Multiple-Level Association Rules
from Large Databases, Proc. of the 21st VLDB Conf., Swiz-
erland, 1995,

[8] Han J., Fu Y., Wang W., Chiang J., Gong W., Koperski K.,
Li D., Lu Y., Rajan A., Stefanovic N., Xia B., Zaiane O.R.,
DBMiner: A System for Mining Knowledge in Large Rela-
tional Databases, Proc. Int’l Conf. Data Mining and Knowl-
edge Discovery, Portland, Oregon, August 1996

[9] Imielinski T., Virmani A., Abdulghani A.,Discovery board
application programming interface and query language for
database mining, Proc. of KDD96, Portland, Oregon, August
1996

[10] Klemettinen M., Manilla H., Ronkaien P., Toivonen H.,
Verkamo A. I., Finding Interesting Rules from Large Sets
of Discovered Association Rules, Proc. of the Third Int’l
Conf. on Information and Knowledge Management, Mary-
land, 1994

[11] Morzy T., Zakrzewicz M.,Constraints-Driven Algorithm for
Mining Association Rules On Demand, Technical Report,
Poznan University of Technology, 1997

[12] Shen W.M., Ong K., Mitbander B., Zaniolo C.,Metaqueries
for Data Mining, Advances in Knowledge Discovery and Data
Mining, 1996

[13] Savasere A., Omiecinski E., Navathe S.,An Efficient Algo-
rithm for Mining Association Rules in Large Databases, Proc.
of the 21st VLDB Conference, Zurich, Swizerland, 1995,

[14] Srikant R., Agrawal R.,Mining Generalized Association
Rules, Proc. of the 21st VLDB Conf., Swizerland, 1995,

[15] Toivonnen H.,Sampling Large Databases for Association
Rules, Proc. of the 22nd VLDB Conf., India, 1996,

317

